RDF Analytics: Lenses over Semantic Graphs

Dario Colazzo
U. Paris Dauphine, France
dario.colazzo@dauphine.fr

Ioana Manolescu
Inria & U. Paris-Sud, France
ioana.manolescu@inria.fr

François Goasdoué
U. Rennes 1, France
francois.goasdoue@univ-rennes1.fr

Alexandra Roatiş
U. Paris-Sud & Inria, France
alexandra.roatis@inria.fr

ABSTRACT

The development of Semantic Web (RDF) brings new requirements for data analytics tools and methods, going beyond querying to semantics-rich analytics through warehouse-style tools. In this work, we fully redesign, from the bottom up, core data analytics concepts and tools in the context of RDF data, leading to the first complete formal framework for warehouse-style RDF analytics. Notably, we define i) analytical schemas tailored to heterogeneous, semantics-rich RDF graph, ii) analytical queries which (beyond relational cubes) allow flexible querying of the data and the schema (such as powerful aggregation) and iii) OLAP-style operations. Experiments on a fully-implemented platform demonstrate the practical interest of our approach.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design;
H.2.7 [Database Management]: Database Administration
— Data warehouse and repository

Keywords
RDF; data warehouse; OLAP

1. INTRODUCTION

The development of Semantic Web data represented within W3C’s Resource Description Framework [33] (or RDF, in short), and the associated standardization of the SPARQL query language now at v1.1 [35] has lead to the emergence of many systems capable of storing, querying, and updating RDF, such as OWLIM [38], RDF-3X [28], Virtuoso [15] etc. However, as more and more RDF datasets are made available, in particular Linked Open Data, application requirements also evolve. In the following scenario, we identify by (i)-(v) a set of application needs, for further reference.

Alice is a software engineer working for an IT company responsible of developing user applications based on open (RDF) data from the region of Grenoble. From a dataset describing the region’s restaurants, she must build a clickable map showing for each district of the region, “the number of restaurants and their average rating per type of cuisine”.

The data is (i) heterogeneous, as information, such as the menu, opening hours or closing days, is available for some restaurants, but not for others. Fortunately, Alice studied data warehousing [22]. She thus designs a relational data warehouse (RDW, in short), writes some SPARQL queries to extract tabular data from the restaurant dataset (filled with nulls when data is missing), loads them in the RDW and builds the application using standard RDW tools.

The client is satisfied, and soon Alice is given two more datasets, on shops and museums; she is asked to (ii) merge them in the application already developed. Alice has a hard time: she had designed a classical star schema [23], centered on restaurants, which cannot accommodate shops. She builds a second RDW for shops and a third for museums.

The application goes online and soon bugs are noticed. When users search for landmarks in an area, they don’t find anything, although there are multiple museums. Alice knows this happens because (iii) the RDW does not capture the fact that a museum is a landmark. With a small redesign of the RDW, Alice corrects this, but she is left with a nagging feeling that there may be many other relationships present in the RDF which she missed in her RDW. Further, the client wants the application to find (iv) the relationships between the region and famous people related to it, e.g., Stendhal was born in Grenoble. In Alice’s RDWs, relationships between entities are part of the schema and statically fixed at RDW design time. In contrast, useful open datasets such as DBpedia [1], which could be easily linked with the RDF restaurant dataset, may involve many relationships between two classes, e.g., bornIn, gotMarriedIn, livedIn etc.

Finally, Alice is required to support (v) a new type of aggregation: for each landmark, show how many restaurants are nearby. This is impossible in Alice’s RDW designs of a separate star schema for each of restaurants, shops and landmarks, as both restaurants and landmarks are central entities and Alice cannot use one as a measure for the other.

Alice’s needs in setting up the application can be summarized as follows: (i) support of heterogeneous data; (ii) multiple central concepts, e.g., restaurants and landmarks above; (iii) support for RDF semantics when querying the warehouse; (iv) the possibility to query the relationships between entities (similar to querying the schema); (v) flexible choice of aggregation dimensions.

In this work, we perform a full redesign, from the bottom up, of the core data analytics concept and tools, leading to a complete formal framework for warehouse-style analytics on RDF data; in particular, our framework is especially

Copyright is held by the International World Wide Web Conference Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the author’s site if the Material is used in electronic media.
WWW ’14, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2744-2/14/04.
http://dx.doi.org/10.1145/2566486.2567982.
suited to heterogeneous, semantic-rich corpora of Linked Open Data. Our contributions are:

- We devise a full-RDF warehousing approach, where the base data and the warehouse extent are RDF graphs. This answers to the needs (i), (iii) and (iv) above.
- We introduce RDF Analytical Schemas (AnS), which are graphs of classes and properties themselves, having nodes (classes) connected by edges (properties) with no single central concept (node). This contrasts with the typical RDW star or snowflake schemas, and caters to requirement (ii) above. The core idea behind many-node analytical schemas is to define each node (resp. edge) by an independent query over the base data.
- We define Analytical Queries (AnQ) over our decentralized analytical schemas. Such queries are highly flexible in the choice of measures and classifiers (requirement (v)), while supporting all the classical analytical cubes and operations (slice, dice etc.).
- We fully implemented our approach in an operational prototype and empirically demonstrate its interest and performance.

The remainder of this paper is organized as follows. We recall RDF data and queries in Sections 2 and 3. Section 4 presents our analytical schemas and queries, and Section 5 studies efficient query evaluation methods. Section 6 introduces typical analytical operations (slice, dice etc.) on our RDF analytical cubes. We present our experimental evaluation in Section 7 and discuss related work, and then conclude.

2. RDF GRAPHS

An RDF graph (or graph, in short) is a set of triples of the form \(\langle p, o \rangle \). A triple states that its subject \(p \) has the property \(o \), and the value of that property is the object \(o \).

We consider only well-formed RDF triples, as per the RDF specification [33], using uniform resource identifiers (URIs), typed or un-typed literals (constants) and blank nodes (unknown URIs or literals).

Notation. We use \(p, o \) in triples as placeholders. Literals are shown as strings between quotes, e.g., “string”. Finally, the set of values – URIs \(U \), blank nodes \(B \), literals \(L \) – of an RDF graph \(G \) is denoted \(V(G) \).

Figure 1 (top) shows how to use triples to describe resources, that is, to express class (unary relation) and property (binary relation) assertions. The RDF standard [33] provides a set of built-in classes and properties, as part of the rdf: and rdfs: pre-defined namespaces. We use these namespaces exactly for these classes and properties, e.g., rdf:type specifies the class(es) to which a resource belongs.

Below, we formalize the representation of an RDF graph using graph notations. We use \(f_d \) to denote the restriction of a function \(f \) to its sub-domain \(d \). Our formalization follows the RDF standard [33].

