
A Web-based Kernel Function for Measuring the Similarity
of Short Text Snippets

Mehran Sahami
Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043 USA

sahami@google.com

Timothy D. Heilman
Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043 USA

tdh@google.com

ABSTRACT
Determining the similarity of short text snippets, such as
search queries, works poorly with traditional document sim-
ilarity measures (e.g., cosine), since there are often few, if
any, terms in common between two short text snippets. We
address this problem by introducing a novel method for mea-
suring the similarity between short text snippets (even those
without any overlapping terms) by leveraging web search re-
sults to provide greater context for the short texts. In this
paper, we define such a similarity kernel function, mathe-
matically analyze some of its properties, and provide exam-
ples of its efficacy. We also show the use of this kernel func-
tion in a large-scale system for suggesting related queries to
search engine users.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and
Retrieval; I.2.6 [Artificial Intelligence]: Learning; I.2.7
[Artificial Intelligence]: Natural Language Processing—
Text analysis

General Terms
Algorithms, Experimentation

Keywords
Text similarity measures, Web search, Information retrieval,
Kernel functions, Query suggestion

1. INTRODUCTION
In analyzing text, there are many situations in which we

wish to determine how similar two short text snippets are.
For example, there may be different ways to describe some
concept or individual, such as “United Nations Secretary-
General” and “Kofi Annan”, and we would like to determine
that there is a high degree of semantic similarity between
these two text snippets. Similarly, the snippets “AI” and
“Artificial Intelligence” are very similar with regard to their
meaning, even though they may not share any actual terms
in common.

Directly applying traditional document similarity mea-
sures, such as the widely used cosine coefficient [17, 16], to

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

such short text snippets often produces inadequate results,
however. Indeed, in both the examples given previously, ap-
plying the cosine would yield a similarity of 0 since each
given text pair contains no common terms. Even in cases
where two snippets may share terms, they may be using the
term in different contexts. Consider the snippets “graphical
models” and “graphical interface”. The first uses graphical
in reference to graph structures whereas the second uses the
term to refer to graphic displays. Thus, while the cosine
score between these two snippets would be 0.5 due to the
shared lexical term “graphical”, at a semantic level the use
of this shared term is not truly an indication of similarity
between the snippets.

To address this problem, we would like to have a method
for measuring the similarity between such short text snip-
pets that captures more of the semantic context of the snip-
pets rather than simply measuring their term-wise similar-
ity. To help us achieve this goal, we can leverage the large
volume of documents on the web to determine greater con-
text for a short text snippet. By examining documents that
contain the text snippet terms we can discover other con-
textual terms that help to provide a greater context for the
original snippet and potentially resolve ambiguity in the use
of terms with multiple meanings.

Our approach to this problem is relatively simple, but sur-
prisingly quite powerful. We simply treat each snippet as a
query to a web search engine in order to find a number of
documents that contain the terms in the original snippets.
We then use these returned documents to create a context
vector for the original snippet, where such a context vector
contains many words that tend to occur in context with the
original snippet (i.e., query) terms. Such context vectors can
now be much more robustly compared with a measure such
as the cosine to determine the similarity between the original
text snippets. Furthermore, since the cosine is a valid kernel,
using this function in conjunction with the generated con-
text vectors makes this similarity function applicable in any
kernel-based machine learning algorithm [4] where (short)
text data is being processed.

While there are many cases where getting a robust mea-
sure of similarity between short texts is important, one par-
ticularly useful application in the context of search is to
suggest related queries to a user. In such an application, a
user who issues a query to a search engine may find it help-
ful to be provided with a list of semantically related queries
that he or she may consider to further explore the related
information space. By employing our short text similarity

kernel, we could match the user’s initial query against a large
repository of existing user queries to determine other simi-
lar queries to suggest to the user. Thus, the results of the
similarity function can be directly employed in an end-user
application.

The approach we take in constructing our similarity func-
tion has relations to previous work in both the Information
Retrieval and Machine Learning communities. We explore
these relations and put our work in the context of previous
research in Section 2. We then formally define our similarity
function in Section 3 and present initial examples of its use
in Section 4. This is followed by a mathematical analysis
of the similarity function in Section 5. Section 6 presents
a system for related query suggestion using our similarity
function, and an empirical evaluation of this system is given
in Section 7. Finally, in Section 8 we provide some conclu-
sions and directions for future work.

2. RELATED WORK
The similarity function we present here is based on query

expansion techniques [3, 13] which have long been used in
the Information Retrieval community. Such methods au-
tomatically augment a user query with additional terms
based on documents that are retrieved in response to the
initial user query or by using an available thesaurus. Our
motivation for and usage of query expansion greatly dif-
fers from this previous work, however. First, the traditional
goal of query expansion has been to improve recall (poten-
tially at the expense of precision) in a retrieval task. Our
focus, however, is on using such expansions to provide a
richer representation for a short text in order to potentially
compare it robustly with other short texts. Moreover, tra-
ditional expansion is focused on creating a new query for
retrieval rather than doing pair-wise comparisons between
short texts. Thus, the approach we take is quite different
than the use of query expansion in a standard Information
Retrieval context.

Alternatively, information retrieval researchers have pre-
viously proposed other means of determining query similar-
ity. One early method proposed by Raghavan and Sever [14]
attempts to measure the relatedness of two queries by de-
termining differences in the ordering of documents retrieved
in response to the two queries. This method requires a total
ordering (ranking) of documents over the whole collection
for each query. Thus, comparing the pairwise differences
in rankings requires O(N2) time, where N is the number
of documents in the collection. In the context of the web,
where N > 20 billion1, this algorithm quickly becomes in-
tractable.

