
iRobot: An Intelligent Crawler for Web Forums

Rui Cai, Jiang-Ming Yang, Wei Lai, Yida Wang, and Lei Zhang
Microsoft Research, Asia

No. 49 Zhichun Road, Beijing, 100080, P.R. China

{ruicai, jmyang, weilai, v-yidwan, leizhang}@microsoft.com

ABSTRACT

We study in this paper the Web forum crawling problem, which is

a very fundamental step in many Web applications, such as search

engine and Web data mining. As a typical user-created content

(UCC), Web forum has become an important resource on the Web

due to its rich information contributed by millions of Internet

users every day. However, Web forum crawling is not a trivial

problem due to the in-depth link structures, the large amount of

duplicate pages, as well as many invalid pages caused by login

failure issues. In this paper, we propose and build a prototype of

an intelligent forum crawler, iRobot, which has intelligence to

understand the content and the structure of a forum site, and then

decide how to choose traversal paths among different kinds of

pages. To do this, we first randomly sample (download) a few

pages from the target forum site, and introduce the page content

layout as the characteristics to group those pre-sampled pages and

re-construct the forum's sitemap. After that, we select an optimal

crawling path which only traverses informative pages and skips

invalid and duplicate ones. The extensive experimental results on

several forums show the performance of our system in the follow-

ing aspects: 1) Effectiveness – Compared to a generic crawler,

iRobot significantly decreases the duplicate and invalid pages; 2)

Efficiency – With a small cost of pre-sampling a few pages for

learning the necessary knowledge, iRobot saves substantial net-

work bandwidth and storage as it only fetches informative pages

from a forum site; and 3) Long threads that are divided into mul-

tiple pages can be re-concatenated and archived as a whole thread,

which is of great help for further indexing and data mining.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – clustering, information filtering.

General Terms

Algorithms, Performance, Experimentation

Keywords

Forum Crawler, Sitemap Construction, Traversal Path Selection.

1. INTRODUCTION
With the developing of Web 2.0, user-created content (UCC) now

is becoming an important data resource on the Web. As a typical

UCC, Web forum (also named bulletin or discussion board) is

very popular almost all over the world for opening discussions.

Every day, there are innumerable new posts created by millions of

Internet users to talk about any conceivable topics and issues.

Thus, forum data is actually a tremendous collection of human

knowledge, and therefore is highly valuable for various Web ap-

plications. For example, commercial search engines such as

Google, Yahoo!, and Baidu have begun to leverage information

from forums to improve the quality of search results, especially

for Q&A queries like "how to debug JavaScript". It is also noticed

that some recent research efforts have tried to mine forum data to

find out useful information such as business intelligence [15] and

expertise [27]. However, whatever the application is, the funda-

mental step is to fetch data pages from various forum sites distri-

buted on the whole Internet.

To download forum data effectively and efficiently, we should

first understand the characteristics of most forum sites. In general,

content of a forum is stored in a database. When a Web forum

service receives a user request, it dynamically generates a re-

sponse page based on some pre-defined templates. The whole

forum site is usually connected as a very complex graph by many

links among various pages. Due to these reasons, forum sites gen-

erally have the following common characteristics. First, duplicate

pages (or content) with different Uniform Resource Locators

(URLs) [2] will be generated by the service for different requests

such as "view by date" or "view by title." Second, a long post

divided into multiple pages usually results in a very deep naviga-

tion. Sometimes a user has to do tens of navigations if he/she

wants to read the whole thread, and so does a crawler. Finally, due

to privacy issue, some content such as user profiles is only availa-

ble for registered users.

Generic Web crawlers [8], which adopt the breadth-first strategy

[5], are usually inefficient in crawling Web forums. A Web craw-

ler must make a tradeoff between "performance and cost" to bal-

ance the content quality and the costs of bandwidth and storage. A

shallow (breadth-first) crawling cannot ensure to access all valua-

ble content, whereas a deep (depth-first) crawling may fetch too

many duplicate and invalid pages (usually caused by login fail-

ures). In the experiments we found out that using a breadth-first

and depth-unlimited crawler, averagely there is more than 40%

crawled forum pages are invalid or duplicate. Moreover, a generic

crawler usually ignores the content relationships among pages and

stores each page individually [8]; whereas a forum crawler should

preserve such relationships to facilitate various data mining tasks.

In brief, neither the breadth-first nor the depth-first strategy can

simply satisfy the requirements of forum crawling. An ideal forum

crawler should answer two questions: 1) what kind of pages

should be crawled? Obviously, duplicate and invalid pages should

be skipped to save network bandwidth and reduce redundancy;

and 2) what kind of out links in a page should be followed, and

how to follow these links? In nature, these two questions are

coupled with each other. To verify whether a page is valuable, the

crawler should find out where it comes from (i.e., following

which links can reach this page); while to judge whether a link

should be followed, the crawler must evaluate the informativeness

of the target page.

Some related works have been reported in recent literature. Fo-

cused crawling, which attempts to download only Web pages that

are relevant to some pre-defined topics, has been studied in [11],

[20], and [25]. And in [18] and [21], the problem of deep Web

Copyright is held by the International World Wide Web Conference

Committee (IW3C2). Distribution of these papers is limited to classroom

use, and personal use by others.

WWW 2008, April 21–25, 2008, Beijing, China.

ACM 978-1-60558-085-2/08/04.

447

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

crawling is discussed, to automatically fetch hidden Web pages

which are typically only accessible by submitting queries to a

database. Another related topic is near-duplicate page detection

[6][17][19], to remove redundant pages and reduce indexing

overhead. And based on the ideas from [7], the Sitemaps Protocol

[3] was recently proposed in industry to allow a webmaster to

inform search engines about links that are available for crawling.

We will provide a more detailed review in Section 2.

All these research studies may have partial answers to the afore-

mentioned two questions in forum crawling. However, we argue

that none of them can completely meet the requirements of forum

crawling. For the first question, current research mostly focuses

on fetching pages with particular semantic content, i.e., focused

crawling; while topics in a forum are usually too diverse to be

defined in a target list. There is also some work describing the

target pages using Document Object Model (DOM) trees [25]; we

argue that DOM trees are not robust enough in forum sites, as

similar pages may have different numbers of advertisements, im-

ages, and even some complex sub-structure embedded in user

posts. For the second question, most current works adopt URL

patterns for navigation, i.e., first summarize the target links using

a regular expression-like pattern and then follow any link matched

with that pattern. However, automated URL pattern generation is

very risky, as different forums may use multifarious strategies to

formulate URLs [6]. Fig. 1 shows two example Web forums with

very ambiguous URL formats. It's even hard for human being to

understand how these links are formulated and write down appro-

priate patterns to distinguish links with different functions. More-

over, little work considers the problem of how to follow a link;

while for forum crawling, it is usually desired to preserve the

relationships among those pages from a same thread when follow-

ing the corresponding links.

