Data Summaries for On-Demand Queries over Linked Data

Andreas Harth∗, Katja Hose∗, Marcel Karnstedt†, Axel Polleres‡, Kai-Uwe Sattler‡, Jürgen Umbrich‡

∗AIFB, Karlsruhe Institute of Technology, Germany
†Max-Planck Institute for Informatics, Saarbrücken, Germany
‡Digital Enterprise Research Institute, National University of Ireland, Galway
†Ilmenau University of Technology, Ilmenau, Germany

ABSTRACT

Typical approaches for querying structured Web Data collect (crawl) and pre-process (index) large amounts of data in a central data repository before allowing for query answering. However, this time-consuming pre-processing phase however leverages the benefits of Linked Data – where structured data is accessible live and up-to-date at distributed Web resources that may change constantly – only to a limited degree, as query results can never be current. An ideal query answering system for Linked Data should return current answers in a reasonable amount of time, even on corpora as large as the Web. Query processors evaluating queries directly on the live sources require knowledge of the contents of data sources. In this paper, we develop and evaluate an approximate index structure summarising graph-structured content of sources adhering to Linked Data principles, provide an algorithm for answering conjunctive queries over Linked Data on the Web exploiting the source summary, and evaluate the system using synthetically generated queries. The experimental results show that our lightweight index structure enables complete and up-to-date query results over Linked Data, while keeping the overhead for querying low and providing a satisfying source ranking at no additional cost.

Categories and Subject Descriptors:
E.1[Data Structures]: Distributed Data Structures; H.2.4[Database Management]: Systems—Distributed Databases, Query Processing;

General Terms: Algorithms, Design, Performance

Keywords: Index Structures, Linked Data, RDF Querying

1. INTRODUCTION

The recent developments around Linked Data promise to lead to the exposure of large amounts of data on the Semantic Web amenable to automated processing in software programs [1]. Linked Data sources use RDF (Resource Description Format) in various serialisation syntaxes for encoding graph-structured data. The Linked Data effort is part of a trend towards highly distributed systems, with thousands or potentially millions of independent sources providing small amounts of structured data. Using the available data in data integration and decision-making scenarios requires query processing over the combined data.

For evaluating queries in such environments we can distinguish two directions:

- data warehousing or materialisation-based approaches (MAT), which collect the data from all known sources in advance, preprocess the combined data, and store the results in a central database; queries are evaluated using the local database;
- distributed query processing approaches (DQP), which parse, normalise and split the query into subqueries, determine the sources containing results for subqueries, and evaluate the subqueries against the sources directly.

Unfortunately, applying DQP directly is not a viable solution for Linked Data sets: firstly, in most cases the data in the different sources cannot be described by simple expressions because they may vary in the schema or do not even have common values. Secondly, queries cannot be “dispatched”, unless query processing capabilities exist at the source sites. Preliminary results for distributed query processing over distributed RDF sources [25] assume, similar to resp. approaches from the traditional database works, relatively few query endpoints with probably huge amounts of data, rather than many small Web resources accessible via simple HTTP GET only.

The aim of the present paper is to narrow the gap between these two extreme approaches and find a reasonable middle-ground for processing queries over Linked Data sources directly. Although currently only a few data sources offer full query processing capabilities (e.g., by implementing SPARQL [4, 24], a query language and protocol for RDF), we still can eschew the cost of maintaining a full index of the data at a central location. On the current Web, all we can assume is that the sources implement a single operation GET which returns the content of the source in RDF. Thus, instead of full federation we propose an approximate multidimensional indexing structure (a QTree [14]) to store descriptions of the content of data sources. The QTree forms the basis for sophisticated query optimisation and helps the query processor decide on which sources to route a query or a subquery. We assume – as typical for Linked Data – a large number of sources, which, in contrast to classic data integration scenarios, are of small size in the range of a few kilobytes to megabytes.
Approximate data summaries such as QTrees can be populated by crawling techniques similar to those employed by centralised systems, with the advantage of a significantly smaller index, which can be kept in memory, and live query results, by processing the actual query only over those sources which likely contain relevant information. Also, such a QTee index can be dynamically extended, by adding either user-submitted sources or sources discovered during query processing.

The strategy we propose is a reasonable compromise under the assumption that the overall data distribution does not change dramatically over time: that is, the distribution characteristics are relatively stable, which holds for a wide range of Linked Data sources (e.g., DBpedia\(^1\), DBLP\(^2\), or machine-readable personal homepages). Under this assumption we can employ an approach which stores a data summary reflecting these immutable characteristics in lieu of a full local data index.

Our approach works as follows:

- prime an approximate index structure (a QTee) with a seed data set (various mechanisms for creating and maintaining the index are covered in Section 4);
- use the QTee to determine which sources contribute partial results for a conjunctive SPARQL query \(Q\);
- fetch the content of the sources (optionally using only the top-k sources according to cardinality estimates stored in the QTee) into memory;
- perform join processing locally, given that remote sources do not provide functionality for computing joins.