Definition 1. (Graph notation of an RDF graph) An RDF graph is a labeled directed graph \(G = (N, E, \lambda) \) with:

- \(N \) is the set of nodes, let \(N^0 \) denote the nodes in \(N \) having no outgoing edge, and let \(N^\leq = N \setminus N^0 \);
- \(E \subseteq N^\leq \times N^\leq \) is the set of directed edges;
- \(\lambda : N \cup E \to U \cup B \cup L \) is a labeling function such that \(\lambda_N \) is injective, with \(\lambda_N : N^0 \to U \cup B \cup L \) and \(\lambda_E : E \to U \cup B, \) and \(\lambda_E : E \to U \).

Table:

<table>
<thead>
<tr>
<th>Assertion</th>
<th>Triple</th>
<th>Relational notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>(\exists \text{ rdf:type}\ o)</td>
<td>(o(\text{s}))</td>
</tr>
<tr>
<td>Property</td>
<td>(\exists \text{ p o})</td>
<td>(p(\text{s}))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Triple</th>
<th>OWA interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subclass</td>
<td>(\exists \text{ rdfs:subClassOf}\ o)</td>
<td>(\subseteq)</td>
</tr>
<tr>
<td>Subproperty</td>
<td>(\exists \text{ rdfs:subPropertyOf}\ o)</td>
<td>(\subseteq)</td>
</tr>
<tr>
<td>Domain typing</td>
<td>(\exists \text{ rdfs:domain}\ o)</td>
<td>(\Pi_{\text{domain}}(\text{s}) \subseteq)</td>
</tr>
<tr>
<td>Range typing</td>
<td>(\exists \text{ rdfs:range}\ o)</td>
<td>(\Pi_{\text{range}}(\text{s}) \subseteq)</td>
</tr>
</tbody>
</table>

Figure 1: RDF (top) & RDFS (bottom) statements.

\{user1, hasName "Bill", user1, hasAge "28", user1, user2\}, \(G = \) user1, bought product1, product1, rdf:type Smartphone, user1, worksWith user2, user2, hasAge "40", ...

Figure 2: Running example: RDF graph.

\(G = \) William, hasName, 28, hasAge, hasPrice, 400, rdf:type Smartphone, 400, rdf:type Rating, hasValue, good deal, ... \(G' = \) \(G \cup \{ \langle \text{Product}, \text{dm}, \text{hasPrice}, \text{400} \rangle, \langle \text{Brand}, \text{rg}, \text{hasPrice}, \text{400} \rangle \} \)

Figure 3: Running example: RDF Schema triples.

Example 1. (RDF Graph) We consider an RDF graph comprising information about users and products. Figure 2 shows some of the triples (top) and depicts the whole dataset using its graph notation (bottom). The RDF graph features a resource user1, whose name is “Bill” and whose age is “28”. Bill works with user2 and is a friend of user3. He is an active contributor to two blogs, one shared with his co-worker user2. Bill also bought a Smartphone and rated it online etc.

A valuable feature of RDF is RDF Schema (RDFS) that allows enhancing the descriptions in RDF graphs. RDFS triples declare semantic constraints between the classes and the properties used in those graphs. Figure 1 (bottom) shows the allowed constraints and how to express them: domain and range denote respectively the first and second attribute of every property. The RDFS constraints (Figure 1) are interpreted under the open-world assumption (OWA) [7]. For instance, given two relations \(R_1, R_2 \), the OWA interpretation of the constraint \(R_1 \subseteq R_2 \) is: any tuple \(t \) in the relation \(R_1 \) is considered as being also in the relation \(R_2 \) (the inclusion constraint propagates \(t \) to \(R_2 \)).

Example 2. (RDF Schema) Consider next to the graph \(G \) from Figure 3 the schema depicted in Figure 3. This schema expresses semantic (or ontological) constraints like a Phone is a Product, a Smartphone is a Phone, a Student is a Person, the domain and range of knows is Person, that working with someone is one way of knowing her etc.

RDF entailment. Our discussion on constraint interpretation above illustrated an important RDF feature: implicit
triple patterns, considered part of the RDF graph even though they are not explicitly present in it. An example is product1 rdf:type Phone, which is implicit in the graph G of Figure 3. RDF entailment is supported through saturation. In the following we will use the conjunctive query notation t. More generally, a triple $s p o$ is entailed by a graph G, denoted $G \vdash s p o$, if and only if there is a sequence of applications of immediate entailment rules that leads from G to $s p o$ (where at each step of the entailment sequence, the triples previously entailed are also taken into account).

Saturation. The immediate entailment rules allow defining the finite saturation (a.k.a. closure) of an RDF graph G, which is the RDF graph G^∞ defined as the fix-point obtained by repeatedly applying \vdash_{RDF} on G.

The saturation of an RDF graph is unique (up to blank node renaming), and does not contain implicit triples (they have all been made explicit by saturation). An obvious connection holds between the triples entailed by a graph G and its saturation: $G \vdash_{RDF} s p o$ if and only if $s p o \in G^\infty$.

RDF entailment is part of the RDF standard itself; in particular, the answers of a query posed on G must take into account all triples in G^∞, since the semantics of an RDF graph is its saturation. In Sesame [39], Jena [37], OWLIM [38] etc., RDF entailment is supported through saturation.

3. BGP QUERIES

We consider the well-known subset of SPARQL consisting of (unions of) basic graph pattern (BGP) queries, also known as SPARQL conjunctive queries. A BGP is a set of triple patterns, or triples in short. Each triple has a subject, property and object, some of which can be variables.

Notation. In the following we will use the conjunctive query notation $q(x) :- t_1, \ldots, t_n$, where $\{t_1, \ldots, t_n\}$ is a BGP; the query head variables x are called distinguished variables, and are a subset of the variables occurring in t_1, \ldots, t_n; for boolean queries x is empty. The head of q denoted head(q) is $q(x)$, and the body of q denoted body(q) is t_1, \ldots, t_n. We use x, y, and z (possibly with subscripts) to denote variables in queries. We denote by VarB1(q) the set of variables and blank nodes occurring in the query q.

BGP query graph. For our purposes, it is useful to view each triple atom in the body of a BGP query as a generalized RDF triple, where variables may appear in any of the subject, predicate and object positions. This leads to a graph notation for BGP queries, which can be seen as a corresponding generalization of our RDF graph representation (Definition 1). For instance, the body of the query:

$q(x, y, z) :- x$ hasName y, x z product1

is represented by the graph:

\[\text{hasName} \rightarrow x \rightarrow y \rightarrow z \rightarrow \text{product1} \]

Query evaluation. Given a query q and an RDF graph G, the evaluation of q against G is:

$q(G) = \{ x_{\mu} | \mu : \text{VarB1}(q) \rightarrow \text{Val}(G) \}$

where $\mu(e)$ is the value of e in G.

Notice that evaluation treats the blank nodes in a query exactly as it treats non-distinguished variables. Thus, in the sequel, without loss of generality, we consider queries where all blank nodes have been replaced by distinct (new) non-distinguished variable symbols.