Later work by Fitzpatrick and Dent [9] measures query
similarity using the normalized set overlap (intersection) of
the top 200 documents retrieved for each query. While this
algorithm’s runtime complexity easily scales to the web, it
will likely not lead to very meaningful similarity results as
the sheer number of documents in the web collection will
often make the set overlap for returned results extremely
small (or empty) for many related queries that are not nearly
identical. We show that this is indeed the case in our exper-
imental and theoretical results later in the paper.

In the context of Machine Learning, there has been a great

1Leading search engines claim index sizes of at least 20 bil-
lion documents at the time of this writing.

deal of work in using kernel methods, such as Support Vec-
tor Machines for text classification [11, 8]. Such work has
recently extended to building specialized kernels aimed at
measuring semantic similarity between documents. We out-
line some of these approaches below, and show how they
differ from the work presented here.

One of the early approaches in this vein is Latent Seman-
tic Kernels (LSK) [5], which is a kernel-based extension to
the well-known Latent Semantic Indexing (LSI) [6] proposed
in the Information Retrieval community. In LSK, a kernel
matrix is computed over text documents, and the eigen-
decomposition of this matrix is used to compute a new (lower
rank approximation) basis for the space. The dimensions of
the new basis can intuitively be thought of as capturing “se-
mantic concepts” (i.e., roughly corresponding to co-varying
subsets of the dimensions in the original space). While there
may be some superficial similarities, this approach differs in
fundamental respects from our work. First, our method is
aimed at constructing a new kernel function, not using an
existing kernel matrix to infer “semantic dimensions”. Also,
our method takes a lazy approach in the sense that we need
not compute an expansion for a given text snippet until we
want to evaluate the kernel function. We never need to ex-
plicitly compute a full kernel matrix over some set of existing
text snippets nor its eigen-decomposition. Indeed, the ker-
nel we present here is entire complimentary to work on LSK,
as our kernel could be used to construct the kernel matrix
on which the eigen-decomposition is performed.

An approach more akin to that taken here is the work
of Kandola et al. [12] who define a kernel for determining
the similarity of individual terms based on the collection
of documents that these terms appear in. In their work,
they learn a Semantic Proximity Matrix that captures the
relatedness of individual terms by essentially measuring the
correlation in the documents that contain these terms. In
our work, the kernel we consider is not attempting to just
determine similarity between single terms, but entire text
snippets. Moreover, our approach does not require perform-
ing an optimization over an entire collection of documents
(as is required in the previous work), but rather the ker-
nel between snippets can be computed on-line selectively, as
needed.

Previous research has also tried to address learning a se-
mantic representation for a document by using cross-lingual
techniques [18]. Here, one starts with a corpus of docu-
ment pairs, where each pair is the same document written
in two different languages. A correlation analysis is then
performed between the corpora in each language to deter-
mine combinations of related words in one language that
correlate well with combinations of words in the other lan-
guage, and thereby learn word relations within a given lan-
guage. Obviously, the approach we take does not require
such paired corpora. And, again, we seek to not just learn
relationships between single terms but between entire arbi-
trary short texts.

Thus, while there has been a good deal of work in deter-
mining semantic similarities between texts (which highlights
the general importance of this problem), many of which use
kernel methods, the approach we present has significant dif-
ferences with that work. Moreover, our approach provides
the compelling advantage that semantic similarity can be
measured between multi-term short texts, where the entire
text can be considered as a whole, rather than just determin-

ing similarity between individual terms. Furthermore, no
expensive pre-processing of a corpus is required (e.g., eigen-
decomposition), and the kernel can easily be computed for
a given snippet pair as needed. We simply require access to
a search engine (i.e., text index) over a corpus, which can
be quite efficiently (linearly) constructed or can be obviated
entirely by accessing a public search engine on the Web, such
as the Google API (http://www.google.com/apis).

3. A NEW SIMILARITY FUNCTION
Presently, we formalize our kernel function for semantic

similarity. Let x represent a short text snippet2. Now, we
compute the query expansion of x, denoted QE(x), as fol-
lows:

1. Issue x as a query to a search engine S.

2. Let R(x) be the set of (at most) n retrieved
documents d1, d2, . . . , dn

3. Compute the TFIDF term vector vi for each
document di ∈ R(x)

4. Truncate each vector vi to include its m highest
weighted terms

5. Let C(x) be the centroid of the L2 normalized
vectors vi:

C(x) =
1

n

n�

i=1

vi

‖vi‖2

6. Let QE(x) be the L2 normalization of the centroid C(x):

QE(x) =
C(x)

‖C(x)‖2

We note that to be precise, the computation of QE(x)
really should be parameterized by both the query x and
the search engine S used. Since we assume that S remains
constant in all computations, we omit this parameter for
brevity.

There are several modifications that can be made to the
above procedure, as appropriate for different document col-
lections. Foremost among these is the term weighting scheme
used in Step 3. Here, we consider a TFIDF vector weight-
ing scheme [15], where the weight wi,j associated with with
term ti in document dj is defined to be:

wi,j = tfi,j × log(
N

dfi

),

where tfi,j is the frequency of ti in dj , N is the total num-
ber of documents in the corpus, and dfi is the total number
of documents that contain ti. We compute N and dfi us-
ing a large sample of documents from the web. Clearly,
other weighting schemes are possible, but we choose TFIDF
here since it is commonly used in the IR community and
we have found it to empirically give good results in build-
ing representative query expansions. Also, in Step 4, we set
the maximum number of terms in each vector m = 50, as
we have found this value to give a good trade-off between
representational robustness and efficiency.

2While the real focus of our work is geared toward short
text snippets, there is no technical reason why x must have
limited length, and in fact x can be arbitrary text.

