
Substructure Similarity Measurement in Chinese Recipes
Liping Wang1 Qing Li1 Na Li1 Guozhu Dong2 Yu Yang1

1 Department of Computer Science, 2 Dept of Computer Sci & Engr,
 City University of Hong Kong Wright State University

 stella.wang@gmail.com; {qing.li,nali25}@cityu.edu.hk; guozhu.dong@wright.edu; pauly.yang@gmail.com

ABSTRACT
Improving the precision of information retrieval has been a
challenging issue on Chinese Web. As exemplified by Chinese
recipes on the Web, it is not easy/natural for people to use
keywords (e.g. recipe names) to search recipes, since the names
can be literally so abstract that they do not bear much, if any,
information on the underlying ingredients or cooking methods. In
this paper, we investigate the underlying features of Chinese
recipes, and based on workflow-like cooking procedures, we
model recipes as graphs. We further propose a novel similarity
measurement based on the frequent patterns, and devise an
effective filtering algorithm to prune unrelated data so as to
support efficient on-line searching. Benefiting from the
characteristics of graphs, frequent common patterns can be mined
from a cooking graph database. So in our prototype system called
RecipeView, we extend the subgraph mining algorithm FSG to
cooking graphs and combine it with our proposed similarity
measurement, resulting in an approach that well caters for specific
users’ needs. Our initial experimental studies show that the
filtering algorithm can efficiently prune unrelated cooking graphs
without affecting the retrieval performance and the similarity
measurement gets a relatively higher precision/recall against its
counterparts.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval – Information filtering

General Terms

Algorithms, Measurement

Keywords
Recipes, cooking graph, filtering, similarity measurement,
subgraph mining.

1. INTRODUCTION
How to improve the precision of information retrieval has always
been a challenging task for Chinese searching and
recommendation systems, which is due to the rich yet implicit
phrases/expressions in Chinese culture. On one hand, Chinese
phrases/expressions can be very complicated thus rendering much
burden on the searching systems, and on the other hand, the way
local users interact with a Chinese website is quite different from
that on an English website. To explore and elaborate this type of

problems, in this paper we narrow down our focus on a particular
domain, namely, Chinese recipes. Nevertheless, the methodology
in this paper can also be applied to other domains with similar
problems.

1.1 Motivation
Chinese cuisines are famous for their delicious taste resulted from
delicate cooking skills and variant adaptation. The need of
learning those cooking skills on the Web has been increasing in
China; yet current on-line recipe search or recommendation
systems only allow users to query by text, usually the names of
the recipes. Unlike the names of western cuisines, which are
typically constructed by ‘past participle (cooking action) +
main/minor ingredients’, Chinese recipes’ names are often
injected with more meanings and/or bear no relationship with
underlying cooking actions and ingredients:

 Some recipes are given auspicious names in hope that
people who eat those dishes will be auspicious. An example
of this type of recipes is ‘Jin Yu Man Tang’ (金玉滿堂)ζ,
which can actually refer to several recipes as long as their
dish appearances mainly possess both colors of yellow and
white: yellow represents gold and white represents jade,
both mean wealthy. However, if searching this item on
Google Searchψ, many words of blessings are retrieved,
only few of these are related to recipes of this name.

 Some recipes are given names by anecdotes, because they
are said to be originated from some folktales. For example,
‘Kung-Pao Chicken’ (宮保雞丁) ⎯ a popular dish of
Sichuan style ⎯ is said to be first made by Ding Baozhen’s
chef and Ding was a late Qing Dynasty official. This dish
was later named after Ding’s official title ‘Kung Pao’ (宮保)
when it was handed down from generation to generation.

 Some other recipes are given names simply by their
appearance. For example, a recipe called ‘Hu Die Gu’ (蝴蝶

骨) in Chinese means something like ‘Butterfly Bone’ in
English. The reason for such an amazing expression is that
the dish looks like several butterflies stopping on the plate.
However, the correct name for this recipe in English is
‘Braised Spare Ribs’. If searching this recipe in Chinese on
Google Search, among the top 10 results, nearly no results
are related to the recipe.

The above examples reveal the incapability of the traditional
search method when it comes to finding results under such a
special domain. Although, local government has noticed this
cultural issue, and recently has taken the step to conform most

ζ Our work is based on Chinese Web, but we translate some terms

into English for readers’ easier understanding.
ψ http://www.google.com/

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

979

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

Chinese recipes’ English translation [5], this problem is still
prevalent currently on the Web with no good solution. In
observation of the above situation, we advocate a recipe model for
recipes, through which several structure features of graph can be
exploited and utilized for similarity measurement, thereby
improving the performance of recipe search or recommendation
systems.

1.2 Related Work
The graph model has already been widely used in many domains.
In the domain of chem-informatics and bioinformatics,
ChemIDplus [6], a free data service offered by the National
Library of Medicine (NLM), provides access to searching similar
molecules by their substructure besides the traditional query by
text. Cook et al. [2] focus on pattern recognition, and later to
CAD circuit domain [4] in which structure similarity measure is
used to discover similar designs. The DDIS group in Zurich [7]
initiates the structure similar measure in ontology and workflows
from the Web using their SimPack package. All those applications
indicate the importance and wide usage of a graph model and its
accompanied similarity measure sheds some light on similar
search issues with respect to implicit structure similarity upon
Chinese Web.