Query answering. The evaluation of q against G uses only G’s explicit triples, thus may lead to an incomplete answer set. The (complete) answer set of q against G is obtained by the evaluation of q against G^∞, denoted by $q(G^\infty)$.

Example 3. (BGP QUERY ANSWERING) The following query on G (Figure 3) asks for the names of those having bought a product related to Phone:

$q(x) :- y_1$ hasName x, y_1 bought y_2, y_2 y_3 Phone

Here, $q(G^\infty) = \{ (“Bill”), (“William”) \}$.

The answer results from $G \vdash_{RDF}$ product1 rdf:type Phone and the assignments:

$\mu_1 = \{ y_1 \rightarrow \text{user}_1, x \rightarrow \text{Bill}, y_2 \rightarrow \text{product}_1, y_3 \rightarrow \text{rdf:type} \}$

$\mu_2 = \{ y_1 \rightarrow \text{user}_1, x \rightarrow \text{William}, y_2 \rightarrow \text{product}_1, y_3 \rightarrow \text{rdf:type} \}$

Note that evaluating q against G leads to the incomplete (empty) answer set $q(G^\infty) = \{ \}$.

BGP queries for data analysis. Data analysis typically allows investigating particular sets of facts according to relevant criteria (a.k.a. dimensions) and measurable or countable attributes (a.k.a. measures) [23]. In this work, rooted BGP queries play a central role as they are used to specify the set of facts to analyze, as well as the dimensions and the measures to be used (Section 4.2).

Definition 2. (Rooted Query) Let q be a BGP query, $G = \langle N, E, \lambda \rangle$ its graph and $n \in N$ a node whose label is a variable in q. The query q is rooted in n iff G is a connected graph and any other node $n' \in N$ is reachable from n following the directed edges in E.

Example 4. (Rooted Query) The query q described below is a rooted BGP query, with x_1 as root node.

$q(x_1, x_2, x_3) :- x_1$ knows x_2, x_1 hasName y_1, x_1 wrote y_2, y_2 inBlog x_3

The query’s graph representation below shows that every node is reachable from the root x_1.

\[\text{x1 \rightarrow x2 \rightarrow y1 \rightarrow y2 \rightarrow x3} \]

Next, we introduce the concept of join query, which joins BGP queries on their distinguished variables and projects out some of these variables. Join queries will be used when defining data warehouse analyses.

Definition 3. (Join Query) Let q_1, \ldots, q_n be BGP queries whose non-distinguished variables are pairwise disjoint. We say $q(x) :- q_1(x_1) \land \cdots \land q_n(x_n)$, where $x \subseteq x_1 \cup \cdots \cup x_n$, is a join query q of q_1, \ldots, q_n. The answer set to $q(x)$ is defined to be that of the BGP query q^\odot:

$q^\odot(x) :- \text{body}(q_1(x_1)), \ldots, \text{body}(q_n(x_n))$

In the above, q_1, q_2, \ldots, q_n do not share non-distinguished variables (variables not present in the query head). This assumption is made without loss of generality, as one can easily rename non-distinguished variables in q_1, q_2, \ldots, q_n in order to meet the condition. In the sequel, we assume such renaming has been applied in join queries.

469
4. RDF GRAPH ANALYSIS

We define here the basic ingredients of our approach for analyzing RDF graphs. An analytical schema is the lens through which we analyze an RDF graph, as we explain in Section 4.1. An analytical schema instance is analyzed with analytical queries, introduced in Section 4.2, modeling the chosen criteria (a.k.a. dimensions) and measurable or countable attributes (a.k.a. measures) of the analysis.

4.1 Analytical schema and instance

We model a schema for RDF graph analysis, called an analytical schema, as a labeled directed graph. From a classical data warehouse analytics perspective, each node of our analytical schema represents a set of facts that may be analyzed. Moreover, the facts represented by an analytical schema node can be analyzed using (as either dimensions or measures) the schema nodes reachable from that node. This makes our analytical schema model much more general than the traditional DW setting where facts (at the center of a star or snowflake schema) are analyzed according to a fixed set of dimensions and of measures.

From a Semantic Web perspective, an analytical schema node corresponds to an RDF class, while an analytical schema edge connecting two nodes corresponds to an RDF property. The instances of these classes and properties, modeling the DW contents to be further analyzed, are intensionally defined in the schema, following the well-known “Global As View” (GAV) approach for data integration.

Definition 4. (Analytical Schema) An analytical schema (AnS) is a labeled directed graph \(\mathcal{S} = (\mathcal{N}, \mathcal{E}, \lambda, \delta) \) in which:

- \(\mathcal{N} \) is the set of nodes;
- \(\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N} \) is the set of directed edges;
- \(\lambda : \mathcal{N} \cup \mathcal{E} \rightarrow U \) is an injective labeling function, mapping nodes and edges to URIs;
- \(\delta : \mathcal{N} \cup \mathcal{E} \rightarrow \mathcal{Q} \) is a function assigning to each node \(n \in \mathcal{N} \) a unary BGP query \(\delta(n) = q(x) \), and to every edge \(e \in \mathcal{E} \) a binary BGP query \(\delta(e) = q(x, y) \).

Notation. We use \(n \) and \(e \) respectively (possibly with subscripts) to denote AnS nodes and edges. To emphasize that an edge connects two particular nodes we will place the nodes in subscript, e.g., \(e_{n_1 \rightarrow n_2} \).

For simplicity, we assume that through \(\lambda \), each node in the AnS defines a new class (not present in the original graph \(\mathcal{G} \)), while each edge defines a new property. Observe that

1In practice, nothing prevents \(\lambda \) from returning URIs of class/properties from \(\mathcal{G} \) and/or the RDF model, e.g., rdf:type etc.

Example 5. (Join Query) Consider the BGP queries \(q_1 \) and \(q_2 \), asking for the users having bought a product and their age, and \(q_2 \), asking for users having posted in some blog:

\[
\begin{align*}
q_1(x_1, x_2) & : x_1 \text{ bought } y_1, x_1 \text{ hasAge } x_2 \\
q_2(x_1, x_3) & : x_1 \text{ wrote } y_2, y_2 \text{ inBlog } x_3
\end{align*}
\]

The join query \(q_{1,2}(x_1, x_2) \) asks for the users and their ages, for all the users having having bought a product, i.e.,

\[
q_{1,2}^{\ast}(x_1, x_2) : x_1 \text{ bought } y_1, x_1 \text{ hasAge } x_2, x_1 \text{ wrote } y_2, y_2 \text{ inBlog } x_3
\]

Other join queries can be obtained from \(q_1 \) and \(q_2 \) by returning a different subset of the head variables \(x_1, x_2, x_3 \), and/or by changing their order in the query head etc.

Figure 4: Sample Analytical Schema (AnS).