Also, in Step 2, we need not choose to use the entirety
of retrieved documents in order to produce vectors. We
may choose to limit ourselves to create vectors using just
the contextually descriptive text snippet for each document
that is commonly generated by Web search engines. This
would make our algorithm more efficient in terms of the
amount of data processed, and allows us to make ready use
of the results from public web search engines without hav-
ing to even retrieve the full actual underlying documents.
Of course, there remains the question of how large such de-
scriptive texts provided by search engines need to be in order
to be particularly useful. Empirically, we have found that
using 1000 characters (in a token delimited window centered
on the original query terms in the original text) is sufficient
to get accurate results, and increasing this number does not
seem to provide much additional benefit.

Evaluating a variety of term weighting or text windowing
schemes, however, is not the aim of this work and we do not
explore it further here. Rather we simply seek to outline
some of the issues that may be of interest to practitioners
and provide some guidance on reasonable values to use that
we have found work well empirically.

Finally, given that we have a means for computing the
query expansion for a short text, it is a simple matter to
define the semantic kernel functionK as the inner product of
the query expansions for two text snippets. More formally,
given two short text snippets x and y, we define the semantic
similarity kernel between them as:

K(x, y) = QE(x) ·QE(y).

Observation 1. K(x, y) is a valid kernel function.

This readily follows from the fact that K(x, y) is defined
as an inner product with a bounded norm (given that each
query expansion vector has norm 1.0). For more background
on the properties of kernel functions and some of their po-
tential applications, we refer the interested reader to the
text by Cristianini and Shawe-Taylor [4].

4. INITIAL RESULTS WITH KERNEL
To get a cursory evaluation for how well our semantic

similarity kernel performs, we show results with the kernel
on a number of text pairs, using the Google search engine as
the underlying document retrieval mechanism. We attempt
to highlight both the strengths and potential weaknesses of
this kernel function.

We examined several text snippet pairs to determine the
similarity score given by our new web-based kernel, the tra-
ditional cosine measure, and the set overlap measure pro-
posed by Fitzpatrick and Dent. We specifically look at three
genres of text snippet matching: (i) acronyms, (ii) individ-
uals and their positions, and (iii) multi-faceted terms.3 Ex-
amples of applying the kernel are shown in Table 1, which
is segmented by the genre of matching examined.

3We prefer the term multi-faceted over ambiguous, since
multi-faceted terms may have the same definition in two
contexts, but the accepted semantics of that definition may
vary in context. For example, the term “travel” has the same
definition in both the phrases “space travel” and “vacation
travel”, so it is (strictly speaking) not ambiguous here, but
the semantics of what is meant by traveling in those two
cases is different.

Text 1 Text 2 Kernel Cosine Set Overlap

Acronyms

support vector machine SVM 0.812 0.0 0.110
portable document format PDF 0.732 0.0 0.060
artificial intelligence AI 0.831 0.0 0.255
artificial insemination AI 0.391 0.0 0.000
term frequency inverse document frequency tf idf 0.831 0.0 0.125
term frequency inverse document frequency tfidf 0.507 0.0 0.060

Individuals and their positions

UN Secretary-General Kofi Annan 0.825 0.0 0.065
UN Secretary-General George W. Bush 0.110 0.0 0.000
US President George W. Bush 0.688 0.0 0.045
Microsoft CEO Steve Ballmer 0.838 0.0 0.090
Microsoft CEO Bill Gates 0.317 0.0 0.000
Microsoft Founder Bill Gates 0.677 0.0 0.010
Google CEO Eric Schmidt 0.845 0.0 0.105
Google CEO Larry Page 0.450 0.0 0.040
Google Founder Larry Page 0.770 0.0 0.050
Microsoft Founder Larry Page 0.189 0.0 0.000
Google Founder Bill Gates 0.096 0.0 0.000
web page Larry Page 0.123 0.5 0.000

Multi-faceted terms

space exploration NASA 0.691 0.0 0.070
space exploration space travel 0.592 0.5 0.005
vacation travel space travel 0.321 0.5 0.000
machine learning ICML 0.586 0.0 0.065
machine learning machine tooling 0.197 0.5 0.000
graphical UI graphical models 0.275 0.5 0.000
graphical UI graphical interface 0.643 0.5 0.000
java island Indonesia 0.454 0.0 0.000
java programming Indonesia 0.020 0.0 0.000
java programming applet development 0.563 0.0 0.010
java island java programming 0.280 0.5 0.000

Table 1: Examples of web-based kernel applied to short text snippet pairs.

The first section of the table deals with the identification
of acronyms. In this genre, we find two notable effects using
our kernel. First, from the relatively high similarity scores
found between acronyms and their full name, it appears that
our kernel is generally effective at capturing the semantic
similarity between an acronym and its full name. Note that
the kernel scores are not 1.0 since acronyms can often have
multiple meanings. Related to this point, our second obser-
vation is that our kernel function (being based on contextual
text usage on the web) tends to prefer more common usages
of an acronym in determining semantic similarity. For exam-
ple, the text “AI” is determined to be much more similar to
“artificial intelligence” than “artificial insemination” (even
though it is a valid acronym for both), since contextual us-
age of “AI” on the web tends to favor the former meaning.
We see a similar effect when comparing “term frequency in-
verse document frequency” to “tf idf” and “tfidf”. While
the former acronym tends to be more commonly used (espe-
cially since the sub-acronyms “tf” and “idf” are separated),
the still reasonable score over 0.5 for the acronym “tfidf”
shows that the kernel function is still able to determine a
solid level of semantic similarity. It is not surprising that
the use of cosine similarity is entirely inappropriate for such
a task (since the full name of an acronym virtually never con-

tains the acronym itself). Moreover, we find, as expected,
that the set overlap measure leads to very low (and not very
robust) similarity values.

