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ABSTRACT
While many works have been devoted to service matchmak-
ing and modeling nonfunctional properties, the problem of
matching service requests to offers in an optimal way has
not yet been extensively studied. In this paper we formalize
three kinds of optimal service selection problems, based on
different criteria. Then we study their complexity and im-
plement solutions. We prove that one-time costs make the
optimal selection problem computationally hard; in the ab-
sence of these costs the problem can be solved in polynomial
time. We designed and implemented both exact and heuris-
tic (suboptimal) algorithms for the hard case, and carried
out a preliminary experimental evaluation with interesting
results.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based Ser-
vices; F.2.2 [Nonnumerical Algorithms and Problems]:
Computations on Discrete Structures

General Terms
Algorithms, Experimentation, Theory

Keywords
Service selection problem, Automatic service composition,
Service matchmaking, Nonfunctional properties

1. INTRODUCTION
There exists an increasing body of work on automated

service selection, based on criteria such as quality of ser-
vice (QoS), trust, cost, etc. Some works focus on service
matchmaking [26, 20, 2, 19, 28, 11, 3, 4, 21, 12, 13], that
is, a process that given a service request returns the set
of available services that can be used to fulfill that request
(offers may be ranked according to their similarity to the re-
quest). Some other papers focus on modelling nonfunctional
properties such as the above criteria, that induce preference
orderings on the available services [16, 5, 17].

However, no paper tackles in depth the optimization prob-
lem that follows matchmaking and nonfunctional property
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evaluation: What is the best way of binding each service
request to a matching service? The problem may be non-
trivial if the optimization involves multiple service requests
at once. Consider for example composite services; they can
be modelled as workflows [6, 12], where each activity poten-
tially corresponds to a different service. In this framework,
the decision problem consists in finding an optimal match-
ing (w.r.t. the adopted criteria) between the set of activities
occurring in the workflow and the set of available services
that can be used to carry out those activities.

In this paper we consider optimal service selection based
on a given set of service requests (such as the activities oc-
curring in a workflow), a set of service offers (the available
services), the result of the matchmaking process (that asso-
ciates each request to the set of offers that can satisfy it),
and a numeric preference measure. Numeric measures are
well-suited to a number of preference criteria of practical in-
terest, based on costs of various sorts, as well as bandwidth,
trust [1, 30, 24, 29], and other QoS criteria. Moreover, dif-
ferent criteria can often be merged into a single numerical
value [5].

Preferences and costs may be associated to services, ser-
vice invocations, or both, as illustrated by the following ex-
amples:

• Trust is often associated to services, not service invo-
cations. User preferences driven by privacy protection
and security usually refer to services, independently of
the specific call.

• However, an information service may be trusted on
some queries and not on others; in this case trust is
associated to individual invocations.

• Some services have an activation cost or a registra-
tion cost, to be paid only the first time the service is
invoked, or before the first use. Such costs are associ-
ated to the services and do not depend on the number
of calls nor on their nature.

• Other services work on a pay-per-use basis (such as
paper downloads from a digital library and other elec-
tronic purchases). In this case, costs and preferences
may depend on the specific request and are associated
to each service invocation. Some services have both a
per-use cost and an activation cost (such as telephone
providers).

• Also bandwidth and transmission speed may vary across
different service calls. For example a service may be
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faster at certain times of the day. Another example is
given by connection costs that depend on the duration
of each particular call.

In this paper we shall contribute to the understanding of
the service selection problem (SSP, for short) by formalizing
and studying three classes of SSP problems where selection
is based on costs and on two different QoS-like criteria, re-
spectively. For simplicity, in this paper we assume that costs
and preferences are totally ordered and static (i.e., time in-
dependent); partially ordered and dynamic nonfunctional
properties will be dealt with in a forthcoming paper.