However, it is a commonly known fact that graph models have a
big problem of computation with high complexity in terms of time
and space; therefore, tailoring the graph model to the need of
different applications is the first concern when building a graph
database. Meanwhile, efficient indexing and filtering mechanisms
can prune some unrelated graphs, thereby reducing the
computational cost. Dennis et al. [16] build a path-based
annotation by extracting subgraphs for graph matching, while Yan
et al. [21] further apply feature-based indexing method on
substructure patterns, in which a key issue was to generate
optimal feature sets that could maximize the filtering capability.

Much work has been done to find similar parts between graphs.
One approach is the graph edit distance [13, 15], in which a set of
edit operations are introduced (e.g. deletion, insertion and
substitution of vertices and edges) and the similarity of two
graphs is defined in terms of the shortest (or least cost) sequence
of edit operations which transforms one graph into the other.
However, the problem on how those edit costs are obtained is still
unsolved. Another approach for similarity search can be
summarized as a subgraph isomorphism problem. A popular line
of subgraph isomorphism is the well-known Maximum Common
Subgraph algorithms [1, 3]. A comparison of three Maximum
Common Subgraph (MCS) algorithms on a synthetic dataset is
included in [3]. Kuramochi and Karypis [10] compare their
method with another computationally efficient algorithm called
AGM [8] on a real chemical dataset. Though efficient enough as
they claimed, they still need days to compute on relative simple
graphs, even though the dataset is of a medium size.

Similarity measures are commonly calculated after those similar
parts are found. There are several similarity measures as
described in [22], which can be classified into three categories:
(1) physical property-based, e.g., toxicity and weight; (2) feature-
based; and (3) structure-based. For the feature-based measure,
domain-specific elementary structures are stored. Whether two
graphs are similar or not is determined by the number of common
features they share. For the structure-based similarity measure,
direct comparison on the topology of two graphs is conducted.
Several works have explored efficient similarity measures

belonging to one of the above categories to adapt the data
features. For example, the feature-based measure is used in [22] to
roughly filter dissimilar sets as the first step, then the structure-
based measure is used for more accurate search; that is because
the latter measure can take structure connectivity into full
consideration, leading to thus more accurate search than the
former one does. Karakoc et al. [9] review the commonly used
similarity measures for small molecules, and propose an improved
algorithm on top of their study.

1.3 Our Contributions
In this paper, we explore the features of a Chinese recipe
database, in which recipes are crawled from the Web by our
RecipeCrawler [11]. To solve the long-standing retrieval problem
on Chinese Web, we propose a framework to consider documents
by their inner relationship or, in other words, inter-structural
similarity.

A close study of the crawled recipes reveals that we can model
each recipe as a cooking graph [12]. This cooking graph is
different from a common workflow, since it includes multi-edges
between each pair of vertices representing action-flows and
ingredient-flows. This graph model is thus of a very general form
that can be used in describing very complex processes in the real
world.

In response to the demand of on-line performance, we propose in
this paper a filtering algorithm to firstly prune dissimilar cooking
graphs from the cooking graph database before doing further
match. The filtering algorithm extracts representative features
from graph databases, stores them in an inverted index and then
prunes dissimilar graphs according to the index. We show that
this filtering algorithm is efficient and scalable, therefore can be
used for on-line search. Furthermore, compared with the feature
extraction of [22] which is dependent on a specific knowledge
base, our method is domain-independent, therefore can be applied
to other similar structure (including workflows) involving
directed graphs.

We use this filtering algorithm in our RecipeView system [12],
upon which the similarity is computed between each pair of
recipes. A new similarity measurement is introduced and we
combine it with a subgraph mining algorithm (viz., FSG [10]) to
conduct common subgraph detection. We make experiments in
evaluating the filtering algorithm as well as our similarity
measurement upon real-world Chinese recipes crawled from the
Web, and highlight the importance of examining an increasingly
popular search problem in a graph database exemplified by
cooking graphs. To our best knowledge, this is the first piece of
work to evaluate different similarity measures on this kind of
graph data.

The rest of the paper is organized as follows. Section 2 defines the
preliminary terminologies to be used in the rest of this paper;
algorithms to be evaluated and our system framework are also
summarized there. Section 3 and section 4 represent our filtering
algorithm and a new similarity measurement in order. Then in
section 5, we conduct several experiments to demonstrate the
performance of our filtering algorithm as well as the new method
for similarity measurement. A conclusion is made in section 6,
along with some suggested directions for future work.

980

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

2. TERMINOLOGY AND CONCEPT
In this section, we introduce some necessary terminologies as
well as the recipe model. Then a framework is described to
provide an overview of the system and its mechanisms.

2.1 Basic Terminology
A graph consists of vertices which are connected by edges. In a
labeled graph, vertices and edges are associated with attributes,
called labels. The attributes in our cooking graph can be classified
into two types, namely, actions and ingredients. A directed edge
in a directed graph connects a source vertex and a target vertex
which can be determined by the edge itself. In our filtering
algorithm, we use the definition of this directed edge as a feature
of an action order.

More formally, a graph G = (V, E, L) consists of three sets V, E,
L, denoting vertices, edges and labels of vertices, respectively. V
= {vi | i = 1…n} is a set of vertices. E is a set of edges on V, and
an edge (vi, vj) indicates a directed edge from vertex vi to vj, with
vi being called the predecessor of vj, or in other words, vj being the
successor of vi.

2.2 Recipe Model Simplified
It is a common sense that cooking involves a complex procedure,
which may concern several aspects and their relationships. To
describe this procedure, the system should give succinct while
adequate knowledge of how to prepare ingredients and how to
cook step by step, as well as the specific skill in each step. To this
end, we present a simplified recipe model (in comparison with
[12]) to concentrate on the procedural aspect.