Next, we examined the use of our kernel in identifying
different characterizations of individuals. Specifically, we
considered determining the similarity of the name of a no-
table individual with his prominent role description. The
results of these examples are shown in the second section of
Table 1.

In order to assess the strengths and weaknesses of the
kernel function we intentionally applied the kernel to both
correct pairs of descriptions and individuals as well looking
at pairs involving an individual and a close, but incorrect,
description. For example, while Kofi Annan and George W.
Bush are both prominent world political figures, the ker-
nel is effective at determining the correct role matches and
assigning them appropriately high scores.

In the realm of business figures, we find that the kernel
is able to distinguish Steve Ballmer as the current CEO of
Microsoft (and not Bill Gates). Bill Gates still gets a non-
trivial semantic similarity with the role “Microsoft CEO”
since he was indeed the former CEO, but he is much more
strongly (by a over a factor of 2) associated correctly with
the text “Microsoft founder”. Similarly, the kernel is suc-

cessful at correctly identifying the current Google CEO (Eric
Schmidt) from Larry Page (Google’s founder and former
CEO).

We also attempted to test how readily the kernel function
assigned high scores for inappropriate matches by trying to
pair Bill Gates as the founder of Google and Larry Page as
the founder of Microsoft. The low similarity scores given
by the kernel show that it does indeed find little semantic
similarity between these inappropriate pairs. Once again,
the kernel value is non-zero since each of the individuals is
indeed the founder of some company, so the texts compared
are not entirely devoid of some semantic similarity. Finally,
we show that even though Larry Page has a very common
surname, the kernel does a good job of not confusing him
with a “web page” (although the cosine gives a inappropri-
ately high similarity due to the match on the term “page”).

Lastly, we examined the efficacy of the kernel when ap-
plied to texts with multi-faceted terms – a case where we
expect the raw cosine and set overlap to once again do quite
poorly. As expected, the kernel does a reasonable job of de-
termining the different facets of terms, such as identifying
“space exploration” with “NASA” (even though they share
no tokens), but finding that the similarity between “vaca-
tion travel” and “space travel” is indeed less than the cosine
might otherwise lead us to believe. Similar effects are seen in
looking at terms used in context, such as “machine”, “graph-
ical”, and “java”. We note that in many cases, the similarity
values here are not as extreme as in the previous instances.
This has to do with the fact that we are trying to measure
the rather fuzzy notion of aboutness between semantic con-
cepts rather than trying to identify an acronym or individual
(which tend to be much more specific matches). Still, the
kernel does a respectable job (in most cases) of providing
a score above 0.5 when two concepts are very related and
less than 0.3 when the concepts are generally thought of as
distinct.

Once again, the low similarity scores given by the set over-
lap method show that in the context of a large document
collection such as the web, this measure is not very robust.
As a side note, we also measured the set overlap using the
top 500 and top 1000 documents retrieved for each query
(in addition to the results reported here which looked at the
top 200 documents as suggested in the original paper), and
found qualitatively very similar results thus indicating that
the method itself, and not merely the parameter settings,
led to the poor results in the context of the web.

5. THEORETICAL ANALYSIS OF KERNEL
AND SET OVERLAP MEASURES

In light of the anecdotal results in comparing our ker-
nel function with the set overlap measure, it is useful to
mathematically analyze the behavior of each measure in the
context of large (and continuously growing) document col-
lections such as the web. We begin by introducing some
relevant concepts for this analysis.

Definition 1. Two documents are ε-indistinguishable to a
search engine S with respect to a query q if the search engine
finds both documents to be equally relevant to the query
within the tolerance ε of its ranking function.

Intuitively, this definition captures the notion that since
a search engine generates a ranking of documents by scor-
ing them according to various criteria, the scores used for

ranking may only accurately resolve document relevance to
within some toleration ε. This ε toleration factor reflects
the inherent resolving limitation of a given relevance scoring
function, and thus within this toleration factor, the ranking
of documents can be seen as arbitrary.

As we are interested in analyzing very large corpora and
the behavior of the various similarity measures in the limit as
the collections being searched grow infinitely large, we con-
sider the situation in which so many relevant documents are
available to a search engine for any given query q that the set
of n top-ranked documents R(q) are all ε-indistinguishable.
To formalize this concept, let TS(q) be the set of all (max-
imally ranked) documents which are all ε-indistinguishable
to search engine S for query q. Now we note that as the size
of the collection D grows to infinity (i.e., |D| → ∞) then
|TS(q)| → ∞, since there will be infinitely many documents
that are equally relevant to a given query. Moreover, since
the documents in TS(q) are ε-indistinguishably relevant to
q, we assume that the top n results retrieved for query q

will be a uniformly random sampled subset of TS(q) (with
replacement, just to simplify the analysis in the limit as
TS(q) grows large). The use of a uniform distribution for
sampling documents from TS(q) can be justified by the fact
that since all documents in TS(q) are within the tolerance
ε of the ranking function, their ranking is arbitrary. Since
in this context there is no reason to prefer one particular
distribution of rankings over any another, a maximally en-
tropic distribution (i.e., uniform) is a reasonable model to
use.

In the sequel, assume that we are given two different
queries q1 and q2, which are so highly related to each other
that (again, for simplicity) we assume TS(q1) = TS(q2).
While in reality it is unlikely that two queries would share
exactly the same set of maximally relevant documents, we
make this assumption (which intuitively should lead to a
very high similarity score between q1 and q2) to show that
even under conditions of extreme similarity, there are short-
comings with the set overlap similarity measure. We show
that the kernel function does not suffer from similar prob-
lems. Since we assume TS(q1) = TS(q2) and always use the
same search engine S in our analysis, we will simply refer to
TS(q1) (and thus TS(q2)) as T for brevity when there is no
possibility of ambiguity.