We shall prove that in general—and despite the aforemen-
tioned simplifying assumptions—the optimal service selec-
tion problem is harder than NP (unless the polynomial hi-
erarchy collapses). More precisely, some SSPs are in FPNP,
like many famous hard optimization problems, while check-
ing whether the optimal cost equals a given constant K is
DP-complete. We shall identify practical cases where the
problem can be solved in polynomial time. In particular, we
show that the high computational complexity of the service
selection problem is caused by the one-time costs associated
to service offers (e.g., initialization and registration costs).
In the absence of one-time costs, the optimal selection prob-
lem can be solved in polynomial time by applying a greedy
approach. Finally, we shall illustrate the results of an ex-
perimental evaluation of both exact and heuristic algorithms
over different classes of problem instances.

The paper is organized as follows. In Section 2 we recall
the definition of the complexity classes needed in this paper.
In Section 3 the service selection problems are formalized.
Section 4 contains the complexity results and the algorithms
for the first class of SSPs (based on cost-like criteria), and
reports the experimental results for these algorithms. Sec-
tion 5 illustrates the complexity results and the algorithms
for the remaining two classes of SSPs (based on QoS-like
criteria). Section 6 concludes the paper with a discussion
of the results and a list of interesting directions for future
work.

2. PRELIMINARIES ON COMPLEXITY
We assume the reader to be familiar with the basics of

computational complexity. We refer to [22] for more details.
The class DP is a class of decision problems containing

NP. DP can be defined as the class of all languages L such
that L = L1∩L2, for some L1 in NP and some L2 in co-NP.
If L1 and L2 are complete for NP and co-NP, respectively,
then L is complete for DP.

The class FPNP is the class of all function problems (i.e.
problems that compute a value, not only a yes-no answer)
that can be solved in polynomial time by a deterministic
Turing machine with an oracle for NP.

Many standard optimization problems are complete for
FPNP. For example, the Traveling Salesman Problem and
Max-weight SAT are FPNP-complete [22, Chapter 17.1].

3. PROBLEM FORMALIZATION
The instances of the service selection problems (SSP) ad-

dressed in this paper are tuples 〈R, O, M, c, k〉 where:

• R = {1, 2, . . . , m} is a nonempty set of service requests;

• O = {1, 2, . . . , n} is a nonempty set of service offers;

• M ⊆ R×O is a matching between requests and offers
such that

∀r ∈ R, ∃s ∈ O, 〈r, s〉 ∈ M (1)

(intuitively, if some request cannot be satisfied then
the decision phase is never reached);

• c : O → Q is a function that assigns a cost or quality
measure cs to each offer s ∈ O;

• k : M → Q is a function that assigns a cost or quality
measure krs ∈ Q to each pair 〈r, s〉 ∈ M (that is, to
each possible service call).

The goal is finding a binding between requests and offers,
compatible with the given matching and optimal w.r.t. the
preferences associated to services and invocations.

Formally, a binding for 〈R,O, M, c, k〉 is a total function
b : R → O such that b ⊆ M .1 Condition (1) on M ensures
that a binding always exists.

As anticipated in the introduction, in this paper the opti-
mality of bindings will be evaluated against different objec-
tive functions.

The first objective function, denoted by Cb, is appropri-
ate for criteria based on totally ordered costs (money, time,
etc.)2 The overall cost of a binding is obtained by summing
up the costs of all the calls specified in the binding, plus the
one-time costs associated to the called services (e.g., initial-
ization and registration costs). More precisely, let

b[R] = {s ∈ O | ∃r ∈ R. b(r) = s}

denote the range of b (informally speaking, b[R] is the set
of services “used” by b); then the total cost of binding b is
given by

Cb =
X

r∈R

kr b(r) +
X

s∈b[R]

cs . (2)

The second objective function, denoted by Qb, is appro-
priate for many QoS-like criteria. Suppose that the aim of
the optimization problem, in this case, is maximizing simul-
taneously the quality of each requested service. Then the
overall quality of a binding b can be modelled by summing
up the qualities of each selected request-offer match:

Qb =
X

r∈R

f(kr b(r), cb(r)) . (3)

Here f : Q2 → Q computes the quality of the solution pro-
vided by the selected service b(r) to request r by appropri-
ately combining the measure kr b(r) associated to the service
call and the measure cb(r) associated to the service. We as-
sume only that f can be computed in polynomial time (w.r.t.
the given instance), because different applications may re-
quire different functions f .

