
Application of Bitmap Index to Information Retrieval
Kengo Fujioka

fujioka.kengo@lab.ntt.co.jp

Yukio Uematsu
NTT CyberSpace Laboratories, NTT

Corporation
1-1 Hikarinooka, Yokosuka

Kanagawa 239-0847, Japan

uematsu.yukio@lab.ntt.co.jp

 Makoto Onizuka

onizuka.makoto@lab.ntt.co.jp

ABSTRACT To solve this problem, we devised the HS-bitmap index, which
is hierarchically comprised of compressed data of summary bits.
A summary bit in an upper matrix is obtained by logical OR of
the n bits in its corresponding lower matrix. Let n denote the
summary unit. Summary units are constant and determined by an
appropriate rule in the document-term matrix. The hierarchical
summary bits provide bitmap indices with efficient bit operations,
usage of space for large sparse bitmaps, and partial
decompression. To evaluate the efficiency of the HS-bitmap index,
we implemented it on top of PostgreSQL, compared the query
performance of the HS-bitmap index with that of the inverted
index, and found that the HS-bitmap index performs better
especially when queries are long.

We developed the HS-bitmap index for efficient information
retrieval. The HS-bitmap index is a hierarchical document-term
matrix: the original document-term matrix is called the leaf matrix
and an upper matrix is the summary of its lower matrix. Our
experiment results show the HS-bitmap index performs better
than the inverted index with a minor space overhead.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process

General Terms
Algorithms, Performance, Experimentation

Keywords
information retrieval, bitmap index

1. INTRODUCTION
Inverted indices are widely used in information retrieval (IR)

systems. However, inverted indices degrade Boolean query
processing performance when queries and lists of results are long
[1]. To deal with this performance issue, we apply bitmap indices,
which carry out Boolean operations efficiently [2]. To apply
bitmap indices to IR, we built a document-term matrix by
recording whether or not a document contains a term [3]. Figure 1
shows an example of a document-term matrix. If the document
contains a term, its field in the matrix is marked 1. If not, its field
is marked 0. A Boolean query with multiple terms can be
processed by bitmap-joining the column vectors of the terms in
the document-term matrix.

 Terms
Doc. num. dog apple cat orange

1 1 1 0 0
2 1 0 1 0
3 0 1 1 1
4 0 0 0 0

2. HS-BITMAP INDEX
2.1 Data Structure

Figure 2 shows the hierarchical structure of the summary
bitmaps in the HS-bitmap index. This example shows that a
summary bit in the first matrix is representative of two bits in the
second matrix. We call a document-term matrix a leaf matrix and
column vectors in this matrix raw bit vectors. First, to construct
the HS-bitmap index, we horizontally divide the leaf matrix by
summary unit n. Second, we obtain summary bits from n bits in
the raw bit vectors. We call column vectors in the upper matrix
summary bit vectors. Here, 1s in the summary bit vector have
methods to access their corresponding parts in their lower matrix.
The HS-bitmap index construction repeats this sequence until the
summary bit vector size becomes small enough to be efficiently
handled. Third, we compressed all bit vectors in the matrix and
stored them. Finally, we create a term index to process the look-
up for the summary bit vectors.

Figure 1. Document-term matrix

However, bitmap indices in IR, specifically document-term
matrixes, require too much space to be handled efficiently, even
where 1s in bitmaps are very sparse. This problem is a result of IR
having to handle huge amounts of records and attribute values,
e.g., Web pages and terms.

 1st
matrix

 2nd
matrix

3rd
matrix

…

1 1 0Summary bit vector
of a term 0 1 1

 0 1

0 0

Figure 2. Hierarchical structure of summary bits

2.2 Query Execution
Information retrieval systems can execute a conjunctive

Boolean query using the HS-bitmap index, as explained below. In
step 1, the summary bit vectors of query terms in the first matrix
are obtained using the term index. In step 2, these vectors are
joined by bitwise operations. In step 3, the summary bit vectors of
query terms in the second matrix are partially obtained using 1s in
the result bit vector in step 2. Steps 2 and 3 are then repeated until
reaching the leaf matrix. Query answers are indicated by 1s in the
result bit vector.

Copyright is held by the author/owner(s).
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

1109

WWW 2008 / Poster Paper April 21-25, 2008 · Beijing, China

2.3 Word Position
Information retrieval systems often use word position, i.e.,

where the word appears in a document [4]. The HS-bitmap index
stores the word position in the form of the position bit vector.
This vector is obtained by recording whether or not the word
appears in a position in a document. The length of the position bit
vector is the number of words in the document. The HS-bitmap
index executes phrase queries by processing bit shifts and
Boolean operations.