In this paper, after investigating a substantial number of Web

forums, we found out two observations:

(1) The repetitive regions in a forum page can robustly cha-

racterize the content layout of that page. Forum pages are gen-

erated by pre-defined templates, and different templates are usual-

ly adopted to present different content such as list-of-board, list-

of-thread, post-of-thread, user profile, etc. Moreover, valuable

information in forum pages is mostly shown in some repetitive

manners, as it is essentially data records stored in a database. In

general, different templates contain different repetitive regions, as

they are utilized to deliver different kinds of information. Fig. 2

illustrates such an example. In Fig. 2, there are four Web pages

from http://post.baidu.com, the largest open discussion forum in

China. Page (a) and (b) are pages of list-of-thread; while (c) and

(d) are pages of post-of-thread. The salient repetitive regions in

these pages are marked with colored ellipses in Fig. 2, and regions

in a same color are with the same structures. From Fig. 2, it is

clear that similar pages have similar repetitive regions which fur-

ther have similar locations. Thus, a forum page can be well cha-

racterized by what kinds of repetitive regions it contains, and

where these regions are located. In comparison with the whole

DOM tree, the repetitive region-based representation is more ro-

bust. For example, the DOM tree structure of a post-of-thread

page with only two posts is quite different with that of another

page with twenty posts; while these two pages do have the same
kind of repetitive region consisting of posts.

(2) The location of a link on a page is important. Such location

information should be integrated with the URL patterns to decide

which links should be followed and how to follow them. Let's re-

visit the examples in Fig. 1. Although it is hard to automatically

infer appropriate patterns to distinguish links with different func-

tions (such as page-flipping and link-to-thread) in these two pag-

Figure 1. Two example Web forums with ambiguous URL formats. Links with the same functions are marked with color squares.

Figure 2. An example of salient repetitive regions (marked with ellipses in different colors) on four pages (a)−(d). Page (a) and (b)
are list-of-thread; and (c) and (d) are post-of-thread. It is obvious that similar pages have similar repetitive regions while different
pages contain different ones.

http://www.bmw-forums.net/bmw-3-series-forum-e21-e30-e36-e46-e90-e91-e92-vf2-40.html

http://www.bmw-forums.net/bmw-3-series-forum-e21-e30-e36-e46-e90-e91-e92-vf2.html

http://www.bmw-forums.net/cold-start-injector-87-325-vt1818.html

http://www.bmw-forums.net/*.html

http://www.tripadvisor.com/ShowForum-g32655-i61-Los_Angeles_California.html

http://www.tripadvisor.com/ShowForum-g28926-i29-California.html

http://www.tripadvisor.com/ShowTopic-g32655-i61-k1304626-Show_taping-

Los_Angeles_California.html

http://www.tripadvisor.com/*.html

(b) (d)

(a) (b) (c) (d)

(a) (c)

448

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

es, the locations of these links are helpful. In general, links in a

same repetitive region usually take on the same function, e.g.,

links of page-flipping are located repetitively on the top-right

corner, marked with the red squares on these two pages. Thus,

even for the worst case where the URL patterns cannot provide

any useful information, we can still judge how to follow a link by

verifying its location information.

Based on the above observations, in this paper we propose iRobot,

an intelligent crawler for Web forums. The main idea of iRobot is

to automatically rebuild the graphical architecture representation,

i.e., the sitemap [23], of the target Web forum; and then select an

optimal traversal path which only traverses informative pages and

skip invalid and duplicate ones. Here, a sitemap is a directed

graph consisting of a set of vertices and corresponding arcs, where

each vertex represents a kind of pages in that forum and each arc

denotes the link relation between two vertices. To reveal the site-

map, in iRobot, we first randomly crawl a few pages from the

target site. Then, based on the first observation, all possible repeti-

tive regions are discovered from these sampled pages, and are

employed as features to group these pages into clusters according

to their content layouts. Each cluster can be considered as a vertex

in the sitemap. And based on the second observation, each arc in

the sitemap is characterized by both the URL pattern and the loca-

tion of related links, to provide more robust discrimination be-

tween links with different functions. In iRobot, we also propose

an approach to automatically identifying vertices of informative

pages from the sitemap, and then determine an optimal traversal

path to across all the informative vertices with a minimum cost.

Considering the possible risk of the automated traversing, in prac-

tice, iRobot also provides an interface for manual inspection, to

improve the system performance with minimal human efforts.

iRobot has the following three advantages in comparison with a

generic crawler: 1) Effectiveness. iRobot can intelligently skip

most invalid and duplicate pages, while keep informative and

unique ones. The experimental results show that iRobot can sig-

nificantly reduce the ratios of invalidation and duplication; 2)

Efficiency. First, iRobot only need a few pages to rebuild the si-

temap. In the experiments, we found that 500 pages are usually

enough to achieve an acceptable performance. Second, iRobot can

save substantial network bandwidth and storage space as it only

fetches informative pages in crawling; and 3) Relationship-

reserved Archiving. When following links, iRobot can determine

and record which pages of list-of-thread are from one board, and

which pages of post-of-thread are from one thread. Thus, pages

with such relationships can be consecutively achieved in reposito-

ry, to facilitate further indexing and data mining tasks.

The rest of this paper is organized as follows. In Section 2, a brief

review of related work is presented. In Section 3, we formally

define some concepts used in our work. The overview of the pro-

posed system is introduced in Section 4, and the module details

are described in Section 5. Experiment results are reported in

Section 6. And in the last section, we draw conclusions and point

out future research directions.

2. RELATED WORK
To the best of our knowledge, little existing work in literatures has

systemically investigated the problem of forum crawling. Howev-

er, there are still some previous works that should be reviewed, as

our approaches were motivated by them.

The most related work is focused crawling. Focused crawling was

first proposed by Chakrabarti et al. [11] to attempt to only retrieve

Web pages that are relevant to some pre-defined topics or labeled

examples. The target descriptions in focused crawling are quite

different in various applications. In the user-centric crawling [20],

the targets are mined from user queries to guide the refreshing

schedule of a generic search engine; while in [25] the target is

described by the DOM tree of a manually selected sample page,

and the crawling is limited to a specified Web site. Forum crawler

is also a kind of targeted crawler as it selectively downloads in-

formative pages having user-created content. However, the exist-

ing methods for target descriptions are not suitable for forum

crawling. First, semantic topics in forums are too diverse to be

simply characterized with a list of terms. The DOM tree-based

method is also unreliable. DOM tree-based method adopts tree

edit distance and a pre-defined threshold to determine whether

two pages are similar [13][22]. However, DOM trees in forum

sites are usually very complex, and it is difficult to adaptively

select an appropriate threshold for every forum. Moreover, current

focused crawlers still cannot handle the problems caused by

invalid and duplicate pages in forum crawling.

Deep Web (or hidden Web) crawling [18][21] is also a related

research topic. Content of deep Web is usually stored in databas-

es, and is dynamically presented to users when requests come in.

Most forum sites are a kind of deep Web as they also consist of

dynamic pages generated based on database records. However, the

focuses of a forum crawler and a deep Web crawler are different.