Table 1: Labels and queries of some nodes and edges of the analytical schema (AnS) shown in Figure 4 using \(\delta \) we define a GAV view for each node and edge in the analytical schema. Just as an analytical schema defines (and delimits) the data available to the analyst in a typical relational DW scenario, in our framework, the classes and properties modeled by an AnS (defined using \(\delta \) and labeled by \(\lambda \)) are the only ones visible to further RDF analytics, that is: analytical queries will be formulated against the AnS and not against the base data (as Section 4.2 will show). Example introduces an AnS for the RDF graph in Figure 3.

Example 6. (Analytical Schema) Figure 2 depicts an AnS for analyzing bloggers and items. The node and edge labels appear in the figure, while the BCP queries defining these nodes and edges are provided in Table 1. In Figure 2 a blogger \(n_1 \) may have written posts \(e_1 \) which appear on some site \(n_5 \). A person may also have purchased items \(e_3 \) which can be rated \(e_4 \). The semantic of the remaining AnS nodes and edges can be easily inferred.

The nodes and edges of an analytical schema define the perspective (or lens) through which to analyze an RDF dataset. This is formalized as follows:

Definition 5. (Instance of an AnS) Let \(\mathcal{S} = (\mathcal{N}, \mathcal{E}, \lambda, \delta) \) be an analytical schema and \(\mathcal{G} \) an RDF graph. The instance of \(\mathcal{S} \) w.r.t. \(\mathcal{G} \) is the RDF graph \(\mathcal{I}(\mathcal{S}, \mathcal{G}) \) defined as:

\[
\bigcup_{n \in \mathcal{N}} \{ s \text{ rdf:type } \lambda(n) : s \in q(\mathcal{G}^{\infty}) \land q = \delta(n) \} \\
\bigcup_{e \in \mathcal{E}} \{ s \text{ } \lambda(e) : s, o \in q(\mathcal{G}^{\infty}) \land q = \delta(e) \}.
\]
Defining analytical schemas. As customary in data analysis warehouse, analysts are in charge of defining the schema, with significant flexibility in our framework for doing so. Typically, schema definition starts with the choice of a few concepts of interest, to be turned into AnS nodes. These can come from the application, or be “suggested” based on the RDF data itself, e.g., the most popular types in the dataset (RDF classes together with the number of resources belonging to the class), which can be obtained with a simple SPARQL query; we have implemented this in the GUI of our tool. Core concepts and edges may also be identified through RDF summarization as in e.g., [12]. Further, SPARQL queries can be asked to identify the most frequent relationships to which the resources of an AnS node participate, or chains of relationships connecting instances of two AnS nodes etc. In this incremental fashion, the AnS can be “grown” from a few nodes to a graph capturing all information of interest; throughout the process, SPARQL queries can be leveraged to assist and guide AnS design.

Once the queries defining AnS nodes are known, the analyst may want to check that an edge is actually connected to a node adjacent to the edge, in the sense: some resources in the node extent also participate to the relationship defined by edge. Let $n_1, n_2 \in \mathcal{N}$ be AnS nodes and $e_{n_1 \rightarrow n_2} \in E$ an edge between them. This condition can be easily checked through a SPARQL query ensuring that:

$$\text{ans}(\delta(n_1)) \cap I_{\text{domain}}(\text{ans}(\delta(e_{n_1 \rightarrow n_2}))) \neq \emptyset$$

Extensions. An AnS uses unary and binary BGP queries (introduced in Section 3) to define its instance, as the union of all AnS node/class and edge/property instances. This can be extended straightforwardly to unary and binary (full) SPARQL queries (allowing disjunction, filter, regular expressions, etc.) in the setting of RDF analytics, and even to unary and binary queries from (a mix of) query languages (SQL, SPARQL, XQuery, etc.), in order to analyze data integrated from distributed heterogeneous sources.

4.2 Analytical queries

Data warehouse analysis summarizes facts according to relevant criteria into so-called cubes. Formally, a cube (or analytical query) analyzes facts characterized by some dimensions, using a measure. We consider a set of dimensions d_1, d_2, \ldots, d_n, such that each dimension d_i may range over the value set $\{d_{i1}, d_{i2}, \ldots, d_{i\ell_i}\}$; the Cartesian product of all dimensions $d_1 \times \cdots \times d_n$ defines a multidimensional space M. To each tuple t in this multidimensional space M corresponds a subset F_t of the analyzed facts, having for each dimension $d_{i1} \leq i \leq n$, the value of t along d_i.

A measure is a set of values characterizing each analyzed fact f. The facts in F_t are summarized by the cube cell $M[t]$ by the result of an aggregation function \oplus (e.g., count, sum, average, etc.) applied to the union of the measures of the F_t facts: $M[t] = \oplus(\bigcup_{f \in F_t} \text{val}(f))$.

An analytical query consists of two (rooted) queries and an aggregation function. The first query, known as a classifier in traditional data warehouse settings, defines the dimensions d_1, d_2, \ldots, d_n according to which the facts matching the query root will be analyzed. The second query defines the measure according to which these facts will be summarized. Finally, the aggregation function is used for summarizing the analyzed facts.

To formalize the connection between an analytical query and the AnS on which it is asked, we introduce a useful notion:

Definition 6. (BGP query to AnS homomorphism) Let q be a BGP query whose labeled directed graph is $G_q = (\mathcal{N}, \mathcal{E}, \lambda)$, and $S = (\mathcal{N}', \mathcal{E}', \lambda')$ be an AnS. An homomorphism from q to S is a graph homomorphism $h : G_q \to S$, such that:

- for every $n \in \mathcal{N}$, $\lambda(n) = \lambda'(h(n))$ or $\lambda(n)$ is a variable;
- for every $e_{n \rightarrow n'} \in \mathcal{E}$: (i) $e_{h(n) \rightarrow h(n')}$ $\in \mathcal{E}'$ and (ii) $\lambda(e_{n \rightarrow n'}) = \lambda'(e_{h(n) \rightarrow h(n')})$ or $\lambda(e_{n \rightarrow n'})$ is a variable;

2It is a set rather than a single value, due to the structural heterogeneity of the AnS instance, which is an RDF graph itself: each fact may have zero, one, or more values for a given measure.
• for every $e_1, e_2 \in \mathcal{E}$, if $\lambda(e_1) = \lambda(e_2)$ is a variable, then $h(e_1) = h(e_2)$;

• for $n \in \mathcal{N}$ and $e \in \mathcal{E}$, $\lambda(n) \neq \lambda(e)$.

The above homomorphism is defined as a correspondence from the query to the AnS graph structure, which preserves labels when they are not variables (first two items), and maps all the occurrences of a same variable labeling different query edges to the same label value (third item). Observe that a similar condition referring to occurrences of a same variable labeling different query nodes is not needed, since by definition, all occurrences of a variable in a query are mapped to the same node in the query’s graph representation. The last item (independent of h) follows from the fact that the labeling function of an AnS is injective. Thus, a query with a same label for a node and an edge cannot have an homomorphism with an AnS.