For example, suppose r is satisfied by invoking b(r) via a
network connection. Packet rate is influenced both by the
server’s speed and by the bandwidth allowed by the inter-
mediate routers; the lowest rate determines the overall rate
for the connection. Suppose the values kij measures the

1This inclusion means that for all requests r ∈ R, 〈r, b(r)〉 ∈
M .
2Totally ordered costs are typically appropriate for uniform
costs, and for multi-dimensional costs with a total preference
over dimensions (e.g., money over time, and so on).
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packet rate allowed by the connection between i and j, and
the values cj measure the packet rate of the servers; then it
is appropriate to set f = min.

For another example, suppose the values kij measure the
quality of the connections between i and j, and the values
cj measure the level of trust in the information released by
service j. Then a service b(r) may be preferred because (i)
the quality of the connection is good, and at the same time
(ii) the level of trust in b(r) is high. In this case f = min does
not seem adequate; it is not sensitive to any increment of the
maximal argument, therefore it does not forces simultaneous
improvement of the two values kij and cj . A function more
sensitive to both of its parameters seems more appropriate
(e.g., one may adopt f = + or f = ×).

The third objective function, denoted by Q′
b, is appropri-

ate for QoS-like criteria, too. Sometimes, in a compound
service, the quality of the worst component service affects
the quality of the entire service. For example, the overall
privacy preservation degree of a compound service issuing
a set of requests R, is determined by the minimal privacy
preservation degree of the service components (i.e. the indi-
vidual invocations b(r)). In this kind of scenario, the quality
estimates f(kr b(r), cb(r)) are combined by taking their min-
imum:

Q′
b = min{f(kr b(r), cb(r)) | r ∈ R} . (4)

The three objective functions Cb, Qb, and Q′
b induce three

classes of SSP:

SSPC: Given a SSP instance I, find a binding b for I that
minimizes the cost function Cb.

SSPQ: Given a SSP instance I, find a binding b for I that
maximizes the quality function Qb.

SSP′
Q: Given a SSP instance I, find a binding b for I that
maximizes the quality function Q′

b.

The last two problems, Qb and Q′
b, are not much different

from each other, as stated by the following result:

Theorem 3.1. For each SSP instance I,

1. All the solutions of I under SSPQ are also solutions of
I under SSP′

Q.

2. Conversely, at least one solution of I under SSP′
Q is

also a solution of I under SSPQ.

Intuitively, the reason is that SSP′
Q considers only the

bottlenecks, while SSPQ tries to improve all services.

4. COMPLEXITY OF AND ALGORITHMS
FOR SSPC

We prove that SSPC is NP-hard by reduction from the
Uncapacitated Facility Location Problem (UFLP), which is
defined as follows. We are given a bipartite graph (F, C)
with set of n facilities F and m cities C. Let fj represent
the cost of opening a facility at location j in F , and cij

represent the cost of serving city i from an open facility j.
The goal is to find a subset I of F along with an assignment
function Φ : C → I to assign the cities such that the total
cost is minimized.

There is a great variety of types of facility location prob-
lems depending on the features of the components that con-
tribute in the model definition. Some basic classes of facility
location problems are listed below.

1. If there are given upper bounds on the number of cities
a facility can serve, then the corresponding problem is
classified as a Capacitated Facility Location Problem.

2. If some data are given by a probability distribution,
the problem is considered to be stochastic; otherwise
it is referred to as a deterministic one.

3. If the decision process is concerned not only with the
location of the facilities to be open but also with “the
moment” of their opening, then the corresponding prob-
lem is called a Dynamic Facility Location Problem;
otherwise it is called a Static Facility Location Prob-
lem.