Definition 2-1. A recipe R is defined by a tuple of two elements:

R = <RP, SP>
where:

 RP is a set of recipe-level properties (and functions) applied
on R itself, such as cooking style, region and images of the dish of
the recipe;

 SP = (V, E, Time, Cons) is a “Cooking Graph” which is a
labeled directed graph describing the whole cooking
procedure of making a dish out of recipe R. More specifically,

 In V, each vertex vi represents either a cooking action or a
raw ingredient, associated with a unique timestamp
Time(vi) (indicating the start time of vi), and a set of
constraints Cons(vi). For an action vertex, Cons(vi) defines
constraint conditions that should be satisfied when the
action vi takes place. These constraints are called the
‘cooking action constraints’, such as the shape of an
ingredient (parameter) or the temperature of the action
that should be held. For example, for an action vertex
‘cut’, material can be cut into roasts, chops, cubes, strips
or cuties. For an ingredient vertex vi, Cons(vi) mainly
defines the amount of the raw ingredient. A label L(vi)
refers to the action/ingredient name of vertex vi.

 In E, the directed edges represent ‘action flows’ or
‘ingredient flows’; the former describe the temporal
execution sequence of cooking actions and the latter keep
track of ingredient sources.

Example 2-1. Table 1 shows a cooking procedure of recipe ‘Hu
Die Gu’ (蝴蝶骨) in Chinese (translated as ‘Braised Spare Ribs’
in English) crawled by our RecipeCrawler [11]. The cooking

procedure is parsed into basic actions and their related properties
as discussed in [19].

Table 1. Cooking procedure of ‘Hu Die Gu’ (in Chinese)
—‘Braised Spare Ribs’ (in English)

Step # Recipe cooking procedure in steps

1
Cut spare ribs into butterfly shape. Marinate with
black pepper, soy sauce, sugar and cornstarch for 30
minutes.

2 Mix black pepper, honey, soy sauce, cornstarch and
water.

3 Heat oil. Deep-fry the spare ribs when the oil is hot.

4 Remove the spare ribs when they turn brown.

5 Heat oil. When the oil is hot, add the mixed sauce
and stir quickly. Boil the sauce.

6 Then add the spare ribs and stir briefly. Simmer for
1-2 minutes. Then remove.

v1
oil

heat

deep-fry
cut

marinate

mix

remove

boil

simmer
remove

spare rib

black pepper
soy sauce

sugar
cornstarch

black pepper
honey

soy sauce
cornstarch

water

v2
v13

v14

v20

v16

v17

v19

v21

v7 v6
v5

v3v4

v8

v11

v9v10

Start
Vertex

End Vertex

oil

Cooking Graph

: Raw IngredientVertex

SP = (V, E, Time, Cons)

: Action Flow

“cut” : Explanation

: Ingredient Flow
Cons(): Constraint

Cons(v7)

Cons(v2)

Cons(v22)

v12

stir

stir

v15

v18

heatv22

v23
v24

Cons(v23)

Cons(v17)

Cons(v16)

Cons(v20)

: Action

Figure 1. Cooking graph of ‘Hu Die Gu’ (in Chinese)

—‘Braised Spare Ribs’ (in English)

In Figure 1, the corresponding cooking graph of “Hu Die Gu” is
illustrated according to the recipe model. To differentiate the two
types of vertices, actions such as ‘cut’ or ‘deep-fry’ are
represented by white nodes and raw ingredients such as ‘spare
rib’ or ‘black pepper’ are represented by black nodes. Here a raw
ingredient means the ingredient has not been processed (in any
action) before. For simplicity, only one ingredient vertex is shown
when there is more than one raw ingredient used in a certain
action. The detailed information of time and constraints for each
vertex is not shown due to space limit. Here we assume
Time(vi)<Time(vj) for any i<j. From ingredient flows, we can see
that the ingredients needed in a certain action are the ingredient
outputs generated from its preceding actions or directly from
some raw ingredients.

Figure 2 shows a simplified substructure of a cooking graph
where two types of edges are unified into one type. Here a vertex
v’s predecessor pi (i = 1, 2, …, m) points to v (Time(pi)<Time(v))
and the latter is followed by a v’s successor sj (j = 1, 2, …, n) (i.e.,
Time(v)<Time(sj)). Only the edge (pm, v) is selected as the
forward edge of v since pm has the nearest timestamp to v among
all v’s predecessors.

981

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

Figure 2. Substructure with predecessors and successors

According to Figure 2, we further define two notions below:

Definition 2-2. Pred(v) = {pi | i = 1…m} is the predecessor set
of vertex v and |Pred(v)| = m is defined as the number of
predecessors in Pred(v). If m>1, then for any adjacent pair pi and
pi+1 (i = 1…m-1), we have Time(pi)<Time(pi+1).

Definition 2-3. Succ(v) = {si | i = 1…n} is the successor set of
vertex v and |Succ(v)| = n is defined as the number of successors
in Succ(v). If n>1, then for any adjacent pair si and si+1 (i = 1…n-
1), we have Time(si)<Time(si+1).

2.3 The Overall Framework
In our RecipeView system, the user first inputs a query by the
name or description of a recipe, he/she can also quickly browse
the recipe list in our system. The system then retrieves the result
using the traditional method. If the user wishes to find recipes
which have similar cooking skill or ingredient(s), he/she can
choose ‘similar recipe’ to obtain the result.