The main problems of processing such queries hence become i) finding the right sources to contain possible answers that can contribute to the overall query and ii) efficient parallel fetching of content from these sources.

We conclude this section by introducing example data and queries used throughout the paper. Section 2 discusses alternative methods for answering queries over Linked Data. In Section 3, we present an approach to select sources from a QTee. Section 4 describes approaches to construct and maintain these data summaries followed by a discussion of the results of an evaluation in Section 5. In Section 6, we align our system with existing work and conclude with an outlook to future work in Section 7.

Example. As an example consider a scenario in which sources publish interlinked data about people, the relations between them and their publications. Such data is indeed available as Linked Data on the Web in the form of hand-crafted files in the Friend-of-a-Friend (FOAF) vocabulary \(2\) and automatic exports of publication databases such as DBLP.

For instance, consider the Linked Data sources depicted in Figure 1. RDF graphs comprise of (subject predicate object) triples that denote labelled edges between the subject and the object. The figure shows five RDF graphs covering data about Andreas and Axel: personal homepages encoded in FOAF, data covering personal information and one of their joint publications at DBLP. We assume that namespace:localname pairs expand to full URLs, e.g., `dblp:Axel_Polleres` expands to `http://dblp.l3s.de/d2r/resource/authors/Axel_Polleres`.

Conjunctive SPARQL queries\(^3\) consist of so-called basic graph patterns (BGPs), i.e., sets of triple patterns containing variables. For instance, the following query asks for names of Andreas' friends:

\[
\text{SELECT } \text{?n WHERE} \{ \\
\quad \text{andreas:foaf:knows } \text{?n} . \\
\quad \text{?n foaf:name } \text{?n} . \} \quad (1)
\]

The next query asks for authors of article `dblp: HoganH08` who mutually know each other:

\[
\text{SELECT } \text{?x1 ?x2 WHERE} \{ \\
\quad \text{dblp: HoganH08 dc:creator } \text{?x1, ?x2} . \\
\quad \text{?x1 owl:sameAs } \text{?a1, ?x2 owl:sameAs } \text{?a2} . \\
\quad \text{?x1 foaf:knows } \text{?x2, ?x2 foaf:knows } \text{?x1} . \} \quad (2)
\]

2. QUERYING LINKED DATA

Linked Data \(\odot\) is RDF published on the Web according to the following principles: 1) use URIs as names for things \(\odot\) use (dereferenceable) HTTP URIs, \(\odot\) provide useful content at these URIs encoded in RDF, and \(\odot\) include links to other URIs for discovery. In the same way the current Web is formed by HTML documents and hyperlinks between documents, the Linked Data Web is constructed by using HTTP URIs (principle 1 and 2). Principle 3 – providing meaningful content for dereferenced URIs (that is, RDF triples describing the URI, typically in the subject position) – allows for a new way of performing lookups on the data during query runtime. The principle provides a correspondence (in URI syntax or via redirects in the HTTP protocol) between a URI of a resource and the data source. For example, the resource URI `http://dblp.l3s.de/d2r/resource/authors/Axel_Polleres` redirects to the source URI `http://dblp.l3s.de/d2r/page/authors/Axel_Polleres`.

Finally, reusing URIs across sources (principle 4) makes sure that data covering the same entity can be collated from multiple sources.

Most current approaches enabling query processing over RDF data operate very much along the lines of relational data warehouses or search engines; Semantic Web search engines \([3, 6, 13, 21]\) crawl large amounts of RDF documents for materialisation and indexing in a centralised data store.

The centralised approaches using materialisation (MAT) provide excellent query response times due to the large amount of preprocessing carried out during the load and indexing steps, but suffers from a number of drawbacks. First, the aggregated data is never current as the process of collecting and indexing vast amounts of data is time-consuming. Second, from the viewpoint of a single requester with a particular query, there is a large amount of unnecessary data gathering, processing, and storage involved since a large portion of the data might not be used for answering that particular query. Furthermore, due to the replicated data storage, the data providers have to give up their sole sovereignty on their data (e.g., they cannot restrict or log access any more since queries are answered against a copy of the data).

On the other end of the spectrum, there are approaches that assume processing power available at the sources themselves (DQP), which could be leveraged in parallel for query processing. Such distributed or federated approaches \([11]\) offer several advantages: the system is more dynamic with up-to-date data and new sources can be added.