The uncapacitated facility location problem we need in
this paper is static and deterministic and admits the follow-
ing integer programming formulation.

(UFLP) min

m
X

i=1

n
X

j=1

cij xij +

n
X

j=1

fjyj

s.t.
n

X

j=1

xij = 1, 1 ≤ i ≤ m (a)

yj − xij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n (b)

xij , yj ∈ {0, 1} 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where constraints (a) impose that each city is assigned to at
least one facility, while constraints (b) restrict assignments
to open facilities only.

Despite their simple formulation, most location problems
are very difficult to solve. Except for some special cases,
their decision version (For a given K, is there a solution
with cost ≤ K? ) have been shown to be NP-hard by reduc-
tion from the Vertex Cover Problem (membership in NP is
straightforward). An extensive survey of location problems,
their complexities and applications can be found in the book
edited by Mirchandani and Francis [18].

By setting R = C, O = F , cj = fj , and kij = cij (1 ≤
i ≤ m, 1 ≤ j ≤ n), UFLP can be reduced to SSPC, and
viceversa. Then, we can prove the following result:

Proposition 4.1. Deciding whether the optimal
cost of a given instance of SSPC is less than or equals a
given rational K is NP-complete.

With this result, we can express the optimality check
as the conjunction of an NP-complete test and a co-NP-
complete test, so we get the following theorem.

Theorem 4.2. Deciding whether the optimal cost of a
given instance of SSPC equals a given rational K is DP-
complete.

The optimal cost can be computed through a binary search
of K, based (by the above proposition) on an oracle for NP.
This procedure provides an upper bound to the complexity
of the optimization problem.

Theorem 4.3. Computing the optimal cost of a
given instance of SSPC is in FPNP.

Note that by Theorem 4.2, the optimization problem is
harder than NP, unless the polynomial hierarchy collapses.
The source of complexity lies in the one-time costs associ-
ated to services, as shown in the next two subsections.
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4.1 Exact and approximated algorithms
The algorithms described in this section accept

slightly modified instances of SSPC, where the function k
is extended to all of R × O by setting kij = +∞ for all
〈i, j〉 ∈ (R × O) \ M .

Algorithm 1 solves exactly the problem in the obvious
way, by exhaustively trying all possible bindings. The only
optimization consists in aborting a tentative binding con-
struction whenever the value of the current partial binding
exceeds the best cost found so far.

Nevertheless, the intractable nature of the problem makes
approximate solutions the natural choice for dealing with
large instances. The first constant factor approximation al-
gorithm for facility location problems due to Shmoys et al.
appeared in the literature in 1997 [23]. In 1999 Guha and
Khuller [8] proved that it is impossible to get an approxi-

mation guarantee of 1.463 unless NP⊆DTIME[nO(log log n)].
Since then, several scientific papers have been published
along this line of research [10, 9, 14, 25].

In our exploration of the approximate solutions we have
implemented the best known approximation algorithm (Al-
gorithm 2) proposed by Mahdian et al. [15]. This algorithm
ensures that the ratio between the cost of the returned solu-
tion and the optimal cost is bounded by 1.52. Algorithm 2
combines the greedy algorithm proposed by Jain et al. [9]
(Algorithm 3) with the idea of cost scaling and can be im-
plemented in quasi-linear time, as showed by the authors
using a result of Thorup [27].

We have also investigated a simple heuristic approach re-
quiring time O(mn2). Algorithm 4 consists of two phases:
a greedy adaptive construction phase (line 3, calling Algo-
rithm 5) and a local search phase (lines 4–21). These algo-
rithms use the sets of requests Rs served by each service s,
formally defined by

Rs = {r ∈ R | b(r) = s} .

Algorithm 4 and Algorithm 5 return inverse bindings, repre-
sented by pairs (y, {Rs}s∈O) where (i) y is a boolean vector
such that ys = 1 iff offer s is used in the binding, and (ii) the
family {Rs}s∈O defines for each offer s the requests satisfied
by s.