5.1 Properties of Set Overlap measure

Theorem 1. Let R(q) be the set of n top-ranked docu-
ments with respect to query q. Then, in the set overlap mea-
sure, the expected normalized set overlap for queries q1 and
q2, is

1

n
E(|R(q1) ∩ R(q2)|) =

n

|T | .

Proof. This follows from the fact that a results set R(q1)
of size n for query q1 contains n

|T | of the documents in T .

When we then uniformly sample n documents from T to
produce the results set R(q2) for query q2, our probabil-
ity of picking a document in R(q1) on each draw is simply
n
|T | . Thus, after n draws, the expected overlap E(|R(q1) ∩
R(q2)|) = n2

|T | , and normalizing this value by the number

of draws yields the desired result: 1

n
E(|R(q1) ∩ R(q2)|) =

n
|T | .

A desirable (and straightforward) corollary of this theo-
rem, is that as we increase the results set size to capture all
the relevant documents (i.e., n→ |T |), the expected overlap
measure approaches 1. Interestingly, however, for any fixed
results set size n, as |T | → ∞, the expected normalized set
overlap 1

n
E(|R(q1) ∩R(q2)|) → 0. This result suggests that

even if two queries are so similar as to have the same set
of highly relevant documents, in the limit as the collection
size increases (and thus the number of relevant documents
increases), the similarity as given by the set overlap mea-
sure will go to 0. Note that this problem would be even
worse if we had not made the simplifying assumption that
TS(q1) = TS(q2), as the set overlap measure would approach
0 even more quickly. While this result is not surprising, it
does show the problem that arises with using such a measure
in the context of a large collection such as the web. This is
also borne out in the anecdotal results seen in Section 4.

5.2 Properties of Kernel function
Analyzing our kernel function under the same conditions

as above, we find that the measure is much more robust to
growth in collection size, making the measure much more
amenable for use in broad contexts such as the web. Since
the kernel function computes vectors based on the docu-
ments retrieved from the relevant set T , we examine prop-
erties of the document vectors from this set. Namely, we as-
sume that the document vectors v generated from the doc-
uments in T are distributed according to some arbitrary4

distribution π with mean direction vector µ and a standard
deviation σ, where σ measures the angular difference from
µ. Such distributions, which are defined based on direction
or angle, fall into the general class of circular distributions
and a full discussion of them is beyond the scope of this
paper (we refer the interested reader to work on document
analysis using circular distributions, such as the von Mises
distribution [7, 2].)

In this context, we note that QE(q) for a given query q

is simply a sample mean from the distribution π of docu-
ment vectors in T . This follows from the fact that the set
of relevant documents R(q) retrieved in response to q are
simply samples from T , and thus their corresponding doc-
ument vectors vi are just samples from π. The centroid of
these vectors C(q) is defined to be the mean (direction) of
the vectors, and QE(q) is just the unit length normalized
centroid (with the same direction as C(q)) thus making it a
sample mean of the vector directions in π.

Observation 2. As n→ |T |, then QE(q) → µ.

This observation follows directly from the fact that as
n → |T |, then the sample on which QE(q) is based becomes
the whole population, soQE(q) becomes the true population
mean µ.

Observation 3. If queries q1 and q2 share the same ε-
indistinguishable relevant set T , then as n → |T |, it follows
that K(q1, q2) → 1.

To show this observation we note that if q1 and q2 share
the same ε-indistinguishable relevant set T , as n → |T |, then
QE(q1) → µ and QE(q2) → µ. Thus, K(q1, q2) → µ ·µ = 1.

4The distribution π is arbitrary up to the fact that its first
two moments, mean and variance, exist (which is a fairly
standard and non-restrictive assumption).

This gives us the intuitively desirable behavior (which is
also shared with the set overlap measure) that as the size of
the results set used to generate the query expansion vectors
grows to encompass all relevant documents, the similarity
for two queries with the same results set goes to 1.

In contrast to the set overlap measure, we find that the
kernel function does not go to 0 as the number of documents
in the relevant results set T increases without bound. In-
deed, we can prove a stronger theorem with respect to the
property of our kernel function in the limit.

Theorem 2. Let σ be the standard deviation of the dis-
tribution π of vectors corresponding to documents in the ε-
indistinguishable set of query results T for queries q1 and
q2. Then, with high probability (> 98%), it holds that

cos−1
K(q1, q2) ≤ 5.16

σ√
n
.

Proof. To prove this result, we begin by noting that
QE(q) is simply a sample from the sampling distribution
(hereafter denoted ψµ) for the mean µ of π. Thus, by
the Central Limit Theorem, the distribution ψµ is approx-
imately normal with mean µ and standard deviation σ√

n

regardless of the shape of the original vector distribution π.
Now, let θ1,µ be the angle between QE(q1) and µ, and simi-
larly, let θ2,µ be the angle between QE(q2) and µ. Leverag-
ing the approximate normality of ψµ, with 99% probability
it follows that θ1,µ ≤ 2.58 σ√

n
and similarly with 99% proba-

bility we have θ2,µ ≤ 2.58 σ√
n
. Thus, combining these results

using the Union Bound we have that, with 98% probability,

θ1,µ + θ2,µ ≤ 5.16
σ√
n
. (1)

Let θ1,2 denote the angle between QE(q1) and QE(q2).
By the triangle inequality for angles, it holds that θ1,2 ≤
θ1,µ + θ2,µ. Substituting into Equation 1, yields

θ1,2 ≤ 5.16
σ√
n
. (2)

Now, noting that K(q1, q2) = cos θ1,2 (and applying cos−1

is well-defined here since θ1,2 is always in the interval [0,
π
2
] given that all document vectors only have non-negative

component values), we obtain the desired result:

cos−1
K(q1, q2) = θ1,2 ≤ 5.16

σ√
n
. (3)

Note that the bound on cos−1K(q1, q2) in Theorem 2 is
independent of |T |, even though it depends on σ. This fol-
lows from the fact that since the vectors that correspond
to documents in T are just samples from some true under-
lying stationary distribution π (with mean µ and standard
deviation σ), the true standard deviation σ does not change
as |T | → ∞. Since cos−1K(q1, q2) is independent of |T |,
then so is K(q1, q2). This implies that the kernel function
is robust for use in large collections, as its value does not
depend on the number of relevant documents, but simply on
the directional dispersion (measured by the standard devi-
ation over angles) of the vectors of the relevant documents.
This property makes the kernel well-suited for use with large
collections such as the web.