A deep Web crawler focuses on how to prepare appropriate que-

ries to retrieve hidden pages; while a forum crawler is interested

in how to find out valuable links to follow given that most forum

pages have explicit in-links.

Another related work is near-duplicate detection. The objective of

near-duplicate detection is to remove redundant Web documents,

to facilitate further indexing and archiving tasks. This is also one

of the requirements of forum crawling. Most current work focuses

on content-based duplicate detection [17][19], in which each Web

document is first characterized with some fingerprints such as

Shingles [9] or SimHash [19], and then any pair of documents

with a small L2 or hamming distance are considered as duplicates.

However, content-based de-dup can only be carried out offline

after the Web pages have been downloaded. It does benefit the

following steps of indexing and archiving, but cannot help reduce

the waste of bandwidth in crawling. There is also some recent

work that discusses URL-based duplicate detection, which tries to

mine rules of different URLs with similar text (DUST) [6]. How-

ever, such rules are very risky in practice, as URL formulations

are too multifarious to generate robust rules. Furthermore, such

method still needs to analyze logs from the target Web server or

some previous crawling.

An industry-related work is the Sitemaps Protocol [3], which is

actually an XML file that lists the URLs, as well as additional

information such as update frequencies, for a Web site. However,

it is hard to stably maintain such a protocol file for Web forums as

their content continually changes. Moreover, the Sitemaps Proto-

col can only support no more than 50,000 URLs, which is inade-

quate for most forum sites.

There is also one recent study talking about the problem of forum

crawling [16]. Unfortunately, it is based on heuristic rules and can

only deals with forums with some specific organization structures.

While in reality there are hundreds of forum structures imple-

mented by either Website developers or different Internet forum

software [1]. Thus it is difficult to define universal heuristics for

general forum crawling.

3. PROBLEM DEFINITION
To make a clear presentation and facilitate the following discus-

sions, we first define some concepts used in this paper.

449

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

Repetitive Region. A repetitive region on a Web page is a block

area containing multiple data records in a uniform formation.

Fig.3 (a) gives an example of a repetitive region, marked with a

red ellipse, on a list-of-thread page from the ASP.NET forum

(http://forums.asp.net). This region consists of a list of thread

records, and each record contains fields like title and author of

each thread. As we have mentioned before, repetitive regions are

very common on forum pages, and most valuable information

such as posts, navigation bars, advertisements, etc. is shown in

repetitive regions.

Repetitive Pattern. A repetitive pattern is an abstract representa-

tion of all the records in a repetitive region; and a repetitive region

can be treated as an instance of a repetitive pattern on the related

page. More specifically, in this paper, a repetitive pattern is de-

scribed with a tree structure which is basically an extended DOM

trees with regular expression-like sign for each node, following

the idea in [28]. Fig. 3 (b) shows the repetitive pattern generated

based on the repetitive region in Fig. 3 (a). In our system, every

repetitive pattern discovered from a forum site is indexed with a

unique ID.

Link Table. Data records in a repetitive region can be extracted

by aligning the DOM tree with corresponding repetitive pattern,

and stored in a table-like data structure [26][28]. In this paper, as

we are just interested in links on a page, only link-related fields

are retained to construct a link table for each repetitive region.

Fig. 3 (c) illustrates the link table generated by the repetitive pat-

tern in Fig. 3 (b), where link related nodes (<a>) are shown in

shadow.

URL Pattern. A URL pattern is a regular expression string which

provides a generalized representation to a group of URLs. As

URLs are usually constructed in a hierarchical manner, following

the generic specification in [2], the URL pattern is actually a con-

catenation of sub-strings where each sub-string is a regular ex-

pression for the corresponding hierarchical level. Fig. 3 (d) shows

four URL patterns for links from the four columns in Fig. 3 (c).

Here, the domain name is ignored as we only interested in internal

links of the target site.

Link Location. Link location is defined to characterize where a

link is located in a page. In this paper, we only consider links in

link tables, as most valuable navigational links in forum pages are

in repetitive manners. Since repetitive regions already have cer-

tain location information, in this paper the location of a link is

described using the combination of its column ID in the corres-

ponding link table, and the ID of the repetitive pattern which ge-

nerates the link table, as shown in Fig. 3 (e).

4. SYSTEM OVERVIEW
The flowchart of iRobot is illustrated in Fig. 4, which mainly

consist of two parts: (I) offline sitemap reconstructing and traver-

sal path selection; and (II) online crawling.

The goal of the offline part is to mine useful knowledge based on

a few sampled pages, and guide the following massive crawling.

The sampling quality is the foundation of the whole mining

process. To keep the sampled pages as diverse as possible, in

implementation, we adopt a double-ended queue and fetch URLs

randomly from the front or end. In this way, the sampling process

actually adopts a combined strategy of breadth-first and depth-

first, and can retrieve pages at deep levels within a few steps.

Then, through the repetitive region-based clustering module,

pages with similar layout are grouped into clusters, as illustrated

with green dash ellipses in Fig. 4, according to which kinds of

repetitive patterns they hold. The byproduct of this module is a list

of repetitive patterns occurring in pages from the target forum.

After that, according to their URL formats, pages in each layout

cluster are further grouped into subsets by the URL-based sub-

clustering module. Thus, each subset contains pages with both

uniform page layout and URL format, marked with red ellipses in

Fig. 4, and is taken as a vertex in the sitemap graph. In this mod-

ule, arcs among various vertices are also rebuilt, where each arc is

characterized by both the URL pattern and link location of the

corresponding links. The third module is informativeness estima-

tion, which is in charge of selecting valuable vertices with infor-

Figure 4. The flowchart of the proposed system, which con-
sists of two parts: (I) offline sitemap reconstructing and tra-
versal path selection; and (II) online crawling.

Figure 3. An illustration of the definitions of (a) Repetitive
Region, (b) Repetitive Pattern, (c) Link Table, (d) URL Pat-
tern, and (e) Link Location.

Repetitive Region-

based Clustering

R
a

n
d

o
m

S
a

m
p

lin
g

URL-based

Sub-clustering

Informativeness

Estimation

Traversal Path

Selection

Traversal Path

Lookup
Queue

Fetcher

Repository

I

Target Forum

II

Pages with similar content layout

Pages with both similar layout and URL formation

Pages with valuable information

Original Link Relations

Traversal Path

Repetitive

Patterns

…

P
a

g
e

R
e

la
tio

n
s

Link Location = (Repetitive Pattern ID, Column ID)

(a)

(c)

(b)

(d)

(e)

1. /t/^[0-9]+.aspx

2. /members/^[a-zA-Z0-9]+.aspx

3. /p/^[0-9]+/^[0-9]+.aspx

4. /user/profile.aspx?userid=^[0-9]+

table

tbody

tr

td tdtd td

tr

img text

a

div diva

2

text

table

td td

imga
2

450

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

mative pages on the sitemap, and throwing away useless vertices

with invalid or duplicate pages. The valuable vertices are labeled

with shadowed red ellipses in Fig. 4. The last module in the of-

fline part is traversal path selection, whose function is to find out

an optimal traversal path to traverse the selected vertices and step

aside discarded ones. The selected paths are finally shown with

dark arrows in Fig. 4; while original arcs are gray arrows. The

details of these modules are introduced in Section 5.