Starting from an empty solution, the first phase (Algo-
rithm 5) iteratively constructs a feasible solution in a greedy
and adaptive fashion with a greedy function defined on both
matching and service costs. At each iteration, a new match-
ing is determined between an unmatched request and the
most convenient offer. In future iterations, the cost of this
offer will not be considered again while evaluating the greedy
choice (a greedy adaptive schema). The running time of Al-
gorithm 5 that performs this phase is O(mn).

Starting from the feasible binding found by the construc-
tion phase, the local search phase tries (in time O(mn)) to
find a better binding by slightly perturbing it. In particular,
for each invoked offer s ∈ {1, 2, . . . , n} the algorithm looks
for an alternative and more convenient offer l 6= s that can
serve the requests currently matched to s (l may have been
already associated to other requests, but not necessarily). If
such a service l is found, then all the requests served by s
are redirected to l.

This strategy is expected to work especially well in the
presence of multi-function services that make per-use dis-
counts to users that register to many of the service’s options.
In case of heavy use of these functionalities, the algorithm

Algorithm 1

ExhaustiveSearch (UR, CO, PC,BC, c, k, b)

1: Inputs: UR:unmatched requests, CO:called offers,
PC:partial cost, BC:best cost, c:vector of costs asso-
ciated to services, k:matrix of costs associated to invo-
cations.

2: Outputs: best cost and an optimal binding b.
3: begin

4: if PC ≥ BC then

5: return BC {abort search; keep current best cost}
6: else if UR = ∅ then {we found a better complete solu-

tion, as PC < BC}
7: save the current binding b;
8: return PC {new best cost}
9: else

10: choose r ∈ UR;
11: for all s such that krs < +∞ do

12: b(r) := s; {bind r to s}
13: if s ∈ CO then

14: PCs := PC + krs

15: else

16: PCs := PC + krs + cs

17: BC := ExhaustiveSearch (UR \ {r}, CO ∪
{s}, PCs, BC, c, k)

18: return BC
19: end

is likely to find that the service is more convenient even if
its one-time cost is higher than those of the competing ser-
vices. An experimental evaluation of Algorithms 2 and 4 is
discussed in Section 4.4.

4.2 A polynomially solvable subclass
Let us suppose that the one-time costs associated to ser-

vices are null, that is:

∀s ∈ O, cs = 0 . (5)

(the costs krs associated to service invocations may be greater
than zero). This special case of SSP is equivalent to a spe-
cial transportation problem and can be polynomially solved
by following a greedy approach with greedy function given
by k : R × O → Q. The optimal solution activates all ser-
vices and simply matches a service request with the cheap-
est service. It is easy to show that the optimal cost can be
computed through GreedyAdapt (Algorithm 5) with null
input cost vector c:

Theorem 4.4. The binding corresponding to the values
y, {Rs}s∈O returned by Algorithm 5 is optimal if c is null.

Note that in this case GreedyAdapt is a pure greedy al-
gorithm running in O(mn) time. The next corollary follows
immediately.

Corollary 4.5. If (5) holds, then SSPC can be solved in
time O(mn).

4.3 The source of complexity of SSPC

In the light of Section 4.2, it is interesting to investigate
the complexity of SSPC when the invocation costs are null,
that is:

∀ 〈r, s〉 ∈ M, krs = 0 (6)
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Algorithm 2

1.52approx (m, n, c, k, δ)

1: Outputs: for δ = 1.504, 1.52-approximate binding -
represented by y and {Rs}s∈O - and its cost C.

