
Popular Web Hot Spots Identification and Visualization
D. Avramouli2, J. Garofalakis1,2, D. J. Kavvadias3, C. Makris2, Y. Panagis1,2

and E. Sakkopoulos1,2
1RA Computer Technology Institute

Internet and Multimedia Technologies RU 5
61 Riga Feraiou Str. 26110, Greece

2University of Patras
Computer Engineering & Informatics Dept

26500 Patras, Greece

3 University of Patras
Mathematics Dept

26500 Patras, Greece
E-mail: {avramuli, makri, panagis, kavadias}@ceid.upatras.gr, {garofala, sakkopul}@cti.gr

ABSTRACT
This work aims a two-fold contribution: it presents a software to
analyse logfiles and visualize popular web hot spots and, addi-
tionally, presents an algorithm to use this information in order to
identify subsets of the website that display large access patterns.
Such information is extremely valuable to the site maintainer,
since it indicates points that may need content intervention or/and
site graph restructuring. Experimental validation verified that the
visualization tool, when coupled with algorithms that infer
frequent traversal patterns, is both effective in indicating popular
hot spots and efficient in doing so by using graph-based
representations of popular traversals.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics
H.5.4 [Information Systems]: Hypertext

General Terms
Algorithms, Management, Design, Experimentation.

Keywords
Access visualization, Maximal Forward path, Usage mining

1. INTRODUCTION
With the immense growth of the Internet usage, websites are be-
ing developed in an uncontrollable, ad-hoc manner, a fact fre-
quently reflected to unpredictable visit patterns. Thus, a critical
task for a website maintainer is to use enumerable metrics in order
to identify substructures of the site that are objectively popular.
Web Usage Mining has emerged as a method to assist such a task.
The fundamental basis for all mining operations entails processing
web server access logfiles. In its most simplified manner, usage
mining entails registering absolute page visits or identifying
popular paths of information inside a website, by the means of
logfile analysing software solutions such as Webtrends
(http://www.webtrends.com), and Analog (http://www.analog.cx).
When the goal is to detect popular structural website elements,
more elaborate techniques have been devised. Due to space limi-
tations only representative work is presented.
Significant work on converting server logfiles to valuable sources
of access patterns has been conducted by Cooley [4] and Chen et
al. [1]. Cooley describes all the technical and algorithmic details
to process and analyse logfiles for a variety of Web Mining tasks.
Chen et al. describe efficient algorithms to infer access patterns

corresponding to frequently traversed, website paths. Apart from
analysing logfiles, it is important to use analysis as input and
determine which changes, if any, to bring to the website structure.
Srikant and Yang [5] infer path traversal patterns and use them to
indicate structural changes that maximize (or minimize) certain
site-dependent criteria. Finally, Christopoulou et al. [3] define
metrics to assess the actual value of webpages and experiment on
techniques to reorganize websites.
This work has two main merits: it presents a software to analyse
logfiles and visualize “Maximal Forward Paths” (see [1]) and,
additionally, it presents an algorithm to use this information in
order to identify subsets of the website that display popular access
patterns. Such information is valuable to the site maintainer, since
it brings to attention web site “neighbourhoods” that may need
content revisiting and structural redesign.
The rest of the paper is organized as follows. Section 2 introduces
the popularity visualization tool. Section 3 describes the proposed
algorithm to identify website parts that receive significant traffic.
Section 4 concludes and presents future directions.

2. PAGE POPULARITY VISUALIZATION
This section describes functional characteristics and implementa-
tion aspects of the visualization software.
The developed software can perform structural and statistical
analysis of a given website, using a GUI (see Figure 1). It sup-
ports a number of log input types such as W3C, IIS, NCSA,
ODBC logs in typical or extended format. An HTML parser and a
link crawler were implemented, hence, given the homepage of a
website the link structure is discovered. Furthermore, the user can
provide, in the corresponding window, the website logfile. The
logfile is analysed to discover “Maximal Forward Paths” and
“Forward Paths”, as defined in [1]. The user can choose to display
the site graph and the most frequent paths, each with a different
colour. Frequent paths can be highlighted either on top of the
Website layout or be presented standalone. In this way, possible
recommendations can be identified quickly and directly on the site
visual representation.
All processing class modules were implemented in the Java
platform. Java 1.2 or higher is required to run the software. Both
the site structure and the information resulting from logfile
processing are stored as relational data in a DBMS. The choice of
the DBMS is not restrictive; any database system can work as
long as the communication is carried out with the means of a
JDBC/ODBC driver. The development was based on the logfiles
generated from an experimental web site running on Apache
1.3.27. However, the final version was verified using different
logfile versions both on Windows & Linux servers.

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.
ACM 1-59593-051-5/05/0005.