\(^1\)http://dbpedia.org/
\(^2\)http://dblp.l3s.de/d2r/
\(^3\)We focus on the core case of conjunctive queries and do not consider more complex features such as unions, outer joins, or filters available in SPARQL, which could be layered on top of conjunctive query functionality.
the following steps for transforming a high-level query into a well-known database problem [17]. Typically, DQP involves a large number of potentially unreliable sources. DQP is a complex query performance since the integration system relies on a summarisation of data, and the systems require less storage and processing resources, which can be achieved easily without time lag for indexing and integrating the data, and the systems require less storage and processing resources at the query issuing site. The potential drawback, however, is that DQP systems cannot guarantee strict guarantees about query performance since the integration system relies on a partially unreliable data set. DQP is a well-known database problem [17]. Typically, DQP involves the following steps for transforming a high-level query into an efficient query execution plan: parsing, normalising by application of equivalence rules, unnesting and simplification of the query, data localisation, optimisation (i.e., replacing the logical query operators by specific algorithms and access methods as well as by determining the order of execution both at a global and local level), and finally execution. Besides optimisation, data localisation is an important step that affects the efficiency of the execution. The goal of data localisation – also known as source selection – is to identify the source sites that possibly contain results for the given query or, in other words, to eliminate sites from the query plan that do not contribute to the result. In classic distributed databases this step is supported by (query or view) expressions describing the fragmentation of a global table.

Possible approaches to evaluate queries over such Web resources and particularly addressing the problem of source selection are:

- **Direct Lookups (DL)** The direct lookup approach is implemented in [10] where one tries to leverage the correspondence between source addresses and identifiers contained in the sources to answer queries. The query processor performs lookups on the sources that contain identifiers mentioned in the query or are retrieved in subsequent steps. To answer query (1) of Section 1, one could fetch content from `andreas:foaf#ah`, dereference `foaf:knows` links, and gather new information where hopefully the respective names of friends are found. The sources in the DBLP realm are irrelevant for answering this query. However, the strategy fails to find the solutions for query (2) since the necessary `owl:sameAs` links come from outside the linked closure of the graph `dblp:Axel_Polleres`. Apart from possible incompleteness issues, the approach also has limitations in the sense that only limited parallelisation is possible: the query processor starts with one source and iteratively performs more lookups on sources determined by intermediate results rather than looking up the entire list of relevant sources in a single pass. On the positive side, if one can live with partial results this approach has no need for maintaining indexes since only the correspondence between source and contained identifiers is used.

- **Schema-Level Indexes (SLI)** A second approach, mainly based on distributed query processing, relies on schema-based indexes [7, 26]. The query processor keeps an index structure with properties (i.e., predicates) and/or classes (i.e., objects of `rdf:type` triples) that occur at certain sources, and uses that structure to guide query processing. Using such schema-based indexes the incompleteness problem of direct lookups is alleviated while only using lightweight index structures. The drawback is that instance-level descriptions are missing: i.e., i) only queries which contain schema-level elements can be answered, and ii) on very commonly used properties (e.g., `foaf:knows`, `foaf:name`), this index selects a (possibly too) large portion of all possible sources.

- **Data Summaries (DS)** A third approach, and the one we are advocating in this paper, uses a combined description of instance- and schema-level elements to summarise the content of data sources. We cannot keep every data item in this index, so we use a summarising index – a data summary – which represents an approximation of the whole data set. The DS approach uses more resources than the schema-level indexes, however, adds the ability to cover also query patterns including instance-level queries. Since the DS return sources which possibly contain answers to a query directly (i.e., taking joins into account), this approach may be viewed as subsuming both direct lookups and schema-level indexes. Further, a data summary index can be updated incrementally as the query processor obtains new or updated information about sources.

3. Source Selection Using Data Summaries

Our main idea for identifying relevant sources is to index RDF triples provided by the sources by first transforming them into a numerical data space (applying hash functions) and then indexing the resulting data items with a data summary. In our work, we use an index structure called QTree – originally developed for top-k query processing [14, 15, 27] –

![Image](image_url)
Figure 1: Linked Data in RDF about persons and their publications
as our data summary. In the following, we describe the basic principles of this structure as well as its usage for source selection.

3.1 Source Indexing using the QTree

In principle, the QTree (Figure 2) is a combination of histograms and R-trees [8] inheriting the benefits of both data structures: indexing multidimensional data, capturing attribute correlations, dealing with sparse data, offering efficient look-ups, and supporting incremental construction and maintenance. Like the R-tree, a QTree is a tree structure consisting of nodes defined by minimal bounding boxes (MBBs). These MBBs describe multidimensional regions in the data space and MBBs of all nodes always cover all MBBs of their children and the subtrees rooted by them. Because R-trees are used to manage data items, leaf nodes in R-trees contain the data items that are contained in their MBBs. However, for our purposes we cannot hold detailed information about all data items. Rather, we have to reduce memory consumption by approximating this information.

![Figure 2: Two-dimensional QTree example](image)

Thus, to limit memory and disk consumption, we replace subtrees with special nodes called buckets. Buckets correspond to histogram buckets or bins and are always leaf nodes in the QTree – and leaf nodes are always buckets. Data items are represented by the buckets in an approximated version. Since the construction of the QTree aims at grouping data items with similar hash values into the same bucket, we can use the MBBs as a good basis for approximation. As mentioned above, in our case data items are points in the multi-dimensional space whose coordinates are obtained by applying hash functions to the individual components \((S, P, O)\) of RDF triples. These components correspond to dimensions in a three-dimensional QTree.