2: begin

3: for all s = 1 to n do

4: c(s) := c(s) ∗ δ
5: (y, {Rs}s∈O, C, d) := jain (m, n, c, k)
6: for all s = 1 to n do

7: c(s) := c(s)
δ

8: bool:=true
9: while (bool) do

10: max:= 0
11: for s = 1 to n s.t. ys = 0 do

12: Ĉ := 0, C̄ := 0
13: Q := ∅
14: for r = 1 to m s.t. krs < +∞ do

15: Q := Q ∪ {r}

16: Ĉ := Ĉ + krs

17: C̄ := C̄ + krb(r)

18: if (max< (C̄ − Ĉ − cs)/cs) then

19: max:= (C̄ − Ĉ − cs)/cs

20: v := s
21: Ĉv := Ĉ
22: Qv := Q
23: if (max> 0) then

24: yv := 1, dv := Ĉv, Rv := Qv

25: for r ∈ Rv do

26: j := b(r)
27: dj := dj − krj

28: Rj := Rj \ {r}
29: if (Rj = ∅) then

30: yj := 0
31: b(r) := v
32: else

33: bool:=false
34: return C
35: end

Algorithm 3

jain (m, n, c, k)

1: Outputs: 1.61-approximate binding - represented by y
and {Rs}s∈O - and its cost C.

2: begin

3: C := 0
4: for all r = 1 to m do

5: b(r) := 0, budget(r) := 0
6: for all s = 1 to n do

7: ys := 0
8: while (there exists r ∈ {1, 2, . . . , m} s.t. b(r) = 0) do

9: for all r = 1 to m s.t. b(r) = 0 do

10: budget(r) :=budget(r) + 1
11: for all s = 1 to n do

12: if ys = 0 then

13: totoffer:= 0, i := 0
14: for all r = 1 to m do

15: if (b(r) = 0) then

16: if (budget(r) − krs > 0) then

17: totoffer:=totoffer+budget(r) − krs

18: i := i + 1, L(i) := r
19: else

20: if (krb(r) − krs > 0) then

21: totoffer:=totoffer+krb(r) − krs

22: i := i + 1, L(i) := r
23: if (totoffer≥ cs) then

24: ys := 1
25: for k = 1 to i do

26: v := L(k)
27: j := b(v)
28: if (j 6= 0) then

29: Rj := Rj \ {v}
30: dj := dj − kvj

31: if (Rj = ∅) then

32: yj = 0
33: b(v) := s, Rs := Rs ∪ {v}
34: ds := ds + kvs

35: else

36: for r = 1 to m do

37: if (b(r) = 0) then

38: if (budget(r) = krs) then

39: Rs := Rs ∪ {r}
40: b(r) := s, ds := ds + krs

41: for all s = 1 to n do

42: if (ys = 1) then

43: C := C + cs + ds

44: return (y, {Rs}s∈O, C, d)
45: end
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Algorithm 4

GreedyAdaptHeur (m,n, c, k)

1: Outputs: suboptimal binding – represented by y and
{Rs}s∈O – and its cost C.

2: begin

3: (y, {Rs}s∈O, C, d) := GreedyAdapt (m, n, c, k)
{Local search phase}

4: for all s = 1 to n do

5: if ys = 1 then

6: improved := false
7: l := 1
8: while (not improved and l ≤ n) do

9: if l 6= s then

10: q :=
X

r∈Rs

krl

11: gain := ( cs + ds ) − [ cl(1 − yl) + q ]
12: if gain> 0 then

13: Rl := Rl ∪ Rs

14: dl := dl + q
15: Rs := ∅
16: ds := 0
17: ys := 0
18: yl := 1
19: improved := true
20: C = C−gain
21: l := l + 1
22: {end while}
23: return (y, {Rs}s∈O, C)
24: end

Algorithm 5

GreedyAdapt (m, n, c, k)

1: Outputs: suboptimal binding – represented by y and
{Rs}s∈O –, its cost C and the costs d (see below).