At the backend of the system, we pre-compute the similarity
between each recipe pairs. If new recipes are crawled from the
web, additional indexes will be built accordingly, which
facilitates fast computation of recipe similarities. The overall
framework of our system can be best described through the
following three processes, each of which is to be further
elaborated in subsequent sections.

1. Recipe Filtering ⎯ to build the vocabulary of substructures
of all cooking graphs: when a new cooking graph is added,
simply extract the featured subgraph and add to the
vocabulary; construct an inverted index to store the whole
vocabulary; filter the most dissimilar recipe pairs using a
threshold p.

2. Recipe Similarity Measurement ⎯ to compute each pair of
recipes’ similarity in the filtered graph set. In this work, we
use the FSG [10] algorithm to compute common subgraph,
followed by using our newly proposed measure to calculate
the similarity.

3. Recipe Retrieval ⎯ to retrieve from the database similar
recipes ranked according to the target/query recipe and
evaluate the performance.

3. RECIPE FILTERING
In this section, we present our filtering algorithm to prune out
dissimilar cooking graphs from the recipe (cooking graph)
database. A string with q characters is called a q-gram. For two
strings S1 and S2, Ukkonen [17] prove that the edit distance
between S1 and S2 can be bounded by the difference within the
number of q-grams. Rui [23] further apply the q-gram idea to tree
structure, based on the observation that the number of edges in a
tree is equal to the number of vertices minus one, so it can make
various transformations to reorganize the tree-structure into a
string-like form for q-gram analysis. However, graph structure is

different from string or tree structure, as the number of edges in a
graph may be several times larger than the number of vertices.
For instance, a complete graph has n vertices and n*(n-1)/2 edges,
with an exponential increase of the internal relationship
information among the edges. Thus, unless we can tolerate losing
some edge relationship information, it is very difficult to draw a
succinct bound on graph edit distance using q-gram like
algorithms designed for the strings or trees.

Nevertheless, our filtering algorithm adopts the idea of q-gram
algorithm based on a careful observation of the relationship on the
cooking graphs. We use Predecessor ReciSets and Successor
ReciSets to retain the information of action/ingredient set, and
Forward Edge ReciSet to record the most important preprocessing
actions leading towards the next action/ingredient. Later
experiments further show that, our system has a better pruning
power than other representation models, and the system is also
more sensitive towards the understanding of cooking graphs.

3.1 Cooking Subgraph Transformation
We observe that steps with multiple actions and/or ingredients are
always considered as distinguished steps in a cooking graph. For
example, action ‘cut’ is followed by action ‘stir-fry’ with ‘sauce’
added. Therefore, in the cooking graph, both the ‘cut’ and the
‘sauce’ are the predecessors of ‘stir-fry’ and ‘cut’ appears before
adding ‘sauce’.

To better abstract the cooking graph and retain the internal
timeline relationship, we further simplify the graph by combining
action flows with ingredient flows. In particular, if there exists an
action edge along with an ingredient edge, in the same direction,
between any two vertices, we just unify these two edges into one
directed edge. More specifically, we use ReciSet to represent the
temporal characters of the graph. Though it may look like feature-
based at the first glance, ReciSet is in fact domain-independent,
hence can be applied to other graphs in the indexing step,
especially to graphs with interrelated time sequence.

Definition 3-1. (ReciSet Representation) A ReciSet is in the
format of <T, v1, v2>, where T is the property indicator that
represents predecessor (P), successor (S) or forward edge (F) and
v1, v2 are vertices.
For Predecessor / Successor ReciSet, v1 and v2 forms an adjacent
pair (cf. Definition 2-2 / 2-3). For Forward Edge ReciSet, v1 has
the nearest timestamp to v2 among all v2’s predecessors. For a
certain cooking graph G, the total number of all ReciSets
(including all three types—Predecessor / Successor /Forward
Edge ReciSet) is at most twice the total number of edges in G.
This proves the scalability of our filtering algorithm, the proof of
which is omitted and readers can find the details from [19].

Table 2 provides two simplified graphs G1 and G2 with ReciSet
representations against the example ‘Hu Die Gu’ in Figure 1 in
which both graphs are the subgraphs derived from the example
cooking graph. The subscript number in each vertex’s label
denotes the timestamp order which conforms to the vertex number
in Figure 1. According to Definition 3-1, we can see that for
vertex ‘heat15’ in the graph G1, the predecessor vertex ‘oil14’ has
the nearer timestamp to ‘heat15’ than ‘mix13’, thus we have the
Forward Edge ReciSet <F, 'oil14’, ‘heat15’> to indicate that the
action ‘heat’ performs immediately after adding ‘oil’. The
Predecessor ReciSet <P, ‘marinate7’, ‘heat15’> means that both
‘marinate’ and ‘heat’ are the predecessors of ‘deep-fry’ and
‘marinate’ appears earlier than ‘heat’.

982

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

The ReciSets of all cooking graphs in the recipe database
constitute the whole ReciSet vocabulary, and the ReciSet distance
is defined by Definition 3-2.