Once the offline part is ready, the online crawling is carried out as

follows. After a page is fetched, it is first sent to the traversal path

lookup module. The other two inputs of the module are the traver-

sal paths and repetitive patterns. In this module, the input page is

aligned with all the repetitive patterns and classified into one of

the vertices on the sitemap; and corresponding link tables are

simultaneously constructed. Then, for each link in each link table,

the module decides whether it should be added to the crawling

queue, by looking up the list of traversal paths. Moreover, the

module also outputs the relationships between the input page and

those links to be followed, e.g., are they from the same thread?

Such relationship information is then passed to the repository to

judge whether these pages should be stored together. In practice,

the traversal path lookup module is also responsible for failure

detection. The module considers the mined knowledge as out-of-

date if for a long time the input pages cannot be classified into any

of the vertices on the sitemap. For example, this may be caused by

template update in the forum site. Once this happens, the module

will restart the offline flow to create new knowledge for the target.

5. MODULE DETAILS
In this section, we provide detailed introduction to those primary

modules in iRobot, including: 1) repetitive region-based cluster-

ing, 2) URL-based sub-clustering, 3) informativeness estimation,

and 4) traversal path selection. The operations in the module of

traversal path lookup have overlaps with other modules, and will

be discussed in related subsections.

5.1 Repetitive Region-based Clustering
This module tries to automatically group forum pages with a simi-

lar content layout (i.e. those may be generated by a same tem-

plate) through measuring their distances in the feature space con-

structed by repetitive patterns. Thus, it needs to discover all possi-

ble repetitive patterns by investigating the sampled pages, and

then for each page generates a description in the feature space.

Actually, these two steps can be carried out simultaneously, as

shown in Fig. 5.

The main procedure in Fig. 5 is to generate a pattern �∗ for every

repetitive region in every page !, and investigate whether �∗ can

be matched with any existing pattern �" in the list ℙ. If matched, �" is updated with �∗; otherwise �∗ is added to ℙ as a new pat-

tern. Meanwhile, the feature description $ is created for every !

by recording %" , the number of times �" occurs in !, considering

that in a page there may be several regions which are generated by

the same pattern. The core algorithms behind this procedure are

repetitive region detection and tree alignment, which are the foun-

dations of the RepetitiveRegionDetection, AlignRecordsInRegion,

and TreeAlignmentCost in Fig. 5. These algorithms have been

well studied recently; for more details please refer to [26][28].

Here we would like to address some special considerations in our

system. In practice, it was found that different patterns have dif-

ferent abilities in distinguishing forum pages. More specifically, it

was observed that: 1) patterns are important if they have large

rendering sizes on screen, as users always pay attention to salient

blocks on a page and ignore small ones; and 2) popular patterns

are unimportant. Actually, patterns appearing on all the pages are

removed before clustering. Thus, we added two parameters, &' ('"

and &!)&&* +" , to describe a pattern besides the tree structure &+ ((" .

In implementation, the rendering information is from our previous

technology of Vision-based Page Segmentation (VIPS) [10][24].

At last, &' ('" is the average area ratio of all the repetitive regions

generated by &"; and &!)&&* +" is the number of pages having such

repetitive regions. All these &' ('
" are re-normalized to sum to one,

and are taken as weights of patterns in distance measure. Moreo-

ver, inspired by the well-known "term frequency–inverse docu-

ment frequency (TF×IDF)" in text retrieval [4], the page feature $ is further revised by integrating &!)&&* +" , to punish those popu-

lar patterns, as:

," = (%" - %.‖ℙ‖
.=1

0) × log10(‖1‖ &!)&&* +"⁄) (1)

The distance between two pages !' and !3 is finally defined as:

4"!+(!' , !3) = 7- &' ('
" × 8,'" − ,3":2

‖ℙ‖
"=1

 (2)

As there is no prior knowledge about how many kinds of pages

may exist in the target forum, in clustering, we just utilize the

single linkage algorithm [12] to agglomerate these pages in a hie-

rarchical way. The agglomeration is stopped when the minimum

distance between pages of each cluster is larger than a pre-defined

threshold.

In online crawling, these obtained clusters are also used to classify

a new page in the traversal path lookup module. That is, the fea-

ture $ is extracted for the new page and then compared with all

the cluster centers one by one. If the minimum distance is less

than the threshold used in clustering, the new page is classified

into the corresponding cluster; otherwise the classification is

failed and this page is discarded by the crawler.

5.2 URL-based Sub-clustering
Pages in a same layout cluster may still have different URL for-

mats. This is usually caused by duplicate or invalid pages. Un-

Repetitive-Pattern-based-Feature-Extraction

1. input: a set of sampled Web pages 1 and a threshold ;

2. output: 1) a list of discovered repetitive patterns ℙ; and

3. 2) a set of feature descriptions < for pages in 1

4. begin

5. ℙ = =; < = =;

6. foreach ! ∈ 1 do

7. ℝ = @(&(+"+"A(@(B"*%C(+(D+"*%(!);

8. foreach ∈ ℝ do

9. create an empty �∗ = {&+ ((∗ , &' ('∗ , &!)&&* +∗ }

10. &+ ((∗ = EF"B%@(D* 4!G%@(B"*%();

11. &' ('∗ = area of / screen area; &!)&&* +∗ = 1;

12. foreach �" ∈ ℙ do

13. if H ((EF"B%I(%+J*!+8&+ ((∗ ,&+ ((" : < �

14. then ! = "#$%&'(! , ∗) and break;

15. end

16. if cannot align ∗ with any ! ∈ ℙ then ℙ ← ∗;
17. end

18. , = [-1 ,-2 ,… ,-‖ℙ‖], -! = number of !occurs in /;

19. 0 ← ,;

20. end

21. end

Figure 5. The procedure used to discover repetitive patterns
and generate feature descriptions for sampled pages.

451

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

doubtedly, duplicates are with different URLs but have almost the

same semantic content and page layout. For invalid pages, these

different URL addresses should originally point to various valid

pages for logged users; however, these addresses are re-directed to

the same login portal for a crawler as it is just a "guest" to that

forum. Thus, to better rebuild the real topology structure of the

target forum, in this module, each layout cluster are further split

into subsets by grouping those pages with similar URL formats.

The foundation of the URL clustering is to measure the similarity

between any two URL addresses. Fortunately, a URL is a relative-

ly semi-structured string, which can be treated as a sequence of

substrings separated by a forward slash "/". Moreover, considering

that most forum URLs contain a query part to encode additional

identification information, the last substring is again divided into

two parts by a question mark "?"; and the part after the "?" is then

decomposed into a series of <key, value> pairs according to the

signs of equality "=" and ampersand "&" [2]. In this paper, the

substrings before "?" are called paths; and those after "?" are pa-

rameters. Then, two URL strings are considered to be similar and

are grouped together if they satisfy: 1) they have both the same

number and the same order of paths; and 2) they have the same

parameters of keys. It should be indicated that digital sequences

are taken as a special kind of string, and are considered to be the

same in the above two conditions. After the clustering, each clus-

ter is finally represented by a URL pattern, which is essentially

the concatenation of a sequence of regular expressions generated

for every segment of paths and parameters.