2: begin

3: for all s = 1 to n do

4: {Init structures}
5: Rs := ∅
6: ys := 0 {i.e. s not used}
7: ds := 0 {total cost of all calls to s}
8: C := 0
9: for all r = 1 to m do

10: min := +∞
11: for all s = 1 to n do

12: if min > cs(1 − ys) + krs then

13: min := cs(1 − ys) + krs

14: best := s
15: C := C + min
16: Rbest := Rbest ∪ {r}
17: dbest := dbest + kr best

18: ybest := 1
19: return (y, {Rs}s∈O, C, d)
20: end

(the costs cj may be nonzero.) In this case, SSPC remains
difficult. Its computational complexity remains high even if
(6) holds and the costs cj are all identical (but nonzero),
that is,

∀ {s, t} ⊆ O, cs = ct 6= 0 . (7)

To prove this, we note that the hitting set problem [7]
can be reduced to the decision version3 of SSPC satisfying
(6) and (7). The hitting set problem can be formulated as
follows:

Given a finite set S, a collection of sets Si ⊆ S
(1 ≤ i ≤ z), and a positive K, decide whether
there exists S′ ⊆ S such that for all i = 1 . . . z,
S′ ∩ Si 6= ∅ and |S′| < K.

The hitting set problem is known to be NP-complete. The
hitting set problem can be reduced to the decision version
of SSPC under restrictions (6) and (7) by defining: R =
{1, . . . , z}, O = S (we may assume w.l.o.g. that S is a finite
initial segment of N), M = {〈i, j〉 | j ∈ Si}, and c = {1}m.

Then, by analogy with the cost estimates for the general
case, we can prove that for the class of SSPC instances sat-
isfying (6) and (7):

• Checking whether the optimal cost equals a given ra-
tional K is DP-complete.

• Computing the optimal cost is in FPNP.

From this result and the results of the previous section, we
conclude that the costs cj associated to services are entirely
responsible for the high computational complexity of SSPC.
This holds even if the service offers all have the same cost.
Intuitively, in this case, it is hard to choose among services
with the same activation cost that compete by offering dif-
ferent, partially overlapping sets of free functionalities.

4.4 Experimental results
We performed some preliminary experiments with Algo-

rithms 1, 2, and 4, using a C implementation running on a
Pentium 4, 2.4GHz, 512Mb.

To compare the algorithms, we applied them to a set of
300 randomly generated instances, according to the follow-
ing criteria. Recall that m is the number of requests and n
is the number of offers. We have considered instances with
5 ≤ m ≤ 100 and 100 ≤ n ≤ 10000 (assuming that the
set of offers in practice will be significantly larger than the
set of requests in a workflow). We fixed the range of the
invocation costs k to [0, 100] and the range of the one-time
costs c to [1, p · 100] for p = 0.1, 1, 10, in order to check the
influence of the relative weight of k and c. For each triple
(m, n, p) 10 instances have been randomly generated. The
runs longer than 1 hour have been killed.

Algorithm 1 (that computes an optimal solution) exhib-
ited a satisfactory performance for all the instances with
m ≤ 10 and n ≤ 100. The maximal elapsed time was 0.35
seconds.

The performance started to decrease for (n, m) = (15, 150).

• For (n, m) = (15, 150) the maximal elapsed time was
5′:31′′.

3The decision version of SSPC is: Given an SSP instance
and a cost K, decide whether there is a solution with cost
≤ K.
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• For (n, m) = (20, 200), 20% of the runs have been
killed and the maximal elapsed time of the other runs
was 21′:01′′.

• For (n, m) = (20, 200), 73% of the runs have been
killed and the maximal elapsed time of non-killed runs
was over 59 minutes.

Algorithms 2 and 4 are much faster, of course. The former
has been killed only once (m = 100, n = 10000), the latter
has never been killed. The average time of Algorithm 2 was
2.5 minutes. Algorithm 4 seems to be faster (average less
than 30 seconds), but more extensive experimentations are
needed to confirm and explain this observation.