Only buckets contain statistical information about the data items contained in their MBBs. In principle, a bucket might hold any kind of statistics, but for the purpose of this work we consider buckets capturing the count of data items contained in their MBBs. Each bucket stores the number of triples whose values (subject predicate object) are mapped onto coordinates that are part of the bucket’s MBB – the MBB being defined by \([S_{\text{low}}, S_{\text{hi}}], [P_{\text{low}}, P_{\text{hi}}], [O_{\text{low}}, O_{\text{hi}}]\).

The total number of buckets, as well as the size of a QTree, can be controlled by two parameters: i) \(b_{\text{max}}\) denoting the maximum number of buckets in the QTree and thus limiting memory consumption, ii) \(f_{\text{max}}\) describing the maximum fanout (i.e., the number of child nodes) for each non-leaf node. Note that the size of a QTree only depends on these two parameters and is independent from the number of represented data items.

Details on constructing and maintaining a QTree are beyond the scope of this paper. Thus, in the following we only sketch the basic idea and refer the interested reader to [15]. The QTree is constructed incrementally by inserting one data item after another. For each data item \(p\), we first check whether it can be added to an existing bucket that encloses \(p\)'s coordinates. In this case, the bucket statistics are updated by incrementing the number of contained data items. Otherwise, we traverse the QTree beginning at the root node in each level looking for a node whose MBB completely encloses \(p\). Once we have arrived at a node whose children’s MBBs do not contain \(p\), we create a new bucket for \(p\) and insert it as a new child node.

In order to enforce the two constraints \(b_{\text{max}}\) and \(f_{\text{max}}\), we have to merge buckets and child nodes if the number of buckets in the QTree or the fanout of inner nodes violates the constraints. For this purpose, we use a penalty function that represents the approximation error caused by merging two buckets and merge the pair of sibling buckets that minimises the penalty. The expensive check of all pairs is avoided by maintaining a priority queue.

To capture details on which RDF triples are provided by which source, we store not only the number of data items per bucket but also the URIs of sources whose triples are represented by the bucket. Basically, there are two possible approaches: i) we can simply keep a list \(S_B\) of source URIs and a bucket cardinality \(c_B\), or ii) we maintain the number of triples \(c_B^s\) in each bucket \(B\) per source \(s \in S_B\), i.e., each bucket \(B\) contains a list of \(s, c_B^s\) pairs. For ease of explanation, in the following we stick to the first approach. In Section 3.2.2, we pick up the second approach, as it allows for a more sophisticated estimation of the number of results a source contributes to.

3.2 Source Selection

Let us now discuss how to use the information provided by the QTree to decide on the relevance of sources for answering a particular query.

3.2.1 Triple Pattern Source Selection

As joins are expressed by conjunctions of multiple triple patterns and associated variables, a prerequisite for join source selection is the identification of relevant sources for a given triple pattern.

To determine relevant sources we first need to identify the region in data space that contains all possible triples matching the pattern. Therefore, we need to convert a triple pattern into a set of coordinates in data space, using the same hash functions that we used for index creation, to obtain coordinates for a given RDF triple. However, in contrast to obtaining hash values for RDF triples provided by the sources, triple patterns of queries might contain variables. Because of these variables, in general we have to work with regions instead of points. Thus, for each literal, blank node or URI in a given triple pattern, we apply the hash functions and use the obtained hash values as minimum and maximum coordinates to define the queried region. For each variable, we set the minimum and maximum coordinates to the minimum/maximum possible hash values in the respective dimensions.

After having determined the queried region \(R\), we only need to find all buckets in the QTree that overlap \(R\). As the QTree – similar to the R-tree – has a hierarchical structure, the lookup procedure follows similar rules: starting at the
root node we need to traverse child nodes if their MBBs overlap R until we arrive at the buckets on leaf level.

After having identified all buckets with overlapping MBBs, we determine the percentage of overlap with R. Let size(R) denote the size of a region R, c_B the number of data items (cardinality) represented by bucket B and O the overlapping region of B and R. Then, the cardinality of O is calculated as $c_B \cdot \frac{\text{size}(O)}{\text{size}(B)}$. Based on the overlap, the bucket’s source URIs, and the cardinality (i.e., the number of represented RDF triples) we can determine the set of relevant sources and the expected number of RDF triples per source – assuming that triples are uniformly distributed within each bucket. Thus, the output of the source selection algorithm is a set of buckets, each annotated with information about the overlap with the queried region, source URIs, and the associated cardinality.

3.2.2 Join Source Selection

In order to determine which sources provide relevant data for a join query, we first need to separately consider the triple patterns (BGPs) that a join query consists of. In principle, we could return the union of all sources relevant for the individual BGPs (Section 3.2.1) as the result of the join source selection. However, it is likely that there are no join partners for data provided by some of the sources, although they match one BGP. Thus, we consider the overlaps between the sets of obtained relevant buckets for the BGPs with respect to the defined join dimensions and determine the expected result cardinality of the join.