We are now ready to introduce our analytical queries. In keeping with the spirit (but not the restrictions!) of classical RDWs [22, 23], a classifier defines the level of data aggregation while a measure allows obtaining values to be aggregated using aggregation functions.

Definition 7. (Analytical Query) Given an analytical schema $S = \langle \mathcal{N}, \mathcal{E}, \mathcal{L}, \delta \rangle$, an analytical query (AnQ) rooted in the node $r \in \mathcal{N}$ is a triple:

$$Q = \langle (c(x, d_1, \ldots, d_n), m(x, v), \oplus) \rangle$$

where:

• $c(x, d_1, \ldots, d_n)$ is a query rooted in the node r_c of its graph G_c, with $\lambda(r_c) = x$. This query is called the classifier of x w.r.t. the n dimensions d_1, \ldots, d_n.

• $m(x, v)$ is a query rooted in the node r_m of its graph G_m, with $\lambda(r_m) = x$. This query is called the measure of x.

• \oplus is a function computing a value (a literal) from an input set of values. This function is called the aggregator for the measure of x w.r.t. its classifier.

• For every homomorphism h_c from the classifier to S and every homomorphism h_m from the measure to S, $h_c(r_c) = h_m(r_m) = r$ holds.

The last item above guarantees the “well-formedness” of the analytical query, that is: the facts for which we aggregate the measure are indeed those classified along the desired dimensions. From a practical viewpoint, this condition can be easily and naturally guaranteed by giving explicitly in the classifier and the measure either the type of the facts to analyze, using x rdf:type $\lambda(r)$, or a property describing those facts, using x λ($e_{r \to n}$) or with $e_{r \to n} \in \mathcal{E}$. As a result, since the labels are unique in an AnS (its labeling function is injective), every homomorphism from the classifier (respectively the measure) to the AnS does map the query’s root node labeled with x to the AnS’s node r.

Example 8. (Analytical Query) The query below asks for the number of sites were each blogger posts, classified by the blogger’s age and city:

$$(c(x, y_1, y_2), m(x, z), \text{count})$$

where the classifier and measure queries are defined by:

$$c(x, y_1, y_2) :- x \text{ age } y_1, x \text{ livesIn } y_2$$

$$m(x, z) :- x \text{ wrotePost } y, y \text{ postedOn } z$$

The semantics of an analytical query is:

Definition 8. (Answer Set of an AnQ) Let I be the instance of an AnS with respect to some RDF graph. Let $Q = \langle (c(x, d_1, \ldots, d_n), m(x, v), \oplus) \rangle$ be an AnQ against I. The answer set of Q against I, denoted $\text{ans}(Q, I)$, is:

$$\text{ans}(Q, I) = \{ \langle d_1', \ldots, d_n', \oplus(q^1(I)) \rangle \mid \langle x', d_1', \ldots, d_n' \rangle \in c(I) \text{ and } q^1 \text{ is defined as } q^1(v) = m(x', v) \}$$

assuming that each value returned by $q^1(I)$ is of (or can be converted by the SPARQL rules [35] to) the input type of the aggregator \oplus. Otherwise, the answer set is undefined.

In other words, the analytical query returns each tuple of dimension values found in the answer of the classifier query, together with the aggregated result of the measure query. The answer set of an AnQ can thus be represented as a cube of n dimensions, holding in each cube cell the corresponding aggregate measure. In the following, we focus on analytical queries whose answer sets are not undefined.

Example 9. (Analytical Query Answer) Consider the query in Example 8 over the AnS in Figure 4. Some triples from the instance of this analytical schema were shown in Example 3. The classifier query answer set is:

$$\{ \{\text{user}_1, \text{28,”Madrid”}\}, \{\text{user}_3, \text{35,”NY”}\}\}$$

while that of the measure query is:

$$\{\text{user}_1, \text{blog}_1\}, \{\text{user}_1, \text{blog}_2\}, \{\text{user}_2, \text{blog}_2\}, \{\text{user}_3, \text{blog}_2\}\}$$

Aggregating the blogs among the classification dimensions leads to the AnQ answer:

$$\{\{28,”Madrid”\}, 2\}, \{35,”NY”\}, 1\}$$

In this work, for the sake of simplicity, we assume that an analytical query has only one measure. However, this can be easily relaxed, by introducing a set of measure queries with an associated set of aggregation functions.

5. ANALYTICAL QUERY ANSWERING

We now consider practical strategies for AnQ answering.

The AnS materialization approach. The simplest method consists of materializing the instance of the AnS (Definition 6) and storing it within an RDF data management system (or RDF-DM, for short); recall that the AnS instance is an RDF graph itself defined using GAV views. Then, to answer an AnQ, one can use the RDF-DM to process the classifier and measure queries, and the final aggregation. While effective, this solution has the drawback of storing the whole AnS instance; moreover, this instance may need maintenance when the analyzed RDF graph changes.

The AnQ reformulation approach. To avoid materializing and maintaining the AnS instance, we consider an alternative solution. The idea is to rewrite the AnQ using the GAV views of the AnS definition, so that evaluating the reformulated query returns exactly the same answer as if materialization was used. Using query rewriting, one can store the original RDF graph into an RDF-DM, and use this RDF-DM to answer the reformulated query. Our reformulation technique below translates standard query rewriting using GAV views [19] to our RDF analytical setting.

Definition 9. (Ans-reformulation of a query) Given an analytical schema $S = \langle \mathcal{N}, \mathcal{E}, \mathcal{L}, \delta \rangle$, a BGP query $q_0(x) :- t_1, \ldots, t_n$ whose graph is $G_0 = \langle \mathcal{N}', \mathcal{E}', \mathcal{L}' \rangle$, and the non-empty set H of all the homomorphisms from q_0 to S, the reformulation of q_0 w.r.t. S is the union of join queries $q^{\oplus}_0 = \bigcup_{h \in H} q_h^{\oplus} := \bigwedge_{h \in H} q_h^{\oplus}$ such that:

• for each triple $t_i \in q$ of the form s rdf:type $\lambda(n_i)$, $q_i(\bar{x}_i) \in q_h^{\oplus}$ is defined as $q_i = \delta(h(n_i))$ and $\bar{x}_i = s$;

• for each triple $t_i \in q$ of the form s $\lambda(e_i)$, $q_i(\bar{x}_i) \in q_h^{\oplus}$ is defined as $q_i = \delta(h(e_i))$ and $\bar{x}_i = s, o$.

This definition states that for a BGP query stated against an AnS, the reformulated query amounts to translating all its possible interpretations w.r.t. the AnS (modeled by all the homomorphisms from the query to the AnS) into a union of join queries modeling them. The important point is that these join queries are defined onto the RDF graph over which the AnS is wrapped.

Example 10. (AnS-reformulation of a query) Let
$q(x, y_1)$ be a BGP query referring to the AnS in Figure 4.

q(x, y_1) ::= x rdf:type Blogger, x acquaintedWith y1.