Some of the average execution times of Algorithm 2 are
reported in Figure 1. The figure illustrates both how ex-
ecution time grows with the size of the problem instance,
and the influence of one-time costs on performance. In par-
ticular, it appears that as one-time costs become negligible,
Algorithm 2 becomes faster. When the upper bound for
one-time costs used by the random generator is one tenth of
the upper bound for per-use costs, the average time drops
down to 65.19 seconds.

We measured the quality of the approximate solutions re-
turned by Algorithm 4 by evaluating the relative error of
each solution; the relative error is A−C

C
, where A is the ap-

proximate cost and C is the optimal cost (we computed the
error only for those instances whose optimal cost was avail-
able, i.e. the exact algorithm was not killed). The average
of the errors is around 70%, which is not bad for a naive
heuristics. Also in this case, we need more experiments to
validate this observation.

5. COMPLEXITY OF AND ALGORITHMS
FOR SSPQ AND SSP′

Q

Unlike SSPC, SSPQ and SSP′
Q are always easy. These two

problems can be solved almost in the same way. Algorithm 6
solves the version of SSPQ with objective functions Qb.

Algorithm 6

GreedyAdapt-Q (m, n, c, k)

1: Outputs: an optimal binding b and its quality level L.
2: begin

3: L := +∞
4: for all r = 1 to m do

5: maxlevr := −∞
6: for all s = 1 to n do

7: if maxlev r < f(krs, cs) then

8: maxlev r = f(krs, cs)
9: best := s

10: L := L + maxlevr

11: b(r) := best
12: return (b, L)
13: end

To solve the version based on Q′
b, only one change to

Algorithm 6 is required: replace line 10 with

10: L := min{maxlev r, L} .

It is not hard to prove the correctness of the two versions
of Algorithm 6 w.r.t. SSPQ and SSP′

Q; from this property

and a straightforward analysis of Algorithm 6, we conclude
that:

Theorem 5.1. SSPQ and SSP′
Q can be solved in time

O(mn).

This approach can be easily extended to any objective
function similar to Q and Q′, based on polynomially com-
putable, monotonic combination functions besides

P

and
min. The details will be given in an extended version of the
paper.

6. CONCLUSIONS
Summarizing, we formalized three kinds of optimal ser-

vice selection problems—based on cost minimization and on
two different quality maximization criteria—and we proved
that the cost minimization problem, SSPC, is generally hard,
while the two quality maximization problems, SSPQ and
SSP′

Q, can be solved in polynomial time. In particular, SSPC

is in FPNP and harder than NP(unless the polynomial hi-
erarchy collapses).

We proved that the reason of the high computational
complexity of SSPC lies in the one-time costs associated to
service offers (such as initialization and registration costs).
When these costs are all null, SSPC is solvable in polyno-
mial time (on the contrary, in the absence of per-use costs
the problem does not become easier).

We designed and implemented algorithms for computing
exact solutions for all these versions of SSP. The exact al-
gorithm for SSPC (Algorithm 1) has been evaluated exper-
imentally. According to the current results, instances with
up to 10 requests and 100 offers can be nicely handled by
this algorithm; for larger instances, the performance quickly
decreases, making the algorithm inapplicable.

We have also designed and implemented suboptimal so-
lutions and evaluated them experimentally. Currently, it
seems that the algorithm with a guaranteed 0.52 bound on
relative error is too slow for real-time service selection over
large workflows and offer sets. The heuristic algorithm (Al-
gorithm 4) seems to be faster, but it has no guarantees on
the quality of the solution.

We are planning to carry out more experiments to validate
and refine these preliminary observations. Moreover, we are
trying to sharpen the complexity bounds (we do not yet
know whether SSPC is complete for FPNP).

Finally, we are generalizing the framework presented in
this paper by considering optimization problems that involve
simultaneous cost minimization and quality maximization,
as well as multidimensional measures that induce partially
ordered measures of nonfunctional properties (although in
several cases multiple criteria can be reduced to single, to-
tally ordered numeric measures [5]). Another direction for
generalization concerns time-dependent costs and preferences.
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