Table 2. ReciSet representation

RS0: <P, ‘marinate’, ‘heat’>
RS1: <P, ‘mix’, ‘oil’>
RS2: <F, null, ‘marinate’>
RS3: <F, null, ‘mix’>
RS4: <F, null, ‘oil’>
RS5: <F, ‘oil’, ‘heat’>
RS6: <F, ‘heat’, ‘deep-fry’>
RS7: <F, ‘deep-fry’, ‘remove’>

RS8: <P, ‘mix’, ‘heat’>
RS9: <P, ‘remove’, ‘oil’>
RS10: <P, ‘remove’, ‘boil’>
RS11: <S, ‘heat’, ‘stir’>
RS3: <F, null, ‘mix’>
RS12: <F, null, ‘remove’>
RS4: <F, null, ‘oil’>
RS5: <F, ‘oil’, ‘heat’>
RS13: <F, ‘heat’, ‘stir’>
RS14: <F, ‘stir’, ‘boil’>
RS15: <F, ‘boil’, ‘stir’>

Definition 3-2. (ReciSet Space) The ReciSet Space RSS(G) of a
graph G is the set of all ReciSets that appear at least once in G.

2
)(1 G

GRSS denotes the number of RSS(G1) found in G2 and

2
)(1 G

GRSS denotes the number of the occurrence of RSS(G1)

found in G2.

Definition 3-3. (ReciSet Distance) The ReciSet Distance from
graph G1 to G2 is calculated on the ReciSet Space of G1. Let RSi
be the i-th ReciSet in RSS(G1), then ri and ri’ are the numbers of
occurrences of RSi in G1 and G2, respectively. Then the ReciSet
Distance is obtained by:

∑=
−= 11)(

1
'

21),(GGRSS

i ii rrGGRDist .

Definition 3-4. (Shared Percentage) For any two cooking graphs
G1 and G2, the Shared Percentage Per(G1, G2) is defined as the
percentage of the number of the occurrence of RSS(G1) found in
G2 to the total number of occurrence of the ReciSets in G2, i.e.,

2

2

)(

)(
),(

2

1
21

G

G

GRSS

GRSS
GGPer = .

Obviously, RDist(G1, G2) may not be equal to RDist(G2, G1), as
for different G1 and G2, their corresponding ReciSet Spaces may
not contain the same ReciSets. Also, the triangular inequality may
not hold, so that ReciSet Distance is not a metric on graph data.

In the cooking graphs, given the same distance value, having a
small Per(G1, G2) value indicates that G1 is only a small portion

of G2. The graphs themselves are not similar to each other, hence
should not be given a low distance value. In Section 5 we shall
demonstrate that the value of Per(G1, G2) can reflect the
percentage of retrieved data quite well.

3.2 Cooking Graph Indexing
As mentioned earlier, an inverted index is constructed to store the
whole vocabulary of all ReciSets of the recipe database. For each
ReciSet, an inverted list is built to store the number of its
occurrences in the corresponding graph. For example, Figure 3
shows the inverted index of G1 and G2 on the ReciSet Space of G1
(RSS(G1)) according to Table 2. There are 8 ReciSets of G1 and 3
ReciSets of G2 on RSS(G1) in which each ReciSet occurs only
once. We can see that three ReciSets (RS3, RS4 and RS5) occur in
both graphs G1 and G2. So the ReciSet Distance RDist(G1, G2)=
8–3=5 and the Shared Percentage Per(G1,G2)=3/11=27.3%.

Based on the inverted index, the filtering algorithm can be applied
to search, after which similarity measure can be easily
implemented on the candidate answer set. We will examine the
actual performance in Section 5.

Figure 3. Inverted index representation

3.3 The Filtering Algorithm
Algorithm 1. Filtering algorithm
Input: The inverted index I,

The query Q.
Output: Candidate answer set CQ.

1: Get the ReciSet Space of Q;
2: Sq = ||RSS(Q)||Q;
3: for each ReciSet Ri in the ReciSet Space of Q do
4: occi = the number of occurrence of Ri in Q;
5: if Ri is in the inverted index then
6: for each Graph Gj in the inverted list of Ri do
7: Sj=||RSS(Gj)||Gj ;
8: occj = the number of occurrence of Ri in Gj;
9: if Gj is not in CQ then
10: Record Gj into CQ;
11: Record RDist(Q, Gj)=Sq-occi + |occi - occj|;
12: Record Per(Q, Gj)= occj/Sj;
13: else
14: Get RDist(Q, Gj), Per(Q, Gj) from CQ;
15: Update RDist(Q, Gj) -= occi - |occi - occj|;
16: Update Per(Q, Gj) += occj/Sj;
17: return CQ;

983

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

Given a query graph Q and the inverted index I built for the
recipe database, Algorithm 1 is formed to generate the candidate
answer set CQ. Each graph in the answer set is associated with its
ReciSet Distance and Shared Percentage. First the ReciSet Space
of the query Q is acquired. Before a graph Gj in the dataset is
visited in the algorithm, we consider it as an empty graph. The
initial distance RDist(Q, Gj) is therefore set to

Q

QRSS

i i QRSSrQ)(0)(

1
=−∑ =

, and the initial Shared Percentage

Per(Q, Gj) is set to 0. For each ReciSet Ri that is in the ReciSet
Space of Q and each graph Gj that is found in the inverted list of
Ri, if Gj is not in the candidate answer set CQ, the initial distance
from Q to Gj on Ri should be cleared. At each round RDist(Q, Gj)
is updated to add the difference of the occurrence of Ri in Q and
Gj, and the Shared Percentage Per(Q, Gj) is updated to add the
number of the occurrence of Ri in Q divided by ||RSS(Gj)||Gj. The
final values of ReciSet Distance and Shared Percentage should be
derived once all the related ReciSets are processed.