The first atom x rdf:type Blogger in q is of the form
a rdf:type λ(n1), for the node n1. Consequently, q^{δ} contains as a conjunct the query:

$q(x):= x$ rdf:type Person, x wrote y, y inBlog x

obtained from δ(n1) in Table 7.

The second atom in q, x acquaintedWith y is of the form
a λ(e1) α for the edge e1 in Figure 3, while the query defining e1 is:
q(x, y):= x rdf:subPropertyOf knows, x y. As a result, q^{δ} contains the conjunct:

$q(x, y_1):= z$ rdf:subPropertyOf knows, x z y1

Thus, the reformulated query amounts to:

$q^{\delta}(x, y_1):= x$ rdf:type Person, x wrote y, y inBlog x,

z rdf:subPropertyOf knows, x z y1

which can be evaluated directly on the graph G in Figure 2.

Theorem 1 states how BGP query reformulation w.r.t. an AnS can be used to answer analytical queries correctly.

Theorem 1. (Reformulation-based Answering)

Let S be an analytical schema, whose instance I is defined w.r.t. an RDF graph G. Let $Q = \langle x(x_1, \ldots, x_n), m(x, v), \oplus \rangle$ be an analytical query against S, c_{Q}^{δ} be the reformulation of Q’s classifier query against S, and m_{Q}^{δ} be the reformulation of Q’s measure query against S. We have:

\[
\text{ans}(Q, I) = \{ (d_1', \ldots, d_n', \oplus (q'(G^\infty))) | (x_1', d_1', \ldots, d_n') \in c_{Q}^{\delta}(G^\infty) \text{ and } q'(G^\infty) \text{ is a valid query over } S \}
\]

assuming that each value returned by $q'(G^\infty)$ is of (or can be converted by the SPARQL rules (29) to) the input type of the aggregator \oplus. Otherwise, the answer set is undefined.

The theorem states that in order to answer Q on I, one first reformulates Q’s classifier into c_{Q}^{δ} and answers it directly against G (not against I as in Definition 8): this is how reformulation avoids materializing I. Then, for each tuple $(x_1', d_1', \ldots, d_n')$ returned by the classifier, the following steps are applied: instantiate the reformulated measure query m_{Q}^{δ} with the fact x_1', leading to the query q'; answer the latter against G; finally, aggregate its results through \oplus. The proof follows directly, by two-way inclusion.

The trade-offs between materialization and reformulation have been thoroughly analyzed in the literature [22]; we leave the choice to the RDF warehouse administrator.

6. OLAP RDF ANALYTICS

On-Line Analytical Processing (OLAP) [3] technologies enhance the abilities of data warehouses (so far, mostly relational) to answer multi-dimensional analytical queries.

The analytical model we introduced is specifically designed for graph-structured, heterogeneous RDF data. In this section, we demonstrate that our model is able to express RDF-specific counterparts of all the traditional OLAP concepts and tools known from the relational DW setting.

Typical OLAP operations allow transforming a cube into another. In our framework, a cube corresponds to an AnQ; for instance, the query in Example 8 models a bi-dimensional cube on the warehouse related to our sample AnS in Figure 4. Thus, we model traditional OLAP operations on cubes as AnQ rewritings, or more specifically, rewritings of extended AnQs which we introduce below.

Definition 10. (Extended AnQ) As in Definition 7, let S be an AnS, and d_1, \ldots, d_n be a set of dimensions, each ranging over a non-empty finite set $V_i, 1 \leq i \leq n$. Let Σ be a total function over $\{d_1, \ldots, d_n\}$ associating to each d_i, either $\{d_i\}$ or a non-empty subset of V_i. An extended analytical query Q is defined by a triple:

\[
Q::= (c_{Q}(x, d_1, \ldots, d_n), m(x, v), \oplus)
\]

where (as in Definition 7) c is a classifier and m a measure query over S, \oplus is an aggregation operator, and moreover:

\[
c_{Q}(x, d_1, \ldots, d_n) = \bigcup_{x_1, \ldots, x_n} (\Sigma(d_1) \times \ldots \times \Sigma(d_n)) (c(x, \chi_1, \ldots, \chi_n))
\]

In the above, the extended classifier $c_{Q}(x, d_1, \ldots, d_n)$ is the set of all possible classifiers obtained by substituting each dimension variable d_i with a value in $\Sigma(d_i)$. The function Σ is introduced to constrain some classifier dimensions, i.e., it plays the role of a filter-clause restricting the classifier result. The semantics of an extended analytical query is easily derived from the semantics of a standard AnQ (Definition 8) by replacing the tuples from $c(I)$ with tuples from $c_{Q}(I)$. In other words, an extended analytical query can be seen as a union of a set of standard AnQs, one for each combination of values in $\Sigma(d_1), \ldots, \Sigma(d_n)$. Conversely, an analytical query corresponds to an extended analytical query where Σ only contains pairs of the form $\{d_i, \{d_i\}\}$.

We can now define the classical slice and dice OLAP operations in our framework:

Slice. Given an extended query $Q = \langle c_{Q}(x, d_1, \ldots, d_n), m(x, v), \oplus \rangle$, a slice operation over a dimension d_i with value v_i returns the extended query $c_{Q}(x, d_1, \ldots, d_n), m(x, v), \oplus)$, where $\Sigma' = \Sigma \setminus \{ (d_i, \Sigma(d_i)) \} \cup \{ (d_i, \{v_i\}) \}$.

The intuition is that slicing binds an aggregation dimension to a single value.

Example 11. (Slice) Let Q be the extended query corresponding to the query-cube defined in Example 8 that is:

\[
c_{Q}(x, y_1, y_2), m(x, z), \oplus, \Sigma = \{ (y_1, \{y_1\}), (y_2, \{y_2\}) \}
\]

the classifier and measure are as in Example 8. A slice operation on the age dimension y_2 with value 35 results in replacing the extended classifier of Q with $c_{Q}(x, y_1, y_2) = \{c(x, 35, y_2)\}$ where $\Sigma' = \Sigma \setminus \{ (y_1, \{y_1\}) \} \cup \{ (y_1, \{35\}) \}$.

Dice. Similarly, a dice operation on Q over dimensions $\{d_1, \ldots, d_k\}$ and corresponding sets of values $\{S_1, \ldots, S_k\}$ returns the query $c_{Q}(x, d_1, \ldots, d_n), m(x, v), \oplus)$, where $\Sigma' = \Sigma \setminus \bigcup_{j=1}^{k} \{ (d_j, \Sigma(d_j)) \} \cup \bigcup_{j=1}^{k} \{ (d_j, S_j) \}$.

Intuitively, dicing forces several aggregation dimensions to take values from specific sets.