To provide a more straightforward explanation, we list below two

examples from the ASP.NET forum. They are both content layout

clusters which can be further divided into multiple subsets with

different URL patterns.

Cluster A is an example caused by duplicate pages. It is a group

of pages which can be categorized into the following two URL

patterns. However, given an ID, the two URLs will return a same

list-of-board page in that forum.

· "/default.aspx?GroupID=^[0-9]+"

· "/default.aspx?ForumGroupID=^[0-9]+"

Cluster B is another example caused by invalid pages. It is a

group of login pages returned by various links with the following

patterns, which can only be accessed by registered users.

· "/user/ Profile.aspx?UserID=^[0-9]+"

· "/members/^[a-zA-Z0-9]+.aspx"

· "/AddPost.aspx?ReplyToPostID=^[0-9]+&Quote=False"

After the URL-based clustering, each obtained subset represents a

kind of pages with the consistent content layout and URL format,

and thus can be taken as a vertex on the sitemap. Then, the second

responsibility of this module is to connect various vertices with

arcs. Here, an arc is established if in the source vertex there is a

page having a link pointing to another page in the target vertex.

As aforementioned, each arc is also characterized by the location

of the corresponding links besides the URL pattern. Therefore,

two arcs will be created for two links with the same URL pattern

but from different locations, which means different link tables or

even different columns of a same link table. Accordingly, there

may be more than one arc from one vertex to another.

5.3 Informativeness Estimation
As shown in Section 5.2, not all the vertices on a sitemap are val-

uable. Thus, an intelligent crawler must be able to decide by itself

what kinds of pages (vertices) that are worth to download.

By examining a lot of forums, we found that most valuable pages
(and page clusters) satisfy the following three assumptions:

1. A valuable page often belongs to a big "family" where there

are many "brother" pages in a similar style (both the page

layout and the URL pattern). In other words, pages in a large

cluster are with a high probability to be valuable.

2. A valuable page is usually with a relatively large file size. As

most informative pages in a forum are user-created content,

their sizes are doubtless larger than those valueless pages

which only show prompt information.

3. As a complement of the 2nd assumption, a more precise clue

is the semantic diversity of the pages in a cluster. Basically,

prompt pages such as the login portal are with fixed content;

while pages of user created content are more diverse in se-

mantics, although their layouts look alike.

Based on the three assumptions, in our system, a quantitative es-

timation of the informativeness of a vertex 1! is defined as:

2-345(1!) =
8!8 ×

9!%:;9%:; × <1 − 8!$>#8! ? (3)

where 8! is the number of pages in 1! , and 8 is the total number

of sampled pages; 9!%:; is the average page size in bytes of 1! , and 9%:; is the average of all the sampled pages; and 8!$># is the

number of near-duplicates in 1! . The three components in (3) are

designed for the three assumptions, respectively.

One thing should be addressed here is how to calculate the num-

ber of near-duplicates 8!$># in (3). Following the ideas in [9][6],

in our system, the semantic content of each sampled page is cha-

racterized with the histogram of its shingles. Here, a shingle is the

hash value of any n consecutive words (n=5 in implementation) in

a document. Then, two pages are considered to be near-duplicates

if the L2 distance of their histograms is small enough. However,

computing such pair-wise distances is time consuming with a time

complexity of O(N2). To accelerate it, in our system, we index all

the histograms using the locality sensitive hashing (LSH) [14],

which is designed to efficiently find nearest neighbors in a high-

dimensional feature space. In this way, the process of near-

duplicate detection can be finished in O(N) time.

Although the cost of the near-duplicate detection is somewhat

higher than the measurements of page numbers and average page

size, in practice, it does improve the estimation accuracy signifi-

cantly. For example, there are around 50% pages sampled from

the ASP.NET forum are the portal of login. This leads to a high

score if only using the first two components in (3). However, the

score can be significantly punished by the third component based

on the near-duplicate detection.

5.4 Traversal Path Selection
Traversing on a complex graph is not a trivial problem. Auto-

mated approaches usually take risks and thereby lower the crawl-

ing quality; while the most reliable decisions are still made by

human beings. Actually, the re-constructed sitemap has provided a

well presented mid-level result, based on which people only need

to examine every arc and decide whether to follow, and how to

follow it. However, this still requires considerable manual effort

in practice since there are usually tens of arcs in a sitemap. Thus,

in our system, we proposed a semi-automated method which only
needs a few human inspections.

In the proposed method, the first step is to clean the sitemap by

automatically removing most useless vertices and arcs, following

the heuristics below, one by one:

1. Vertices with low quantity of information are dropped. For

example, in the ASP.NET forum, it is not worth to label any

arc from or to the vertices of the login portal. In implementa-

tion, we discard all the vertices whose 2-345(1!) is less

452

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

than &5 = 2-345%:; − 2-345/&$, where 2-345%:; and 2-345/&$ are the mean and standard deviation of all the 2-345(1!) on the sitemap, respectively.

2. For a layout cluster containing several vertices, reserving one

representative one is enough, as the others are prone to be

duplicates. For example, keeping one subset in the Cluster A

in Section 5.2 is enough for retrieving all the list-of-board

pages in the ASP.NET forum. In implementation, we just

keep the largest vertex for each layout cluster.

3. For each vertex, arcs of self-linking are removed except

those whose anchor text is a digital string or some particular

strings such as "next". These remaining self-linking arcs are

mostly links of page flipping, which should be followed with

their relationships preserved for further indexing and archiv-

ing tasks, as shown in Fig. 4.

After that, the second step is to find out an optimal traversal path

on the sitemap, which traverses all the survived vertices with min-

imum cost. Essentially, the problem is to find a directed spanning

tree which is a sub-graph of the sitemap and contains all the ver-

tices. Similar to the Prim's algorithm [12] in building minimum

spanning tree, it's possible to construct such a directed spanning

tree iteratively starting from the root vertex 10 (the portal page of

the forum) of the sitemap. That is, repeatedly add the arc with the

minimum cost from all the arcs whose starting point is a vertex in

the spanning tree but the ending point is not yet included, until all

the vertices are included in the spanning tree. Since 10 is the root

of the sitemap, this process is guaranteed to include each vertex

on the sitemap; since in each loop this process only includes a

vertex not yet visited, it is guaranteed to end up with a tree. And

the remaining problem is how to define the cost of every arc in the

sitemap. To answer this question, we first summarize the human

behavior in browsing a Web forum, which an ideal traversal path

should refer to. That is, for pages at different levels, the one at

shallow level is first visited; for pages at the same level, the one

with more information is first browsed. Therefore, in our system,

the cost of an arc is defined as the depth of its target vertex; and if

two arcs point to vertices with the same depth, the one pointing to

the vertex with the larger 2-345(1!) is first selected. Here, the

depth of a vertex is approximated by averaging the crawling levels

of all the sampled pages belonging to it. Finally, the traversal path

is the combination of the directed spanning tree and the arcs of

self-linking selected by the 3rd heuristic above.