Furthermore, we can consider the more general (and real-
istic) case where the sets of ε-indistinguishable results for
queries q1 and q2 need not be the same (i.e., TS(q1) 6=
TS(q2)), and now prove a more general result that subsumes
Theorem 2 as a special case.

Theorem 3. Let µ1 and µ2 be the respective means of
the distributions π1 and π2 of vectors corresponding to doc-
uments from TS(q1) and TS(q2). Let σ1 and σ2 be the stan-
dard deviations of π1 and π2, respectively. And let θµ1,µ2

be the angle between µ1 and µ2. Then, with high probability
(> 98%), it holds that

cos−1
K(q1, q2) ≤ 2.58

σ1 + σ2√
n

+ θµ1,µ2
.

Proof. We prove this result in a similar manner to The-
orem 2. First, we define θ1,µ1

as the angle between QE(q1)
and µ1, and θ2,µ2

as the angle between QE(q2) and µ2. As
before, we note that QE(q1) and QE(q2) are simply respec-
tive samples from the sampling distributions (denoted ψµ1

and ψµ2
) for the means µ1 of π1 and µ2 of π2. Once again

invoking the Central Limit Theorem, we know that ψµ1
and

ψµ2
are approximately normal, and thus:

θ1,µ1
≤ 2.58

σ1√
n

with 99% probability, (4)

and

θ2,µ2
≤ 2.58

σ2√
n

with 99% probability. (5)

Combining Equations 4 and 5 using the Union Bound
yields that with 98% probability:

θ1,µ1
+ θ2,µ2

≤ 2.58
σ1 + σ2√

n
(6)

Adding θµ1,µ2
to both sides of Equation 6 we obtain

θ1,µ1
+ θ2,µ2

+ θµ1,µ2
≤ 2.58

σ1 + σ2√
n

+ θµ1,µ2
. (7)

By the triangle inequality for angles: θ2,µ1
≤ θ2,µ2

+
θµ1,µ2

. Substituting in the equation above yields

θ1,µ1
+ θ2,µ1

≤ 2.58
σ1 + σ2√

n
+ θµ1,µ2

. (8)

Again, by the triangle inequality for angles we know that
θ1,2 ≤ θ1,µ1

+ θ2,µ1
, and substitution give us

θ1,2 ≤ 2.58
σ1 + σ2√

n
+ θµ1,µ2

. (9)

As noted previously, we have θ1,2 = cos−1K(q1, q2), which
combined with Equation 9 above gives us the desired result:

cos−1
K(q1, q2) ≤ 2.58

σ1 + σ2√
n

+ θµ1,µ2
. (10)

We note that Theorem 2 is simply a special case of The-
orem 3, where σ1 = σ2, µ1 = µ2, and thus θµ1,µ2

= 0.
Theorem 2 was derived separately just to provide a direct
contrast with the normalized set overlap measure under the
same conditions.

Intuitively, Theorem 3 tells us that that the kernel func-
tion is essentially trying to measure the cosine of the angle

θµ1,µ2
between the mean vectors of the documents relevant

to each query, with a “noise” term (proportional to σ1+σ2√
n

)

that depends on the natural dispersion (standard deviation)
of the documents relevant to each query and the size n of
the sample used to generate the query expansion. Thus, if
we were to think of the set of documents that are relevant
to a given query q as the “topic” of q, then the kernel is at-
tempting to measure the mean “topical” difference between
the queries, independent of the number of documents that
make up each topic. This sort of behavior (and its inde-
pendence from the overall collection size) is an intuitively
desirable property for a similarity function.

6. RELATED QUERY SUGGESTION
Armed with promising anecdotal evidence as well as the-

oretical results that argue in favor of using this kernel when
comparing short texts, we turn our attention to the task of
developing a simple application based on this kernel. The
application we choose is query suggestion—that is, to sug-
gest potentially related queries to the users of a search en-
gine to give them additional options for information finding.
We note that there is a long history of work in query re-
finement, including the previously mentioned work in query
expansion [3, 13], harnessing relevance feedback for query
modification [10], using pre-computed term similarities for
suggestions [19], linguistically mining documents retrieved
in response to a search for related terms and phrases [20,
1], and even simply finding related queries in a thesaurus.
While this is certainly an active area of work in information
retrieval, we note that improving query suggestion is not
the primary focus of this work. Thus, we intentionally do
not compare our system with others. Rather, we use query
suggestion as a means of showing the potential utility of our
kernel function in just one, of potentially many, real-world
applications. We provide a user evaluation of the results
in this application to get a more objective measure of the
efficacy of our kernel.

At a high-level, our query expansion system can be de-
scribed as starting with an initial repository Q of previously
issued user queries (for example, culled from search engine
logs). Now, for any newly issued user query u, we can com-
pute our kernel function K(u, qi) for all qi ∈ Q and suggest
related queries qi which have the highest kernel score with
u (subject to some post-filtering to eliminate related queries
that are too linguistically similar to each other).