4. RECIPE SIMILARITY MEASUREMENT
Experienced cooks always follow certain cooking patterns to
prepare their meals, including some common actions and
ingredients. If a certain cooking process frequently appears in
many recipes, this process can be considered as a cooking
technique/skill. Once a user learns how to handle those
techniques, he/she will be able to handle many recipes or even to
create a new dish by himself/herself. Observing this, we believe
that the function to find similar recipes structurally is important.
Though the goal is not easy to achieve, our RecipeView attempts
to reveal all frequently used cooking processes for users to access
and learn.

4.1 Discovery of Cooking Subgraphs
We define a Cooking Pattern as a subgraph G’ such that (i) G’
occurs in more than k cooking graphs, where k is a threshold, and
(ii) G’ has at least one action/ingredient edge.

However, existing subgraph mining algorithms such as FSG [10]
or gSpan [20] do not support directed graphs in which multiple
edges can exist between a given pair of vertices. As it is a distinct
characteristic of our cooking graphs, we develop an extended
approach to make existing subgraph mining algorithm applicable
to our cooking graphs.

The extensions and the process of discovering common cooking
subgraphs are described as follows:

1. A “dummy” vertex vA1 (cf. Figure 4) is added between two
vertices v1 and v2, if there is an action edge from v1 to v2.
We set the label L(vA1)=L(v1)+‘_’+L(v2).

Figure 4. Dummy vertex insertion

Therefore, all edges belong to one type of edges. If there is
an edge directly from v1 to v2, this edge represents an
ingredient flow from v1 to v2. For a dummy vertex vA1, if
there exists an edge from v1 to vA1 and an edge from vA1 to
v2, then there is an action flow from v1 to v2.

2. The subgraph mining algorithm such as FSG is applied to the
‘modified’ cooking graphs to find cooking patterns.

3. After graph mining, three steps are needed for restoration:
(1). As the derived patterns from FSG are undirected, graph

matching using Ullmann’s algorithm [18] is conducted
and edge direction check (as shown in Figure 5) needs
to be processed.
For explanation, we take one of the derived patterns and
its candidate cooking graphs which are known to
contain this pattern as an example. First we apply the
derived pattern to map a candidate cooking graph. Once
all the vertices and edges can be mapped one by one in
the candidate cooking graph, we assign the directions of
all edges in the pattern same as those of the mapped
edges in the cooking graph. We take this pattern as a
recorded pattern. Next we use the recorded pattern to
map to another candidate cooking graph. If we can’t get
an exact mapping, it means that the directions of the
edges in the recorded pattern are not totally the same as
those in this candidate cooking graph (e.g., the recorded
pattern as in Figure 5(b) and the candidate cooking
graph as in Figure 5(c)). Then the original undirected
pattern should be used to make a mapping to the
candidate graph. The result pattern is considered as
another recorded pattern.
If all candidate cooking graphs get mapped, we remove
any recorded pattern if it does not satisfy a given
minimal support threshold. Then the remaining record
patterns are what we need.

Figure 5. Edge direction check

(2). Remove dummy vertices: to remove all the dummy

vertices so as to restore the action flows and ingredients
flows in the pattern.

(3). Remove duplicated patterns: after we remove all the
dummy vertices, some duplicated patterns may occur.
So we have to check and remove them.

Note that there could be more than one cooking technique used in
a particular recipe, and our system is capable of identifying all of
them so as to enable the users to know how many and what
patterns are contained in the recipe. By learning the combined
sequence of different patterns in the same cooking graph, a user
can get a rough sense of the structure and the style of the
recipe/dish.

4.2 Recipe Similarity Calculation
Based on the structure of cooking graphs, we proceed to propose a
novel graph-based similarity calculation method which is
radically different from normal text-based or content-based
approaches. Using this method, users can perform similarity
search over the graph structure, shared characteristics, and distinct
characteristics of each recipe.

Suppose SP1 is the cooking graph of recipe R1 and SP2 is the
cooking graph of recipe R2. Assuming SP1 and SP2 share m

984

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

subgraphs SPSi (i = 1 .. m), then the structure similarity of recipes
R1 and R2 is calculated as follows:

() (1)),(log

),(
2/1

21
1

2

21

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+

=

∑
=

SPSPPer
d
NEEE

SPSPsim
m

i Si
SIiSAiSi γμ

where |ESi| is the number of edges (including both action and
ingredient edges) of the subgraph SPSi; |ESAi| and |ESIi| are the
numbers of action and ingredient edges in SPSi respectively (i.e.
|ESi| = |ESAi|+|ESIi|); N is the total number of recipes; dSi is the
number of cooking graphs that contain subgraph SPSi; log2(N/dSi)
is the inverse subgraph frequency, the purpose of which is to
make rare common subgraphs more important than frequent ones.
Since different user queries may emphasize more on either the
flavor (affected by ingredient flow) or the cooking skill (affected
by action flow), we use μ and γ as the weights for action and
ingredient edges, which are adjustable. Per(SP1, SP2) is pre-
calculated in graph filtering; intuitively, the larger Per(SP1, SP2)
is, the more similar SP1 and SP2 look like to each other.

In the above formula, the similarity of two cooking graphs is
calculated based on the common subgraphs shared by themξ. It
takes both local and global views into consideration. Per(SP1,
SP2) shows the similarity based on the paired graphs. If the two
graphs are the same, their Per(SP1, SP2) is one. On the other hand,
log2(N/dSi) considers the importance of the subgraph in the whole
graph database. A popular action (e.g. heat oil) in two graphs is
not distinguishing enough to conclude if the two recipes are really
similar to each other. In sum, the higher the score is, the more
similar two cooking graphs resemble each other. By using this
method, users are able to retrieve similar recipes in terms of
cooking processes even though the names of the recipes may be
totally different.