In this way, the traversal path is determined in a coarse-to-fine

way, where each step can be easily inspected and revised by hu-

man. Such inspections need minor manual effort as the automated

strategy can provide most suggestions for each step. For example,

the above cleaning process dramatically reduces the numbers of

vertices and arcs on the sitemap. In experiments we will show that

the automated strategy can achieve very promising decisions for

traversing, which just need a few manual corrections.

In our system, the traversal path is actually stored as a lookup

table, where each line looks like: 2/@4AA4BC!$"DE F!$1'5&'G , !$E4H%&!4- I = J ,

 Bℎ'5' J = L 0 $4-′ & 34AA4B
 1 34AA4B
 2 34AA4B & N''# 5'A%&!4-/ℎ!#� (4)

In online crawling, a downloaded page is first classified into one

of the vertex (!$1'5&'G) on the sitemap, as introduced in Section

5.2. Then, for an out link from that page, the traversal path lookup

module further finds out its URL pattern (!$"DE) and location

(!$E4H%&!4-) on that page, and finally determine how to follow it

by looking up this table.

6. EXPERIMENTS AND RESULTS
In this Section, we present the experimental results of the pro-

posed system, including the characteristic analysis of our system,

and some comparisons with a generic crawler on both effective-

ness and efficiency.

6.1 Experiment Setup
To evaluate the performance of our system on various situations,

seven different forums were selected in the experiments, as listed

in Table.1. In these forums, "Biketo" and "CQZG" are powered by

a popular forum tool, Discuz!, in China (but with different soft-

ware versions); while the others are all self-developed forums

with very diverse page layouts and site organizations. It should be

noted that "Tripadvisor" is a travel tutorial site with an embedded

forum, which contains only static links with ambiguous URL

formats, as shown in Fig. 1.

To set up a consistent data collection for further evaluation and

comparison, we first mirrored the above seven sites with a brute-

force, breadth-first, and depth-unlimited crawler. For each site, the

crawler starts from the homepage and follows any links belonging

to that domain; and a unique URL address will be followed only

once. For each forum we kept only the first 20,000 pages, which

is enough to cover all kinds of pages in that forum. After remov-

ing error pages due to network problems, the number of unique

URLs for each forum is listed in Table 1. The further crawling

experiments, with either iRobot or the generic crawler, are all

simulated on this data collection.

Moreover, for quantitative evaluation, we also labeled the ground

truth for each page in the dataset. The ground truth includes

whether a page is invalid, and whether it has duplicates in the

corresponding forum. The invalid pages were manually selected

for each forum. These pages are mainly with content like "login

failed" and "content cannot be accessed". And to label duplicate

pages, we built a tool for near-duplicate detection based on shin-

gles and LSH, as introduced in Section 5.3. Here, it should be

noticed that in the experiments we only investigate the duplication

in valid pages. Invalid pages were not labeled as duplicates al-

though they do have very similar content. At last, the pages beside

duplicate and invalid pages are considered as valuable pages (for a

set of duplicate pages, only one of them is considered as valuable

and the others are treated as duplicate ones).

6.2 Characteristics of Our System
The characteristic analysis here includes: 1) the accuracy of the

automated traversal path selection; 2) the crawling quality; 3) how

many sampled pages is enough to support the system; and 4) the

accuracy of the preserved page relationships.

First, as introduced in Section 4, for each site we randomly sam-

pled 500 pages, based on which the corresponding sitemap was

re-constructed and the traversal paths were generated, following

the details in Section 5. We will show later that 500 pages are

enough to provide a promising crawling quality. Fig. 6 illustrates

such an example of the rebuilt sitemap and the selected traversal

Table 1. Web Forums in the Experiments
Web Forums Description URLs

http://www.biketo.com/bbs/ A bike forum (in Chinese) 17,965

http://forums.asp.net/ A commerce technical forum (in English) 16,116

http://post.baidu.com/ The largest Chinese community (in Chinese) 11,850

http://www.douban.com/
A community about book, music, and movie

(in Chinese)
19,450

http://bbs.cqzg.cn/ A general forum (in Chinese) 19,809

http://www.tripadvisor.com/

ForumHome

A message boards where travelers ask and

answer questions (in English)
16,233

http://bbs.hoopchina.com/ A basketball forum (in Chinese) 18,996

453

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

paths of the ASP.NET forum. In Fig. 6, the selected pages (vertic-

es) are labeled with green squares, traversal paths are shown with

red arcs, and the locations of the corresponding links are marked

with red ellipses. It's clear that without a well selected path, a

crawler may download lots of pages of the login portal, as almost

every page in this forum has some links that require user login.

Moreover, we also manually checked the auto-generated traversal

paths by removing those redundant arcs and adding those missed.

The numbers of the auto-selected arcs, the manually selected arcs,

and their intersections are listed in Table 2. From Table 2, it is

noticeable that the number of intersection is very close to the

number of manually selected arcs, which means most correct arcs

have been covered by the auto-generated traversal paths. The

average recall is above 85%. However, the precision is only

around 70% which means that there are some redundant arcs in

the auto-generated traversal paths. These redundant arcs are usual-

ly caused by useless vertices on the sitemap. The worst case is

Tripadvisor, which is actually not a regular Web forum. There are

lots of noise pages in this site and the generated sitemap is with

too many vertices. It is hard for the system to decide which vertic-

es are informative and thus most of them are reserved. Therefore,

the informativeness estimation in Section 5.3 and the 1st heuristic

in Section 5.4 are still need to be improved. However, as the hu-

man effort is mainly focused on removing useless vertices and

arcs, such extra cost is still acceptable in practice.

After that, to evaluate the crawling quality of the propose system,

we define three criteria: invalid ratio D!-: , duplicate ratio D$># ,

and coverage ratio DH4: , as:

D!-: =
8!-:8H5%BA × 100%; D$># =

8$>#8H5%BA × 100%;

DH4: =
8H5%BA − 8!-: −8$>#8:%A × 100%

(5)

where 8!-: and 8$># are the numbers of invalids and duplicates in

the total 8H5%BA pages retrieved by iRobot in the simulated crawl-

ing on a mirrored site, and 8:%A is the number of valuable pages in

the ground truth of that site. Similarly, for each mirrored site, we

can also calculate its invalid ratio and duplicate ratio according to

the ground truth. Fig. 7 and Fig. 8 illustrated the comparison of

iRobot and the mirrored sites, for invalid ratio and duplicate ratio,

respectively. From Fig. 7, it's clear that iRobot can effectively

reduce the invalid ratio in the original mirrors. Averagely, only

2.9% pages retrieved by iRobot are invalid; while for mirrored

pages the number is 32.7%. And iRobot also works well in de-

creasing duplicates in crawling. As shown in Fig. 8, for iRobot,

there are only around 2.5% pages that are duplicates on average;

while about 8.7% are duplicates in the mirrored pages. Moreover,

it is worth noting that iRobot can significantly decrease both

invalid and duplicate ratios while keeping a high coverage ratio.