The crucial question is how we can discard any of the sources relevant for single BGPs, i.e., identify them as irrelevant for the join. Unfortunately, if a bucket is overlapped, we cannot omit any of the contributing sources, because we have no information on which sources contribute to which part of the bucket. To not miss any relevant sources, we can only assume all sources from the original bucket to be relevant. Sources can only be discarded if the entire bucket they belong to is discarded, such as the smaller bucket for the second BGP in Figure 3.

The result of a join evaluation over two BGPs is a set of three-dimensional buckets. Joining a third BGP requires a differentiation between the original dimensions, because the third BGP can be joined with any of them. For instance, after a subject-subject join we have to handle two different object dimensions; a join between two three-dimensional overlapping buckets results in one six-dimensional bucket with an MBB that is equivalent to the overlap. In general, a join between n BGPs results in a $(3 \cdot n)$-dimensional join space.

Figure 3 illustrates the first step of join source selection on example query (2) of the introduction, assuming that the first join is processed over the triples for subject ?x1. For illustration purposes, we only show subject and object dimensions, as the predicate is fixed in both BGPs (i.e., the figures correspond to a slice of the three-dimensional space). Figure 3 illustrates a bucket that corresponds to the result of the source selection algorithm for the first BGP and shows two buckets corresponding to the second BGP. Both overlapping buckets are constrained by their overlap in the join dimension, which is the subject dimension. Other dimensions are not constrained. Thus, the shaded parts of both buckets represent the result buckets of the join.

Figure 4 illustrates the next join for example query (2), assuming that it is processed on ?x2 (object-subject join between 2nd and 3rd BGP). Again, for illustration purposes, we omit the predicate dimensions and show equal dimensions on the same axis (slices of the six-dimensional space reduced to the three shown dimensions).

3.3 Source Ranking

As source selection is approximate, the set of relevant sources will usually be overestimated, i.e., contain false positives. Please note that false negatives are impossible as we consider all QTree buckets matching any part of the query.
Algorithm 1: identifyRelevantSources(Query, QTTree)

<table>
<thead>
<tr>
<th>Line</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>forall</code> buckets <code>B</code> ∈ QT.getBuckets(q.BGP[0]) do</td>
</tr>
<tr>
<td>2</td>
<td>(O = B).overlap(q.BGP[0]);</td>
</tr>
<tr>
<td>3</td>
<td><code>join0</code>.insert((O, (c_B \cdot \frac{\text{size}(O)}{\text{size}(B)})), (S_B));</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
</tr>
<tr>
<td>5</td>
<td>for <code>i</code> = 1 to (</td>
</tr>
<tr>
<td>6</td>
<td><code>forall</code> buckets <code>L</code> ∈ join(_i) do</td>
</tr>
<tr>
<td>7</td>
<td><code>d_L</code> = <code>q.joindim</code>[(i - 1)]; <code>d_R</code> = <code>q.joindim</code>[(i)];</td>
</tr>
<tr>
<td>8</td>
<td>if `\exists q = L[</td>
</tr>
<tr>
<td>9</td>
<td>`O_q = R[</td>
</tr>
<tr>
<td>10</td>
<td>`c_{O_q \oplus O_L} = \frac{c_L \cdot \frac{\text{size}(O_L)}{\text{size}(L)} \cdot c_R \cdot \frac{\text{size}(O_R)}{\text{size}(R)}}{\max(</td>
</tr>
<tr>
<td>11</td>
<td>end</td>
</tr>
<tr>
<td>12</td>
<td>end</td>
</tr>
<tr>
<td>13</td>
<td>end</td>
</tr>
<tr>
<td>14</td>
<td><code>return \bigcup_{B \in \text{join}(q, B.GP[0])} \{ S_B \}</code></td>
</tr>
</tbody>
</table>

Moreover, some queries may actually be answered by a large set of sources, such that a focus on the most important ones becomes important. Both issues suggest to introduce a ranking for sources identified as being relevant for answering the query. There are two different general approaches that could be used to rank sources:

- **external ranking:** ranking based on an independent or externally computed notion of the sources’ relevance;
- **cardinality ranking:** ranking based on cardinality.

External ranking may be based on data from external sources (e.g., search engines, requiring additional costly lookups) or may be computed locally. An advantage of cardinality ranking is that we do not need any external data. All necessary information is provided by the QTTree buckets that are obtained as a result from the join source selection algorithm. The idea is to estimate the number of results \(R_s \) that each source \(s \in \mathcal{S} \) contributes to. The ranks are assigned to sources according to the values of \(R_s \) in descending order.