5. EXPERIMENT
As part of our research, we have conducted a series of four
experiments upon our RecipeView system. The first two belong to
performance study, in which we examine the efficiency of our
filtering algorithm, as well as comparing it to other ones. The next
two actually run two implemented algorithms comprehensively on
the RecipeView system to examine their retrieval effectiveness
and efficiency.

The judgement of determining whether a recipe is relevant to the
queried recipe is somewhat different from traditional ones. For the
vector space model [14], only word frequency is mainly
considered. But in our judgement, not only ingredients are
considered but also the way of cooking (i.e. cooking procedure) is
taken into account. For example, ‘Chengdu Young Chicken’ and
‘Fried Spareribs in Orange Juice’ are regarded as relevant because
they share most of the cooking procedures (cf. Figure 8).

5.1 Filtering Algorithm Performance Study
In this part of the experiments, we conduct the empirical studies
to examine the properties of our filtering algorithm. We use a
recipe database containing 103 Chinese cooking graphs (with 51
Guangdong style dishes and 52 Sichuan style dishes), which are
some of the most representative and popular recipes in Chinese
cuisine. These cooking graphs consist of 34.4 vertices on average

ξ Note that each part is normalized before multiplication.

(ranging from 15 to 56), and 45.2 edges on average (ranging from
20 to 80). After segmentation, a vocabulary of 5739 ReciSets is
generated.

0

20

40

60

80

100

0 10 20 30 40 50 60

p (%)

%
 o

f D
at

a
R

et
rie

ve
d

Figure 6. Percentage of data retrieved for Per(Q, *)≥ p

First let’s check the performance of Shared Percentage Per(Q, *)
where * denotes the graphs to be compared with the query graph
Q. Here we temporarily exclude out ReciSet Distance (RDist)
from consideration, but we will add this factor in the later
experiment. Figure 6 shows that the percentage of data (cooking
graphs) is retrieved when the condition Per(Q, *)≥ p holds with
the variable p. When p equals to 0 (i.e. Per(Q, *) does not have
any effect), the candidate set contains a large number of related
cooking graphs of Q. We can see that in this data set, all cooking
graphs share some common parts with one another. When p is
increased from 20% to 40%, the size of the candidate set
decreases sharply from 75% down to 14% of the original set.
When p reaches 60%, the candidate set is almost empty. The
result shows that p has a strong pruning power in filtering out
graphs.

We further calculate the precision, recall and F-measure to see if
the retrieval performance is improved by our filtering algorithm.
Here:

retrieved graphs cooking of no. Total
retrieved graphs cookingrelevant of no. TotalP Precision =

graphs cookingrelevant of no. Total
retrieved graphs cookingrelevant of no. TotalR Recall =

)RP(
RP2measure-F

+
⋅⋅

=

Note that the F-measure is the weighted harmonic mean of
precision and recall (i.e. precision and recall are evenly weighted);
the larger the F-measure is, the better the performance is.

Table 3. Precision and recall for Per(Q, *)≥ p

p (%) 0 10 20 30 40 50

Precision 0.207 0.217 0.274 0.425 0.585 0.515

Recall 1 1 0.977 0.882 0.453 0.126

F-measure 0.343 0.356 0.428 0.574 0.511 0.203

Table 3 shows that the retrieval performance is obviously
improved (p=20%~ 40%) after filtering.

In the following experiment, we add the factor of ReciSet
Distance RDist(Q, *). The cooking graphs are retrieved under the
conditions Per(Q, *) ≥ p and RDist(Q, *) ≤ (1- x)MaxRDist(Q, *)
where MaxRDist(Q, *) is the maximum value of RDist(Q, *)
corresponding to the query graph Q. Table 4 shows the values of
F-measure when p ranges from 0 to 50% and x ranges from 10%
to 25%.

985

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

Table 4. F-measure for both Per(Q, *)≥ p and
RDist(Q, *)≤ (1- x)MaxRDist(Q, *)

 p(%)
x(%) 0 10 20 30 40 50

10 0.438 0.439 0.457 0.577 0.512 0.203

15 0.496 0.497 0.497 0.583 0.505 0.203

20 0.541 0.542 0.537 0.594 0.513 0.203

25 0.560 0.560 0.562 0.581 0.468 0.205

The values of F-measure are generally larger than those in Table 3,
which means the retrieval gets better performance when ReciSet
Distance is taken into consideration. The optimal value of p and x
can be found in the shaded area (p=20%~40% and x=15%~25%)
to get the largest value of F-measure. After calculating all the
shaded area, the largest value of F-measure (=0.623) is found
when p=35% and x=18% (precision=0.576, recall=0.677). Under
this condition, about 28% cooking graphs have been retrieved.

This demonstrates the efficiency and suitability of our algorithm
for on-line graph-matching applications, particularly Chinese
recipe retrieval.

5.2 Further Evaluation
In this second part of experiments, we first try to determine the
weights μ and γ for Formula (1) by conducting a set of
experiments on our recipe data. First we fix μ to 1 and change the
value of γ so that we can see the performance of precision and
recall under different values of γ. We calculate the precision and
recall based on the top 10 retrieved recipe results because users
usually view the top 10 results with interests and may not be
patient for the later results.