As shown in Fig. 9, more than 85% valuable pages can be visited

by iRobot.

From Fig. 7, 8, and 9, we can find that the invalid and duplicate

ratios of various forums are quite different. Some forums are with

both higher invalid and duplicate ratios, such as Biketo, CQZG,

and Hoopchina. Most forums from non-commercial organizations

are of this style. In contrast, forums supported by commercial

companies are better designed and with less invalidation and dup-

lication, such as Baidu and Douban. And forums with restricted

access policies are often with higher invalid ratio, such as the

ASP.NET forum. Fortunately, in general iRobot can achieve

promising performance on all these forums. We also noticed that

there are still some problems that should be improved. First, we

should better balance the tradeoff between guaranteeing coverage

and removing invalids. Take Biketo as an example, its coverage is

somewhat harmed although the invalid ratio is significantly de-

creased. Second, we need more evidences to remove duplicates. In

the current system, the duplicate detection is mainly based on the

2nd heuristic in Section 5.4, which may be too simple to handle

some complex situations.

Table 2. The comparison of the auto-generated and the ma-
nually selected traversal paths

Forums Biketo Asp Baidu Douban CQZG Tripadvisor Hoopchina

auto-generated 18 9 48 40 34 123 18

manually-selected 17 6 26 37 25 100 17

intersection 15 5 23 33 24 78 17

Figure 6. An example of the re-constructed sitemap and the
selected traversal paths for the ASP.NET forum. This graph
has been simplified for a clear view.

Figure 7. Invalid ratio comparison between the mirrored pag-
es and the pages crawled by iRobot.

Figure 8. Duplicate ratio comparison between the mirrored
pages and the pages crawled by iRobot.

Figure 9. The coverage of valuable pages retrieved by iRobot.

List-of-Board

List-of-Thread

Browse-by-Tag

Search Result

Post-of-Thread

Login Portal

Entry

Digest

0%

10%

20%

30%

40%

50%

60%

70%

Biketo Asp Baidu Douban CQZG Tripadvisor Hoopchina

Mirrored Pages iRobot

0%

5%

10%

15%

20%

25%

Biketo Asp Baidu Douban CQZG Tripadvisor Hoopchina

Mirrored Pages iRobot

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Biketo Asp Baidu Douban CQZG Tripadvisor Hoopchina

Coverage ratio

454

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

The third part is to evaluate how many sampled pages are enough

to provide an acceptable performance. To find an appropriate

number, we built a series of sitemaps by varying the number of

sampled pages. Then we repeatedly measured the quality for each

sitemap with the three criteria in (5), and the average performance

is shown in Fig. 10. In Fig. 10, it is noticed that when the number

of sampled pages is larger than 100, the performance becomes

stable. This indicates that iRobot only needs a small effort to learn

the necessary knowledge from the target site to guide the follow-

ing crawling.

At last, we evaluate how accurate the page relationships can be

preserved, i.e., be followed with � = 2 in (4), by iRobot. To do

this, we manually wrote rules for each forum to label all the pages

with relationships (mostly are pages within the same boards or the

same threads). This is taken as the ground truth and the numbers

of correctly preserved page relationships are listed in Table 3.

Here, Baidu is an exception because it is too large to find any

page flipping in the top 20,000 mirrored pages. From Table 3, it is

encouraging that in the crawled pages, there are around 95% of

such relationships that are correctly preserved by iRobot. Howev-

er, as there are around 15% valuable pages missed in the crawling,

the corresponding relationships may be broken and thus cannot be

discovered by the system.

6.3 Comparisons with a Generic Crawler
Effectiveness and efficiency are two important criteria to evaluate

a Web crawler. Effectiveness means given a number of retrieved

pages, how many of them are valuable and informative. Effec-

tiveness is very important for saving network bandwidth and sto-

rage space. Efficiency means how fast a crawler can retrieve a

given number of valuable pages. Efficiency is important as it de-

termines how quickly a crawler can update its repository and in-

dexing. In this subsection, we compare iRobot with a standard

generic crawler, on both effectiveness and efficiency.

To evaluate the effectiveness, we retrieved 5,000 pages from the

mirrored sites using the generic crawler and iRobot, respectively.

According to the ground truth of invalids and duplicates, we can

find out how many valuable pages were visited by the two craw-

lers, as shown in Fig. 11 (a) and (b). In the top 5,000 pages

crawled by the generic crawler, the ratio of valuable pages is

around 69%, averaged across the seven forums. In comparison,

the average ratio of valuable pages crawled by iRobot is 93%,

which is a significant improvement compared with the generic

crawler. In other words, given a fixed bandwidth, iRobot can

crawl almost 1.35 times valuable pages than a generic crawler.

To evaluate the efficiency, we continually crawled each mirrored

site until 5,000 valuable pages are retrieved. Then we investigate

how many pages have to be downloaded respectively using the

generic crawler and iRobot. The results are shown in Fig. 12 (a)

and (b). From Fig. 12, it can be found that to archive 5,000 valua-

ble pages, a generic crawler averagely needs to crawl around 9600

pages; while in contrast iRobot needs to fetch only about 5500

pages. Thus, supposing a constant downloading time for each

page, a generic crawler will require 1.73 times crawling time than

iRobot to archive the same number of valuable pages.

Table 3. The number of correctly preserved page relationships
Forums Mirrored Crawled by iRobot Correctly Covered

Biketo 1584 1313 1293

Asp 600 536 536

Baidu − − −

Douban 62 60 37

CQZG 1393 1384 1311

Tripadvisor 326 272 272

Hoopchina 2935 2829 2593

Figure 10. The crawling qualities using the sitemaps discov-
ered based on various numbers of sampled pages.

Figure 11. The comparison of effectiveness between a generic
crawler (a) and iRobot (b), on the top 5,000 retrieved pages.