More specifically, we begin by pre-computing the query
expansions for a repository Q of approximately 116 million
popular user queries issued in 2003, determined by sam-
pling anonymized web search logs from the Google search
engine. After generating these query expansions, we index
the resulting vectors for fast retrieval in a retrieval system
R. Now, for any newly observed user query u, we can gen-
erate its query expansion QE(u) and use this entire expan-
sion as a disjunctive query to R, finding all existing query
expansions QE(qi) in the repository that potentially match
QE(u). Note that if a query expansion QE(q) indexed in
R does not match QE(u) in at least one term (i.e., it is not
retrieved), then we know K(u, q) = 0 since there are no com-
mon terms in QE(u) and QE(q). For each retrieved query
expansion QE(qi), we can then compute the inner product
QE(u) ·QE(qi) = K(u, qi).

To actually determine which of the matched queries from

Original Query Suggested Queries Kernel Score Human Rating

california lotto home 0.812 3
california lottery winning lotto numbers in california 0.792 5

california lottery super lotto plus 0.778 3
2003 valentine’s day 0.832 3
valentine day card 0.822 4

valentines day valentines day greeting cards 0.758 4
I love you valentine 0.736 2
new valentine one 0.671 1

Table 2: Examples of suggested queries, along with corresponding kernel scores and human rater evaluations.

the repository to suggest to the user, we use the following
algorithm, where the constant MAX is set to the maximum
number of suggestions that we would like to obtain:

Given: user query u, and
list of matched queries from repository

Output: list Z of queries to suggest

1. Initialize suggestion list Z = ∅

2. Sort kernel scores K(u, qi) in descending order
to produce an ordered list L = (q1, q2, . . . , qk)
of corresponding queries qi.

3. j = 1

4. While (j ≤ k and size(Z) < MAX) do

4.1 If (|qj | − |qj ∩ z| > 0.5|z| ∀z ∈ (Z ∪ {u})) then

4.1.1 Z = Z ∪ {qj}

4.2 j = j + 1

5. Return suggestion list Z

Here |q| denotes the number of terms in query q. Thus, the
test in Step 4.1 above is our post-filter to only add another
suggested query qj if it differs by more than half as many
terms from any other query already in the suggestion list Z
(as well as the original user query u). This helps promote
linguistic diversity in the set of suggested queries. The out-
putted list of query suggestions Z can be presented to the
search engine user to guide them in conducting follow-up
searches.

7. EVALUATION OF QUERY SUGGESTION
SYSTEM

In order to evaluate our kernel within the context of this
query suggestion system, we enlisted nine human raters who
are computer scientists familiar with information retrieval
technologies. Each rater was asked to issue queries from the
Google Zeitgeist5 in a different month of 2003 (since our
initial repository of queries to suggest was culled near the
start of 2003). The Google Zeitgeist tracks popular queries
on the web monthly. We chose to use such common queries
for evaluation because if useful suggestions were found, they
could potentially be applicable for a large number of search
engine users who had the same information needs.

5http://www.google.com/intl/en/press/zeitgeist.html

Each rater evaluated the suggested queries provided by
the system on a 5-point Likert scale, defined as:

1: suggestion is totally off topic.

2: suggestion is not as good as original query.

3: suggestion is basically same as original query.

4: suggestion is potentially better than original query.

5: suggestion is fantastic – should suggest this query
since it might help a user find what they’re looking
for if they issued it instead of the original query.

In our experiment we set the maximum number of sug-
gestions for each query (MAX) to 5, although some queries
yielded fewer than this number of suggestions due to having
fewer suggestions pass the post-filtering process. A total of
118 user queries, which yielded 379 suggested queries (an
average of 3.2 suggestions per query) were rated. Note that
some raters evaluated a different number of queries than
other raters.

In Table 2 we provide an example of two user queries, the
query suggestions made using our system, the corresponding
kernel scores, and the human evaluation ratings for the sug-
gested queries. As can be seen in the first example, it is not
surprising that users interested in the “california lottery”
would prefer to find winning numbers rather than simply
trying to get more information on the lottery in general. In
the second example, we find that users querying for “valen-
tines day” may be looking to actually send greeting cards.
The suggestion “new valentine one” is actually referring to
a radar detector named Valentine One and thus is clearly
off-topic with regard to the original user query.

Since each query suggestion has a kernel score associated
with it, we can determine how suggestion quality is corre-
lated with the kernel score by looking at the average rating
over all suggestions that had a kernel score above a given
threshold. If the kernel is effective, we would generally ex-
pect higher kernel scores to lead to more useful queries sug-
gested to the user (as they would tend to be more on-topic
even given the post-filtering mechanism that attempts to
promote diversity among the query suggestions). Moreover,
we would expect that overall the suggestions would often
be rated close to 3 (or higher) if the kernel were effective
at identifying query suggestions semantically similar to the
original query.

The results of this experiment are shown in Figure 1,
which shows the average user rating for query suggestions,
where we use a kernel score threshold to only consider sug-

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
at

in
g

Kernel Score Threshold

Figure 1: Average ratings at various kernel thresh-

olds.

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0 0.5 1 1.5 2 2.5 3 3.5

A
ve

ra
ge

 R
at

in
g

Average Number of Suggestions per Query

Figure 2: Average ratings versus average number

of query suggestions made for each query as kernel

threshold is varied from 0.85 down to 0.3.

gestions that scored at that threshold or higher with the
original query. Indeed, we see that the query suggestions are
generally rated close to 3 (same as the original query), but
that the rating tends to increase with the kernel score. This
indicates that queries deemed by the kernel to be very re-
lated to the original query are quite useful to users in honing
their information need, especially when we allow for some
diversity in the results using the post-filtering mechanism.
In fact, we found that without the use of the post-filtering
mechanism, the results suggested by the system were often
too similar to the original query to provide much additional
utility for query suggestion (although it was indicative of
the kernel being effective at finding related queries).