Each QTTree bucket \(B \) provides an estimated cardinality \(c_B \) and a list of associated sources \(S_B \). To obtain a ranking value for a source (resembling its importance), we could simply assume uniform distribution and assign \(c_B / |S_B| \) to each source of a bucket, while summing up over all buckets. In early tests we recognized that this ranks sources very inaccurately. A simple modification of the QTTree, which results in constant space overhead, is to record the cardinality \(c^*_B \) for each source contributing to a bucket separately. More specifically, \(c^*_B \) estimates the number of results in \(B \) that source \(s \) contributes to, summed over all joined triples. Thus, \(c_B = \frac{\sum_{s \in S_B} c^*_B}{|\text{hi}(B)|} \), where \(|\text{hi}(B)| \) represents the join level of \(B \) (i.e., the number of BGFs that have been joined to form one data item in \(B \)). This helps to overcome the assumption of a uniform distribution in the bucket. The number of results a source contributes to is determined as:

\[
R_s = \sum_B c^*_B
\]

This is still a rough approximation, but, as we show in Section 5, it indicates the actual importance ranking of sources in a satisfyingly accurate manner. The effect is grounded in probability laws, by which the probability that a source contributes to a fraction of a bucket (the region resulting from the join overlap) increases with its total number of data items in the bucket.

4. DATA SUMMARY CONSTRUCTION & MAINTENANCE

With respect to construction and maintenance, we identify two main tasks, namely i) building an initial version of a QTTree (initial phase) and ii) expanding the index with new information of sources (expansion phase). Once we have an initial version, we can use SPARQL queries to further explore new sources and expand the index in the expansion phase. In the following, we briefly present different approaches for each of the two phases.

4.1 Initial Phase

The initial phase is an important task with high relevance for queries and the expansion of the index. Once the QTTree contains the source summaries, SPARQL queries can be evaluated against the index and the resulting relevant documents for query answering can be retrieved from the Web. Users can adjust and influence the completeness of query results and the likelihood of discovering new interesting sources in the expansion phase. If users want to guarantee complete answers, they have to ensure that the QTTree contains all relevant sources for the query.

The selection of seed sources influences the ability to discover new and interesting sources in the expansion phase. Let us assume the case that our data summary covers a subgraph containing only few incoming or outgoing links to the rest of the global Linked Data Web. The lack of links to new sources decreases the probability of further extending the index. On the other hand, selecting seed sources which provide many links to other documents increases the chance of discovering new sources. The selection of those well interlinked sources can be done via sampling on a random walk over the Linked Data graph or choosing the top ranked sources of existing datasets.

In general, we identify two different approaches for the initial phase:

- **Pre-fetching** The most obvious approach is to fetch seed sources for the QTTree from the Web using a Web crawler. An advantage of this approach is that existing Web crawling systems can be used to gather the seed URIs. The QTTree can be adjusted wrt. answer completeness and expansion likelihood by specifying the crawl scope. In particular, random walk strategies generally lead to representative samples of networks and thus result in seed sources that could serve as good entry points to further discover interesting sources [12]. The quality of query answers will depend on the selection of the seed sources and depth/exhaustiveness of the crawl.

- **SPARQL queries** The second approach is starting with an empty QTTree and using an initial SPARQL query to collect the initial sources for the QTTree build. The index is expanded on further queries; cf. next subsection. Given a SPARQL query, an agent iteratively fetches the content of the URIs selected from bound variables of the query. At least
one dereferenceable URI in the SPARQL query is required as a starting point. Thus, this may be regarded as starting with the plain DL approach mentioned in Section 2.

The decision which strategy to choose strongly depends on the application scenario and has to be chosen accordingly.

4.2 Expansion Phase

The second important phase is the expansion of the QT ree. Given a SPARQL query, it is very likely that the initialised QT ree may contain information about dereferenceable URIs that are not (yet) indexed. In this case, the QT ree should be updated with the newly discovered URIs to increase the completeness of answer sets for the next time a query is executed. Further, we distinguish between pushing or pulling sources into the QT ree:

- **Push of sources** is a passive approach to get new data indexed into the QT ree. With passive expansion we refer to all methods that involve users or software agents notifying the QT ree about new sources. This can be done by either a service similar to search engines’ ping services or by submitting the document directly.

- **Pull of sources** is an active approach to index new data from the Web. One way to achieve this is to perform lazy fetching during query execution. Lazy fetching refers to the process of dereferencing all new URIs needed to answer a query. This particularly fits well with an initial phase based on SPARQL queries, as outlined above. The completeness of queries and the possibility of expanding the QT ree with new sources depends on the initial query and can be expected to increase gradually with more queries.

The latter sounds appealing since it solves the cold-start problem elegantly, by performing a plain DL approach on the first query and successively expanding the QT ree with more relevant sources. Note that this expansion could be interleaved with prefetching one or two rounds further at each new query, thus accelerating the expansion of the QT ree.

Although construction and maintenance are important issues that have to be dealt with in general, we neglect this issue for the remainder of this paper and instead focus on the problem of source selection.

5. EVALUATION

We now present experiments performed on a fixed crawl. On the basis of a set of generated sample queries, we evaluate the performance for determining relevant sources on the QT ree and the time elapsed to evaluate the query in memory. Accuracy and quality of the source selection are evaluated on the basis of a benefit measure. Most important for evaluating the practicability of the approach is to measure the impact of source ranking. We also simulate the DL approach and compare it to our method. As the focus of this work is on query processing, we only include basic measurements for index build time; we use the on-disk storage space requirements as a proxy for use of main memory.