Figure 12. The comparison of efficiency between a generic
crawler (a) and iRobot (b), to retrieve 5,000 valuable pages.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

10 20 50 100 500 1000
Number of Sampled Pages

Coverage ratio

Duplicate ratio

Invalid ratio

0

1000

2000

3000

4000

5000

6000

Biketo Asp Baidu Douban CQZG Tripadvisor Hoopchina

(a) A Generic Crawler Invalididate Duplicate Valuable

0

1000

2000

3000

4000

5000

6000

Biketo Asp Baidu Douban CQZG Tripadvisor Gentoo

(b) iRobot Invalididate Duplicate Valuable

0

2500

5000

7500

10000

12500

15000

17500

20000

Biketo Asp Baidu Douban CQZG Tripadvisor Hoopchina

(a) A Generic Crawler Invalididate

Duplicate

Valuable

0

2500

5000

7500

10000

12500

15000

17500

20000

Biketo Asp Baidu Douban CQZG Tripadvisor Hoopchina

(b) iRobot Invalididate

Duplicate

Valuable

455

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

7. CONCLUSION AND FUTURE WORK
In this paper we have presented an intelligent crawler called iRo-

bot for Web forum crawling. The main idea of iRobot is to first

learn the sitemap of a forum site with a few pre-sampled pages,

and then decide how to select an optimal traversal path to avoid

duplicates and invalids. First, to discover the sitemap, those pre-

sampled pages are grouped into multiple clusters according to

their content layout and URL formats. In this part, we proposed a

repetitive region-based layout clustering algorithm, which has

been proven to be robust in characterizing forum pages. Then, the

informativeness of each cluster is automatically estimated and an

optimal traversal path is selected to traverse all the informative

pages with a minimum cost. The major contribution in this step is

to describe the traversal paths with not only their URL patterns

but also their locations of the corresponding links. In such a way,

we can provide a more strict discrimination between links with

similar URL formats but different functions. Moreover, iRobot

can also integrate manual inspections, to improve the crawling

performance with minimal human efforts.

Experimental evaluations on various forums show very promising

results. Compared with a generic crawler, iRobot can significantly

reduce duplicate and invalid pages, without losing the coverage of

valuable ones. As a small cost, iRobot only need to pre-sample no

more than 500 pages for discovering necessary knowledge. This is

very economic in comparison to the saved bandwidth and storage

in the crawling stage. At last, iRobot can keep around 95% page

relations in crawling, which is very useful for further indexing and

data mining tasks.

We have investigated in this paper how to effectively and effi-

ciently crawl Web forums. However, in a practical system, there

are still two important components that should be further studied,

that is, refresh schedule and archive structure. First, the refresh

schedule in forum crawling is different from that in general Web

crawling. In Web forums, different pages often have different

fresh frequencies, and page content is usually changed in an in-

cremental way. Second, how to design a repository for forum

archiving is still an open problem. As in forum pages there are

many objects like user, post, and date, an ideal repository should

well organize such information for further access. Although with

iRobot we already can re-construct a post thread divided into mul-

tiple pages, it is still not enough for object-level storage. In the

future, we will study these two problems, besides continually

improving the performance of iRobot.

8. REFERENCES
[1] Internet Forum Software.

http://en.wikipedia.org/wiki/category:internet_forum_software.

[2] RFC 1738 − Uniform Resource Locators (URL).

http://www.faqs.org/rfcs/rfc1738.html.

[3] The Sitemaps Protocol. http://sitemaps.org/protocol.php.

[4] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Informa-

tion Retrieval. Addison-Wesley, 1999.

[5] R. A. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez.

Crawling a country: better strategies than breadth-first for

Web page ordering. In Proc. 14th WWW, pages 864−872,

Chiba, Japan, May 2005.

[6] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl in

the DUST: different URLs with similar text. In Proc. 16th

WWW, pages 111−120, Banff, Alberta, Canada, May 2007.

[7] O. Brandman, Junghoo Cho, H. Garcia-Molina, and N. Shi-

vakumar. Crawler-friendly Web servers. ACM SIGMETRICS

Performance Evaluation Review, 28(2):9−14, Sept. 2000.

[8] S. Brin and L. Page. The anatomy of a large-scale hypertex-

tual Web search engine. Computer Networks, 30(1-7):107−

117, 1998.

[9] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.

Syntactic clustering of the Web. In Proc. 6th WWW, pages

1157–1166, Santa Clara, California, USA, Apr. 1997.

[10] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. VIPS: a vision

based page segmentation algorithm. Microsoft Technical Re-

port, MSR-TR-2003-79, 2003.

[11] S. Chakrabarti, M. van den Berg, and B. Dom. Focused

crawling: a new approach to topic-specific Web resource dis-

covery. Computer Networks, 31(11-16):1623−1640, 1999.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, Sept. 2001.

[13] V. Crescenzia, P. Merialdoa, and P. Missier. Clustering Web

pages based on their structure. Data & Knowledge Engineer-

ing, 54(3):279−299, Sept. 2005.

[14] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Local-

ity-sensitive hashing scheme based on p-stable distributions.

In Proc. 20th SCG, pages 253–262, NY, USA, Jun. 2004.

[15] N. Glance, M. Hurst, K. Nigam, M. Siegler, R. Stockton, and

T. Tomokiyo. Deriving marketing intelligence from online

discussion. In Proc. 11th KDD, pages 419−428, Aug. 2005.

[16] Y. Guo, K. Li, K. Zhang, and G. Zhang. Board forum crawl-

ing: a Web crawling method for Web forum. In Proc. 2006

IEEE/WIC/ACM Int. Conf. Web Intelligence, pages 745−748,

Hong Kong, Dec. 2006.

[17] M. Henzinger. Finding near-duplicate Web pages: a large-

scale evaluation of algorithms. In Proc. 29th SIGIR, pages

284−291, Seattle, Washington, USA, Aug. 2006.

[18] J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F. Laend-

er. Automatic generation of agents for collecting hidden Web

pages for data extraction. Data & Knowledge Engineering,

49(2):177−196, May 2004.

[19] G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-

duplicates for Web crawling. In Proc. 16th WWW, pages

141−150, Banff, Alberta, Canada, May 2007.

[20] S. Pandey and C. Olston. User-centric Web crawling. In

Proc. 14th WWW, pages 401−411, Chiba, Japan, May 2005.

[21] S. Raghavan and H. Garcia-Molina. Crawling the hidden

Web. In Proc. 27th VLDB, pages 129−138, Sept. 2001.

[22] D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. Laender.

Automatic Web news extraction using tree edit distance. In

Proc. 13th WWW, pages 502−511, NY, USA, May 2004.

[23] L. Rosenfeld and P. Morville. Information Architecture for

the World Wide Web. O'Reilly, Feb. 1998.

[24] R. Song, H. Liu, J.-R. Wen, W.-Y. Ma. Learning important

models for Web page blocks based on layout and content

analysis. ACM SIGKDD Explorations Newsletter,

6(2):14−23, Dec. 2004.

[25] M. L. A. Vidal, A. S. Silva, E. S. Moura, and J. M. B. Caval-

canti. Structure-driven crawler generation by example. In

Proc. 29th SIGIR, pages 292−299, Seattle, USA, Aug. 2006.

[26] Y. Zhai and B. Liu. Structured data extraction from the Web

based on partial tree alignment. IEEE Trans. Knowl. Data

Eng., 18(12):1614−1628, Dec. 2006.

[27] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise net-

works in online communities: structure and algorithms. In

Proc. 16th WWW, pages 221−230, Banff, Canada, May 2007.

[28] S. Zheng, R. Song, J.-R. Wen, and D. Wu. Joint optimization

of wrapper generation and template detection. In Proc. 13th

KDD, pages 894−902, San Jose, CA, USA, Aug. 2007.

456

WWW 2008 / Refereed Track: Search - Crawlers April 21-25, 2008 · Beijing, China