Figure 2 shows a graph analogous to a Precision-Recall
curve, where we plot the average user rating for query sug-
gestions versus the average number of suggestions that are
given per query as we vary the kernel score threshold from
0.85 down to 0.3. We see a clear trade-off between the qual-
ity of the suggestions presented to the user and the number
of suggestions given. Indeed, it is possible, on average to give
two query suggestions for each query which have a quality
(slightly) higher than the original query.

8. CONCLUSIONS AND FUTURE WORK
We have presented a new kernel function for measuring

the semantic similarity between pairs of short text snippets.
We have shown, both anecdotally and in a human-evaluated
query suggestion system, that this kernel is an effective mea-
sure of similarity for short texts, and works well even when
the short texts being considered have no common terms.
Moreover, we have also provided a theoretical analysis of
the kernel function that shows that it is well-suited for use
with the web.

There are several lines of future work that this kernel lays
the foundation for. The first is improvement in the gener-
ation of query expansions with the goal of improving the
match score for the kernel function. The second is the in-
corporation of this kernel into other kernel-based machine
learning methods to determine its ability to provide im-
provement in tasks such as classification and clustering of
text.

Also, there are certainly other potential web-based appli-
cations, besides query suggestion, that could be considered
as well. One such application is in a question answering
system, where the question could be matched against a list
of candidate answers to determine which is the most similar
semantically. For example, using our kernel we find that:
K(“Who shot Abraham Lincoln”, “John Wilkes Booth”) =
0.730. Thus, the kernel does well in giving a high score to
the correct answer to the question, even though it shares no
terms in common with the question. Alternatively, K(“Who
shot Abraham Lincoln”, “Abraham Lincoln”) = 0.597, in-
dicating that while the question is certainly semantically re-
lated to “Abraham Lincoln”, the true answer to the question
is in fact more semantically related to the question. Finally,
we note that this kernel is not limited to use on the web,
and can also be computed using query expansions generated
over domain-specific corpora in order to better capture con-
textual semantics in particular domains. We hope to explore
such research venues in the future.

Acknowledgments
We thank Amit Singhal for many invaluable discussions re-
lated to this research. Additionally, we appreciate the feed-
back provided on this work by the members of the Google
Research group, especially Vibhu Mittal, Jay Ponte, and
Yoram Singer. We are also indebted to the nine human
raters who took part in the query suggestion evaluation.

9. REFERENCES
[1] P. Anick and S. Tipirneni. The paraphrase search

assistant: Terminological feedback for iterative
information seeking. In Proceedings of the 22nd
Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval,
pages 153–159, 1999.

[2] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra.
Clustering on the unit hypersphere using von
mises-fisher distributions. Journal of Machine
Learning Research, 6:1345–1382, 2005.

[3] C. Buckley, G. Salton, J. Allan, and A. Singhal.
Automatic query expansion using SMART: TREC 3.
In The Third Text REtrieval Conference, pages 69–80,
1994.

[4] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press, 2000.

[5] N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent
semantic kernels. Journal of Intelligent Information
Systems, 18(2):127–152, 2002.

[6] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

[7] I. S. Dhillon and S. Sra. Modeling data using
directional distributions, 2003.

[8] S. T. Dumais, J. Platt, D. Heckerman, and
M. Sahami. Inductive learning algorithms and
representations for text categorization. In CIKM-98:
Proceedings of the Seventh International Conference
on Information and Knowledge Management, 1998.

[9] L. Fitzpatrick and M. Dent. Automatic feedback using
past queries: Social searching? In Proceedings of the
20th Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval,
pages 306–313, 1997.

[10] D. Harman. Relevance feedback and other query
modification techniques. In W. B. Frakes and
R. Baeza-Yates, editors, Information Retrieval: Data
Structures and Algorithms, pages 241–263. Prentice
Hall, 1992.

[11] T. Joachims. Text categorization with support vector
machines: learning with many relevant features. In
Proceedings of ECML-98, 10th European Conference
on Machine Learning, number 1398, pages 137–142,
1998.

[12] J. S. Kandola, J. Shawe-Taylor, and N. Cristianini.
Learning semantic similarity. In Advances in Neural
Information Processing Systems (NIPS) 15, pages
657–664, 2002.

[13] M. Mitra, A. Singhal, and C. Buckley. Improving
automatic query expansion. In Proceedings of the 21st
Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval,
pages 206–214, 1998.

[14] V. V. Raghavan and H. Sever. On the reuse of past
optimal queries. In Proceedings of the 18th Annual
International ACM-SIGIR Conference on Research
and Development in Information Retrieval, pages
344–350, 1995.

[15] G. Salton and C. Buckley. Term weighting approaches
in automatic text retrieval. Information Processing
and Management, 24(5):513–523, 1988.

[16] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill Book Company,
1983.

[17] G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18:613–620, 1975.

[18] A. Vinokourov, J. Shawe-Taylor, and N. Cristianini.
Inferring a semantic representation of text via
cross-language correlation analysis. In Advances in
Neural Information Processing Systems (NIPS) 15,
pages 1473–1480, 2002.

[19] B. Vlez, R. Wiess, M. A. Sheldon, and D. K. Gifford.
Fast and effective query refinement. In Proceedings of
the 20th Annual International ACM-SIGIR
Conference on Research and Development in
Information Retrieval, pages 6–15, 1997.

[20] J. Xu and W. B. Croft. Query expansion using local
and global document analysis. In Proceedings of the
19th Annual International ACM-SIGIR Conference on
Research and Development in Information Retrieval,
pages 4–11, 1996.