3. EXPERIMENT
We implemented the HS-bitmap index on top of PostgreSQL.

To simplify implementation, we used the B-tree index for the
term index. Then we stored the bit vector part in the table. An
outline of how we implemented the HS-bitmap index is shown in
Figure 3. This HS-bitmap index has two layers. The stored data
was compressed by TOAST, which is the PostgreSQL
compression algorithm. This algorithm does not implement a
partial decompression mechanism.

We measured the HS-bitmap index performance in experiments
in which Linux 2.6.18-5 and PostgreSQL 8.2.4 were running with
Intel Xeon 2.66 GHz of 64-bit CPU, 16.4 Gbytes of memory, and
1.4 Tbytes of disk. We constructed an HS-bitmap index for the
data set issued by IREX, which is a Japanese language IR and
information extraction contest. The IREX test data set consists of
about two hundred thousand documents and its size is 866 Mbytes.
The summary unit is one of the tuning parameters of the HS-
bitmap index, and we set the summary unit to 512. Test queries
are made from the terms extracted from the documents in the data
set. To avoid the effects of disk access, we set the PostgreSQL
shared buffer size to 2 Gbytes. As a reference, we ran Ludia in
the same conditions. Ludia is the PostgreSQL binding of Senna,
which is a text search engine with an inverted index [5].

We measured the retrieval times of bag-of-words queries while
varying the query length. The results are shown in Figure 4. The
time in Figure 4 is the average of processing three queries three
hundred times. Our results show that the HS-bitmap index
retrieved faster than the inverted index, particularly when the
query length was long. The HS-bitmap index size was about 400
Mbytes, and the inverted index size of Ludia was about 300
Mbytes. These sizes include the term index and word position
data. They were compressed by TOAST.

We also measured retrieval times for bag-of-words queries
while varying query terms. When document frequencies (Df) of
terms are large, e.g., stop words, the HS-bitmap index is not
efficient. One reason for this is that summary bits do not work
well when almost all of the summary bits are 1. For phrase
queries with two terms, the retrieval time of the HS-bitmap index
is 19 msec, and that of the inverted index Ludia is 11 msec. The

HS-bitmap index performance worsens when the phrase query
length is increased. One reason for this is that the word position
data is large so copying the data from the buffer to the work
memory is very expensive.1

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16

query length (term)

re
tri

ev
al

 ti
m

e
(m

se
c)

HS-bitmap with
compression, 400MB
HS-bitmap without
compression, 1.8GB
Inverted index with
compression, 300MB

Figure 4. Retrieval time vs. query length

 B-tree

Table
 term summary

bit vector
raw
bit

vector

position
bit vector

length

position
bit vector

 dog 11 1011 3, 2, 2 010,10,01
 cat 01 0010 4 0010

Figure 3. Implementation of HS-bitmap index

4. CONCLUSION AND FUTURE WORK
We developed the HS-bitmap index for IR systems. Its size was

slightly larger than inverted index. Also, the HS-bitmap index
executed conjunctive Boolean queries faster than the inverted
index, particularly when the query length was long. In the future,
we will improve the HS-bitmap index. We will use sentence bit
vectors for within-same-sentence queries. Sentence bit vectors are
obtained by recording whether or not a word appears in a sentence
in a document. We will also cluster raw bits semantically in a
document-term matrix. We expect that semantic clusters gather 1s
in matrixes and reduce the population of 1s in summary bitmaps.

5. REFERENCES
[1] T. Strohman and W. Bruce. Efficient Document Retrieval in

Main Memory. In 30th annual international ACM SIGIR
conference, pages 175–182, 2007.

[2] H. Garcia-Molina, J. D. Ullman and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2001.

[3] C. D. Manning, P. Raghavan and H. Schutze. Introduction to
Information Retrieval (Preliminary draft). http://www-
csli.stanford.edu/~hinrich/information-retrieval-book.html.

[4] J. Zobel and A. Moffat. Inverted Files for Text Search
Engines. In ACM Computing Surveys archive Volume 38,
Issue 2, Article No. 6, 2006.

[5] Senna: An Embeddable Fulltext Search Engine.
http://qwik.jp/senna/FrontPage.html

1 In our experiments, the HS-bitmap index size was about 100

Mbytes without word position data.

1110

WWW 2008 / Poster Paper April 21-25, 2008 · Beijing, China

	1. INTRODUCTION
	2. HS-BITMAP INDEX
	2.1 Data Structure
	2.2 Query Execution
	2.3 Word Position

	3. EXPERIMENT
	4. CONCLUSION AND FUTURE WORK
	5. REFERENCES