Example 12. (Dice) Consider again the initial cube from Example 8 and a dice operation on both age and location dimensions with values (28) for y_1 and $\{\text{Madrid, Kyoto}\}$ for y_2. The dice operation replaces the extended classifier of Q with $c_{Q}(x, y_1, y_2) = \{c(x, 28, \{\text{Madrid}\}), c(x, 28, \{\text{Kyoto}\})\}$ where $\Sigma' = \Sigma \setminus \{ (y_1, \{y_1\}), (y_2, \{y_2\}) \} \cup \{ (y_1, \{28\}), (y_2, \{\text{Madrid}\}, \{\text{Kyoto}\}) \}$.

473
Drill-in and drill-out. These operations consist of adding and removing a dimension to the classifier, respectively. Rewritings for drill operations can be easily formalized. Due to space limitations we omit the details, and instead exemplify below a drill-in example.

Example 13. (Drill-in) Consider the cube Q from Example 8 and a drill-in on the age dimension. The drill-in rewriting produces the query $Q = \{ (\varphi_{\Sigma'}(x, y_2), m(x, z)) \text{ count} \}$ with $\Sigma' = \{ (y_2, \{y_2\}) \}$ and $\varphi(x, y_2) = x \text{ livesIn } y_2$.

Dimension hierarchies. Typical relational warehouse scenarios feature hierarchical dimensions, e.g., a value of the country dimension corresponds to several regions, each of which contains many cities etc. Such hierarchies were not considered in our framework thus far.

To capture hierarchical dimensions, we introduce dedicated built-in properties to model the nextLevel relationship among parent-child dimensions in a hierarchy. For illustration, consider the addition of a new State node and a new nextLevel edge to the AnS instance in Figure 4. Below, only part of that AnS$^\prime$ is shown, highlighting the new nodes and edges with dashed lines:

\[\text{n}_2 : \text{Name} \quad \text{n}_1 : \text{Blogger} \quad \text{e}_2 : \text{identifiedBy} \quad \text{e}_4 : \text{wrotePost} \quad \text{e}_5 : \text{Value} \]
\[\text{n}_3 : \text{State} \quad \text{(\text{\text{\text{e}_1 : nextLevel}})} \quad \text{n}_4 : \text{BlogPost} \quad \text{e}_3 : \text{livesIn} \quad \text{e}_6 : \text{postedOn} \quad \text{n}_5 : \text{Site} \]

In a similar fashion one could use the nextLevel property to support hierarchies among edges. For instance, relationships such as isFriendsWith and isCoworkerOf can be rolled up into a more general relationship knows etc.

Based on dimension hierarchies, roll-up/drill-down operations correspond to adding to/removing from the classifier, triple atoms navigating such nextLevel edges.

Example 14. (Roll-up) Recall the query in Example 8. A roll-up along the City dimension to the State level yields \(\{ \varphi_{\Sigma'}(x, y_1, y_3), m(x, z) \text{ count}, \} \), where:

\(\varphi_{\Sigma'}(x, y_1, y_3) = x \text{ age } y_1, x \text{ livesIn } y_2, \text{ nextLevel } y_2 \).

The measure component remains the same, and Σ' in the rolled-up query consists of the obvious pairs of the form (d, [d]). Note the change in both the head and body of the classifier, due to the roll-up.

7. EXPERIMENTS

We demonstrate the performance of our RDF analytical framework through a set of experiments. Section 7.1 outlines our implementation and experimental settings. We describe experiments on I materialization in Section 7.2, evaluate AnQs in Section 7.3 and OLAP operations in Section 7.4, then we conclude. Due to space limitation, experiments performed with query reformulation are delegated to 14.

7.1 Implementation and settings

We implemented the concepts and algorithms presented above within our WaRG tool \[13\]. WaRG is built on top of kdb+ v3.0 (64 bits) \[2\], an in-memory column DBMS used in decision-support analytics. kdb+ provides arrays (tables), which can be manipulated through the \q interpreter programming language. We store in kdb+ the RDF graph \mathcal{G}, the AnS definitions, as well as the AnS instance, when we

\[\text{Dimension hierarchies should not be confused with the hierarchies built using the predefined RDF(S) properties, such as rdfs:subclassOf, e.g., in Figure 2.} \]

choose to materialize it. We translate BGP queries into \q programs that kdb+ interprets; any engine capable of storing RDF and processing conjunctive RDF queries could be easily used instead.

Data organization. Figure 5 illustrates our data layout in kdb+. The URIs within the RDF dataset are encoded using integers; the mapping is preserved in a \mathcal{G} dictionary data structure, named dict. The saturation of \mathcal{G}, denoted \mathcal{G}^∞ (Section 3), is stored in the db$^\text{table.}$ Analytical schema definitions are stored as follows. The asch table stores the analytical schema triples: $\lambda(n) \lambda(e_{n,m'}) \lambda(n')$. The separate query$\text{query}^\text{dict}$ dictionary maps the labels λ for nodes and edges to their corresponding queries δ. Finally, we use the dw table to store the AnS instance T, or several tables of the form nX and eY if a partitioned-table storage is used (see Section 7.2). While querydict and db suffice to create the instance, we store the analytical schema definition in asch to enable checking incoming analytical queries for correctness w.r.t. the AnS.

kdb+ stores each table column independently, and does not have a database-style query optimizer. It is quite fast since it is an in-memory system; at the same time, it relies on the \q programmer’s skills for obtaining an efficient execution. We try to avoid low-performance formulations of our queries in \q, but further optimization is possible and more elaborate techniques (e.g., cost-based join reordering etc.) would further improve performance.

Dataset. Our experiments used the Ontology and Ontology Infobox datasets from the DBpedia Download 3.8; the data characteristics are summarized in Table 2. For our scalability experiments (Section 7.2), we replicated these datasets to study scalability in the database size.

Hardware. The experiments ran on an 8-core DELL server at 2.13 GHz with 16 GB of RAM, running Linux 2.6.31.14. All times we report are averaged over five executions.

7.2 Analytical schema materialization

Loading the (unsaturated) \mathcal{G} took about 3 minutes, and computing its full saturation \mathcal{G}^∞ 22 minutes. We designed an AnS of 26 nodes and 75 edges, capturing a set of concepts and relationship of interest. AnS node queries have one or two atoms, while edge queries consist of one to three atoms.
We considered two ways of materializing the instance I. First, we used a single table (dw in Figure 5). Second, inspired from RDF stores such as [21], we tested a partitioned data layout for I as follows. For each distinct node (modeling triples of the form a rdf:type λX), we store a table with the subjects as declared of that type: this leads to a set of tables denoted mX (for node), with $X ∈ [1, 26]$. Similarly, for each distinct edge (a λv o) a separate table stores the corresponding triple subjects and objects, leading to the tables eY with $Y ∈ [1, 75]$.

Figure 5 shows for each node and edge query (labeled on the y axis by λ, chosen based on the name of a “central” class or property in the query): (i) the number of query atoms (in parenthesis next to the label), (ii) the number of query results (we show $\log_2(#\text{res})/10$ to improve readability), (iii) the evaluation time when inserting into a single dw table, and (iv) the time when inserting into the partitioned store. For 2 node queries and 57 edge queries, the evaluation time is too small to be visible (below 0.01 s), and we omitted them from the plots. The total time to materialize the instance I (1.3 x 10^7 triples) was 38 seconds.