We expect the QT ree approach to be a lightweight but efficient and effective method to limit the search for query answers to only a subset of relevant sources. However, due to its approximate character, source selection cannot be absolutely accurate. For this we expect the introduced ranking to be a well-suited method for directing search to the most relevant sources. In comparison to the DL approach, our method should be capable of handling more types of queries in reasonable time.

5.1 Setup

Using a breadth first crawl of depth four starting at Tim Berners-Lee’s FOAF file\(^5\), we collected about 3 million triples from about 16,000 sources. The data set represents a heterogeneous and well-linked collection of documents hosted on various domains and with different numbers of RDF triples. Most of the sources are manually generated by Semantic Web affiliated users and URIs are reused among documents (e.g., DBpedia or publication/conference URIs). All experiments are performed on a local copy of the gathered data using Java 1.5 and a maximum of 3 GB main memory.

We experimented with queries corresponding to two general classes. The first class of sample query is star-shaped queries with one variable at the subject position. The second type of query is path queries with join variables at subject and object positions. Figure 5 shows abstract representations of these query classes. The query classes of choice are generally understood to be representative for real-world use cases and are also used to evaluate other RDF query systems (e.g., [20]).

![Figure 5: Abstract illustration of used query classes](http://www.w3.org/People/Berners-Lee/card)

The star-shaped queries were generated by randomly picking a subject from the input data and arbitrarily selecting a distinct outgoing link. Then, we substituted the subject in each BGP with a variable. Path queries were generated using a random walk approach. We randomly chose a subject and performed a random walk of pre-defined depth to select object URIs. The result of such a random walk was transformed into a path-shaped join by replacing the connecting nodes with variables.

Using these approaches, we generated from the data 100 queries for each query class containing one, two or three join operations. We use \(P\)–\(n \) to denote path queries with \(n \) join operations and \(S\)–\(n \) to denote star-shaped queries with \(n \) join operations. BGP refers to queries containing only one BGP and no joins. The figures show averages for all 100 queries in a set. Error bars, if shown, represent minimal and maximal values measured over all tests.

5.2 Results

Next, we present the results of our evaluation, starting with results for index construction. The measured time to insert one triple into the QT ree is 4ms on average. The final
QTree requires a disk size of around 22 MB in serialised form. As the original data is of size 561 MB, this corresponds to a compression ratio of 96%. In the following, we present the results of four different evaluation aspects: quality of source selection, impact of ranking, query execution time, and comparison with other approaches, and finally discuss the results.

5.2.1 Quality of Source Selection
First, we show the quality achieved for source selection. Based on the total number of sources T in the data, the number of estimated sources E and the number of sources R that are actually needed to answer a query, we calculate the benefit $1.0 - \frac{E}{T}$ for all queries. The benefit measures the number of sources that can be skipped in the query process, compared to the naïve approach of simply querying all known sources. In other words, the benefit gives an idea of how much we save; i.e., how many sources we can discard from querying without missing results. Figure 6 shows the benefit for various query types. We observe a benefit of above 80% for the star-shaped queries, while for path queries we achieve benefits of about 20%, 40% and 60%. The high benefit shows that our approach is very well suited to prune the search space of all sources. The difference between query classes is due to the fact that star queries are answered by significantly fewer sources than path queries, which usually span a large number of documents. Thus, the benefit for path queries cannot be as high as for star queries. However, the number of possibly relevant sources can still be in the thousands. This highlights the importance of an accurate source ranking.

5.2.2 Impact of Ranking
An accurate ranking scheme is mandatory in the presence of a huge number of relevant sources. To show the impact of the ranking, we measured how many result triples we can determine and how many queries we can completely answer when querying only top-k ranked sources. We show results for reasonable values of k, namely 10, 50, 100 and 200. Figure 7 and 8 illustrate the results of this test. In addition, Figure 9 shows the average maximal k that would be required to answer a query completely (i.e., to achieve 100% in Figure 7). The figure further shows the number of actual relevant sources. We can conclude that the introduced ranking is powerful and important for practical applications. The recall values for the plots in Figure 7 are above 50% for 4 out of 7 tests with the top-200 sources. Inspecting the ratio of completely answered queries for the query types, we observe that the path queries dominate the star-shaped queries. This is a nice complement to the higher benefit values for star-shaped queries. Figure 9 shows that the absolute error in the number of selected sources increases with the complexity of queries.
Table 1: Completeness of results with the DL approach

<table>
<thead>
<tr>
<th></th>
<th>BGP</th>
<th>S-1</th>
<th>P-1</th>
<th>S-2</th>
<th>P-2</th>
<th>P-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>32.8%</td>
<td>20%</td>
<td>-</td>
<td>9.64%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maximum</td>
<td>100%</td>
<td>39.8%</td>
<td>-</td>
<td>27.8%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

5.2.3 Query Execution Time

A crucial aspect besides quality and benefit of the source selection is runtime performance, i.e., the actual time needed to answer queries. Figure 10 shows the average time required to estimate relevant sources (qtree) and to actually evaluate the query afterwards on the content stored in memory (query). The average query time for all queries is below 10 seconds, with some outliers of maximum 100 seconds. This difference in the query times results from the number of relevant sources, which is in parts very high (according to the QTree, but also the actual number of relevant sources for some queries). Similar times can be observed for source selection on the QTree; the difference here is also due to the number of buckets that have to be checked while answering single BGPs on the QTree, as query times increase with the number of buckets. The shown query times underline the applicability and practicability of our approach for a real-world application.