912

b

a

Figure 1 [left fig] (a) Forward paths on sample site. (b) Maximal Forward paths only, [right fig] Visualization UI

The task of visualization relies on the “Visualizing Graphs with
Java” (VGJ) library. VGJ provides all the necessary functional-
ities to produce straight-line, planar embeddings of directed
graphs. We have exploited the feature of VGJ to produce graph
visualizations, given a graph description in GML format.

2.1 Algorithms and Experiments
For experimental verification, we have created a synthetic web-
site, with no particular content, consisting of 45 nodes. Subse-
quently, site traversals were generated in the laboratory with hu-
man intervention and favouring specific site parts.
Since logfile processing is a critical step (data cleaning, session
identification) the, widely accepted, conventions of ([4],[5]) were
implemented. For identifying and visualizing interesting traversal
patterns, we have implemented the algorithms in [1]. The authors
in [1], describe efficient algorithms to combine information about
user sessions and page hits, and produce frequently traversed
paths. In the sequel, a novel algorithm that identifies popular hot
spots has been devised thereby allowing multiple levels of rec-
ommendations to be coloured on the analysed site graphs.

3. IDENTIFICATION OF HOT SPOTS
In this section, we describe our proposed algorithm to identify
parts of the website that receive significant traffic. Our algorithm
scans the website graph in order to keep only the non-intersecting
subpaths. Suppose that the site is modelled as a graph G(V,E)
kept in an adjacency matrix representation, with matrix A. We
postulate that nodes in V are numbered 1..n.
First, we run the algorithm to identify “Maximum Forward
Paths”. The algorithm of [1], keeps website access sequences
(paths) where each path sequence Pi, of access frequency
count(Pi), occurs with count(Pi)≥min{support}. In order to keep
only these paths we set to zero the corresponding cells in A,
thereby pruning the remaining paths. Suppose that there are p
frequent paths. We keep an array C[1..p], such that C[i] =
count(Pi).
A breadth-first search is initialised. Suppose we visit node v. If
there is only one outgoing edge from v in the graph remaining
after the initial pruning, then there must be a single non-zero
element in the v-th row of A. If this is the case, we delete node v
by zeroing out the non-zero entry. There is a small subtlety here; v
might be part of a larger path. Therefore, we delete v only if there
is no entry but zeros in the v-th column of A (an indication that no
edge ends at v). When deleting node v we add the path frequencies
of the paths passing through v, to their subpaths. For example
suppose that we had a path Pi = abfh and paths Pj = bfh, Pk = bh.

After elimination of a we perform C[j] = C[j]+C[i] and C[k] =
C[k]+C[i]. The procedure stops when there are no nodes left to be
eliminated. The remaining non-zero elements correspond to a
subgraph of G with high popularity.
The above algorithm can gracefully adjust to multiple levels of
granularity. After setting the threshold at the first path-elimination
step, then after each vertex-elimination, one can define a higher
threshold to correspond to more important paths, and so on. In the
visualization tool the three most popular paths are coloured
(observe the lightly shaded paths at left fig of Figure 1).

4. CONCLUSIONS
We have presented a software that can process website logfiles
and visualize site structure and the access patterns imposed on it.
In the sequel we devised an algorithm to isolate parts of the site
subgraph that contain important access information. We believe
that identifying those parts can help website maintainers to
perform local structural changes. Automation of such structural
changes can be achieved using the authors’ proposed concepts in
[2]. Nevertheless, the very nature of changes and their effects
remain issues that need to be further explored. As a future step,
we intend to integrate the visualization tool with web modelling
and CASE tools that would facilitate site reorganization
algorithms in a semi-automatic or full-automatic way.

5. REFERENCES
[1] M.-S. Chen, J. S. Park, and P. S. Yu. Efficient Data mining

for path traversal patterns. Knowledge and Data Eng., 10(2),
pp. 209–221, 1998.

[2] E. Christopoulou, J.Garofalakis, C. Makris, Y. Panagis, E.
Sakkopoulos and A.Tsakalidis, Automating Restructuring of
Web Applications, in 13th ACM Hypertext, Poster, 2002,
available at: http://mmlab.ceid.upatras.gr/ht02/ht2002.pdf.

[3] E. Christopoulou, J.Garofalakis, C.Makris, Y. Panagis, E.
Sakkopoulos, A. Psaras-Chatzigeorgiou and A.Tsakalidis,
Techniques and Metrics for Website Reorganization, J. of
Web Eng., 2(1-2), pp. 90-114, 2003.

[4] R. Cooley. Web Usage Mining: Discovery and Application
of Interesting Patterns from Web data. PhD thesis, Univer-
sity of Minnesota, 2000.

[5] R. Srikant, Y. Yang, Mining Web Logs to Improve Web Site
Organization, in Proc. WWW01, pp. 430-437, 2001.

a)

b)

913