Scalability. We created larger RDF graphs such that the size of I would be multiplied by a factor of 2 to 5, with respect to the I obtained from the original graph G. The corresponding I materialization time are shown in Figure 7 demonstrating linear scale-up w.r.t. the data size.

7.3 Analytical query answering over I

We consider a set of AnQs, each adhering to a specific query pattern. A pattern is a combination of: (i) the number of atoms in the classifier query (denoted e), (ii) the number of dimension variables in the classifier query (denoted v), and (iii) the number of atoms in the measure query (denoted m). For instance, the pattern $c5v4m3$ designates queries whose classifiers have 5 atoms, aggregate over 4 dimensions, and whose measure queries have 3 atoms. We used **12 distinct patterns** for a total of **1,097 queries**.

The graph at the top of Figure 8 shows for each query pattern, the number of queries in the set (in parenthesis after the pattern name), and the average, minimum and maximum number of query results. The largest result set (for $c4v3m3$) is 514,240, while the second highest (for $c1v1m3$) is 160,240. The graph at the bottom of Figure 8 presents the average, minimum and maximum query evaluation times among the queries of each pattern.

Figure 9 shows that query result size (up to hundreds of thousands) is the most strongly correlated with query evaluation time. Other parameters impacting the evaluation time are the number of atoms in the classifier and measure queries, and the number of aggregation variables. These parameters are to be expected in an in-memory execution engine such as kdb+. Observe the moderate time increase with the main query size metric (the number of atoms); this demonstrates robust performance even for complex AnQs.

Figure 9 shows the average evaluation time for queries belonging to the sets $c1v1m1$ and $c5v4m3$ over increasing tables, using the instance triple table and the partitioned store implementations. In both cases the evaluation time increases linearly with the size of the dataset. The graph shows that the partitioned store brings a modest speed-up (about 10%); for small queries, the difference is unnoticeable. Thus, without loss of generality, in the sequel we consider only the single-table dw option.
OLAP operations

We now study the performance of OLAP operations on analytical queries (Section 6).

Slice and dice. In Figure 10 we consider three c5v4m3 queries: Q1 having a small result size (455), Q2 with a medium result size (1,251) and Q3 with a large result size (73,242). For each query we perform a slice (dice) by restricting the number of answers for each of its 4 dimension variables, leading to the OLAP queries Q1s1 to Q1s4, Q1d1 to Q1d4 and similarly for Q2 and Q3. The figure shows that the slice/dice running time is strongly correlated with the result size, and is overall small (under 2 seconds in many cases, 4 seconds for Q1 slice and dice queries having 10^4 results).

Drill-in and drill-out. The queries following the patterns c5v1m3, c5v2m3, c5v3m3 and c5v4m3 were chosen starting from the ones for c5v4m3 and eliminating one dimension variable from the classifier (without any other change) to obtain c5v3m3; removing one further dimension variable yielded the c5v2m3 queries etc. Recalling the definitions of drill-in and drill-out (Section 5), it follows that the queries in c5vnm3 are drill-ins of c5v(n+1)m3 for 1 ≤ n ≤ 3, and conversely, c5v(n+1)m3 result from drill-out on c5vnm3. Their evaluation times appear in Figure 8.

Conclusion of the experiments

Our experiments demonstrate the feasibility of our full RDF warehousing approach, which exploits standard RDF functionalities such as triple storage, conjunctive query evaluation, and reasoning. We showed robust scalable performance when loading and saturating I, and building T in time linear in the input size (even for complex, many-joins node and edge queries). Finally, we proved that OLAP operations can be evaluated quite efficiently in our RDF cube (AnQ) context. While further optimizations are possible, our experiments confirmed the interest and good performance of our proposed all-RDF Semantic Web warehousing approach.

8. RELATED WORK

Relational warehousing has been well studied [23, 22]. Web data warehouses have been presented as interconnected corpora of XML documents and Web services [5], or as distributed knowledge bases [6]. In [30], a large RDF knowledge base, Yago [32], is enriched with information gathered from the Web. These works did not consider RDF analytics.

[16] propose RDF(S) vocabularies (pre-defined classes and properties) for describing relational multidimensional data in RDF; [16] also maps OLAP operations into SPARQL queries. 27 presents a semi-automated approach for deriving a RDW from an ontology. In contrast with the above, in our approach, the AnS instance is an RDF graph itself thus seamlessly preserves the heterogeneity, semantics, and ability to query the schema with the data present in RDF.

In the area of RDF data management, previous works focused on efficient stores [4, 11, 31], indexing [36], query processing [28] and multi-query optimization [26]. A view selection [17] and query-view composition [25], or Map-Reduce based RDF processing [20, 21]. BGP query answering techniques have been studied intensively, e.g., [18, 29], and some are deployed in commercial systems such as Oracle 11g, which provides a “Semantic Graph” extension etc. Our work defines a novel framework for RDF analytics, based on analytical schemas and queries; these can be efficiently deployed on top of any RDF data management platform, to extend it with analytical capabilities.

Analysis cubes and OLAP operations on cubes over graphs are also defined in [40]. However, their approach does not handle heterogeneous graphs, and thus it cannot handle multi-valued attributes (e.g., a movie being both a comedy and a romance), nor data semantics, both central in RDF. Further, their approach only focuses on counting edges in contrast with our flexible AnQ (Section 1.2).

In [10], graph data can be aggregated in a spatial fashion by grouping connected nodes into regions (think of a street map graph); based on this simple aggregation, an OLAP framework is built. Beyond being RDF-specific (unlike [10]), our framework also introduces analytical graph schemas, and allows for much more general aggregation.

Finally, SPARQL 1.1 [35] features SQL-style grouping and aggregation. Deploying our framework on an efficient SPARQL 1.1 platform enables taking advantage both of its efficiency and of the high-level, expressive, flexible RDF graph analysis concepts introduced in this work.

9. CONCLUSION

DW models and techniques have had a strong impact on the usages and usability of data. In this work, we proposed the first approach for specifying and exploiting an RDF data warehouse, notably by (i) defining an analytical schema that captures the information of interest, and (ii) formalizing analytical queries (or cubes) over the AnS. Importantly, instances of AnS are RDF graphs themselves, which allows to exploit the semantics and rich, heterogeneous structure (e.g., jointly query the schema and the data) that make RDF data rich and interesting.

The broader area of data analytics, related to data warehousing, albeit with a significantly extended set of goals and methods, is the target of very active research now, especially in the context of massively parallel Map-Reduce processing etc. Efficient methods for deploying AnSs and AnQ evaluation in such a parallel context are part of our future work.
10. REFERENCES

[2] [kx] white paper.