5.2.4 Comparison with Other Approaches

Finally, we compare our proposed solution with an alternative approach, namely the DL approach. We implemented a local generalised version of the algorithm for a fair comparison with our proposed solution. For comparison we emulate the approach using the crawled local data. We cannot expect the results to be completely accurate since since the DL approach performs, by design, live HTTP lookups. Despite this difference, an evaluation based on crawl data reflects the general limitations of the DL approach. Table 1 shows that the DL approach is capable of returning results only for star-shaped queries with less than 2 joins, for path queries the DL approach returned no results.

5.3 Discussion

The evaluation shows that our novel approach is very promising and practical for efficiently querying the Linked Data Web. The problems of state-of-the-art solutions can be eliminated successfully by the use of memory-efficient index structures such as the QTree. As expected, this is only practical if an accurate ranking is applied. We were able to show that even a straightforward cardinality-based ranking is well suited to achieve this task. Our proposed solution is applicable to real-world scenarios, given the presented index and query times and the precision and impact of the top-k ranking. A client, able to perform multithreaded lookups and set up with an appropriate timeout for fetching the content of the estimated sources, can answer queries with live results in less than a minute using an index of 4% size of the original data. Almost all of our expectations were met by the evaluation. However, the precision of the QTree index is slightly below our expectations and can benefit from optimisations. In summary, the proposed approach represents a novel, efficient and effective way of supporting source selection for live queries over the Linked Data Web. It is in a state ready for real-world applications, although the very promising results can still be tuned.

6. RELATED WORK

An implementation of the naïve Data Lookup approach – i.e., iterative query processing with dereferencing bound URIs – has been recently presented by Hartig et al. [10]. As already sketched in Section 4, we believe our approach can be viewed as fruitfully expanding and generalising the straightforward approach towards more complete and versatile query answering over Linked Data.

Database systems have exploited the idea of capturing statistics about data for many years by using histograms [16], primarily for selectivity and cardinality estimates over local data. The majority of work on distributed query optimisation assumes a relatively small number of endpoints with full query processing functionality rather than a possibly huge number of flat file containing small amounts of data. Stick-enschmidt et al. [26] proposed an index structure for distributed RDF repositories based on schema paths (property chains) rather than on statistical summaries of the graph-structure of the data. RDFStats [18] aims at providing statistics for RDF data that can be used for query processing and optimisation over SPARQL endpoints. Statistics include histograms, covering e.g., subjects or data types, and estimates cardinalities of selected BGPs and example queries. The Vocabulary of Interlinked Datasets (void) is a format for encoding and publishing statistics such as basic histograms in RDF. The QTree contains more complete selectivity estimates for all BGPs of distributed Linked Data sources and the ability to estimate selectivity of joins.

A recent system using B*-trees to index RDF data is RDF-3X [20]. To answer queries with variables in any position of an RDF triple, RDF-3X holds indexes for querying all possible combinations of subject, predicate and object – an idea introduced in [9]. RDF-3X uses sophisticated join optimisation techniques based on statistics derived from the data. In contrast to our work, the approach uses a different data structure for the index and focuses on centralised RDF stores rather than distributed Linked Data sources.

Peer-to-peer systems (P2P) leverage statistical data for source selection using so-called routing indexes. Crespo et al. [5] introduced the notion of routing indexes in P2P systems as structures that, given a query, return a list of inter-

http://rdfs.org/ns/void
during query evaluation, and presented experimental results such data summaries from a static dataset or dynamically via ranking. We have discussed strategies for constructing approximate index structures for query processing, however, performing reasoning over the collected data would allow for further improvement of the lookups. In addition, we would like to investigate what types of ranking could be used to handle more expressive queries and return more complete results to queries compared to previous approaches.

While our initial results are promising, there remain several issues and future directions to explore. Restricting the number of lookups via cardinality ranking reduces the overall processing time in our current approach. However, we would like to investigate what types of ranking could be used to further improve the accuracy of the lookups. In addition, performing reasoning over the collected data would allow for returning consistent results adhering to the specified semantics. The current work describes the general applicability of approximate index structures for query processing, however, future work will have to study approaches for index creation and maintenance in more detail. We plan to deploy a query engine with a populated QTtree for public user queries and investigate how a QTtree purely built on real user queries evolves. Last but not least, we should highlight that QTtrees are also applicable in a fully decentralised distributed querying scenario where peers are able to process and forward queries themselves.

8. REFERENCES