 Table 5. Comparison of precision and recall
under different γ (μ=1)

γ 0.1 0.5 1 2 10
Precision@10 0.716 0.734 0.778 0.771 0.747

Recall@10 0.313 0.321 0.362 0.354 0.326

F-measure 0.436 0.447 0.494 0.485 0.454

According to the experiment results (Table 5), the precision is
over 0.7 under each γ (γ varies from 0.1 to 10 where μ=1), which
means that this similarity calculation method gets a good retrieval
performance in general for top 10 results. When γ=1, F-measure
gets the best result. So we use μ=1 and γ=1 and Formula (1)
becomes the following:

2/1

21
1

2
2

21),(log),(⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= ∑

=

SPSPPer
d
NESPSPsim

m

i Si
Si

 (2)

Then we further compare Formula (2) with Formulas (3) and (4)
below:

2/1

21
1

221),(log),(⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅= ∑

=

SPSPPer
d
NESPSPsim

m

i Si
Si

 (3)

) , max(
),(mcs

1),(
21

21
21 SPSP

SPSP
SPSPsim −= (4)

The difference between Formula (2) and (3) is that |ESi| is squared
in Formula (2). Formula (4) is the typical graph distance measure
based on the maximal common subgraph (MCS) [1], for which
the smaller the graph distance is, the more similar two graphs look
to each other. |mcs(SP1,SP2)| denotes the number of vertices in the
maximal common subgraph of two graphs SP1 and SP2. |SP1| and

|SP2| are the numbers of vertices in SP1 and SP2, respectively.
Then

⎩
⎨
⎧

>
>

=
122

211
21 if

 if
),max(

SPSPSP
SPSPSP

SPSP .

Table 6. Comparison of precision / recall for Formulas (2) – (4)
Formula (2) (3) (4)

Precision@10 0.778 0.712 0.600

Recall@10 0.362 0.334 0.281

F-measure 0.494 0.455 0.382

In Table 6, we list the precision and recall over the top 10
retrieved recipe results by using Formulas (2) – (4) separately.
Obviously Formula (2) performs significantly better than either
Formula (3) or Formula (4), so we adopt Formula (2) as our
recipe similarity measure.

Next we compare our graph-based similarity measurement with
text similarity measurement (using baseline vector space model
[14]). We evaluate the performance of both algorithms using
traditional precision and recall. At the end, we present a
comprehensive case to facilitate a better understanding of our
whole system.

Figure 7. Precision and recall curve for graph similarity

measurement and text similarity measurement

From Figure 7, we can conclude that our graph-based similarity
measurement gains a far better improvement in retrieval
performance than text similarity measurement. Under the same
recall rate, the former has an approximately twice precision rate
as the latter in the interval from 0.2 to 0.9. The reason for this
improvement mainly attributes to the cooking graph structure.
Taking the advantage of abstracting the workflow of a recipe
document into a graph, it contains more semantic information
describing the procedure of data, when compared with simple
statistical text representation of the vector space model. Consider,
e.g. the two recipes ‘Kung Pao Pork’ and ‘Kung Pao Chicken’
which are very similar (by our graph-based similarity measure in
terms of cooking procedure) albeit with different main
ingredients, the vector space model may not give this pair a high
similarity value because different terms/main ingredients are used
in each recipe; it may also suffer from correlation problems. In
addition, another reason may be due to the different pre-
processing we conduct. For the vector space model, we only
remove stemming words, such as ‘a’, ‘the’, as well as html tag.
While for graph conversion, our (currently) manual process can
cleanse most (if not all) of the dirty data. Consequently, the
retrieval result (which is ranked by similarity score) shows that
the top results from the graph similarity method are very similar
to the query recipe, which is not the case in the text similarity

986

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

measurement. This result further confirms that using cooking
graphs is the major reason for the performance improvement.

To provide a more complete picture of our RecipeView system,
we give an example in Figure 8 which shows a query ‘Fried
Spareribs in Orange Juice’ submitted by a user and the results
derived from the system. In particular, the system finds the recipe
upon receiving the query string, and then the particular recipe
graph is retrieved and displayed in the left window. Meanwhile,
similar recipes are listed on the right column with 10 recipes per
page. The corresponding cooking graph is shown in the 2nd (from
left) window if the user clicks on one of them. Common parts
between the two recipes are highlighted in orange color. If a user
moves the mouse across the vertices or edges, some popup
information is displayed indicating the associated constraints. For
the two cooking graphs in Figure 8, it can be seen that the two
recipes are structurally rather similar to each other (except for the
main ingredient and some minor ingredients), even though their
names are totally unrelated. This kind of ‘substructure similarity’
search would not be possible by using a traditional method.
Moreover, by carefully examining the top 10 recipes returned, we
find that they all belong to the same cooking style, and have some
important actions/ingredients in common. This demonstrates the
effectiveness of using the frequent common graph-based graph
matching, based on which interesting and semantically
meaningful results are obtained. However, the action ‘deep-fry’ in
the left window is not regarded the same as ‘stir-fry’ in the right
window (without an orange color in the vertex) by FSG.
Therefore, more work could be done to make FSG more error-
tolerant.

6. CONCLUSION
Improving the precision of information retrieval has been a
challenging issue on Chinese Web. As exemplified by Chinese
recipes on the Web, it is not easy/natural for people to use
keywords (e.g. recipe names) to search recipes, since the names
can be literally so abstract that they do not bear much, if any,
information on the underlying ingredients or cooking methods. In
this paper we have explored and elaborated this type of problems
in the context of RecipeView, aiming to solve complicated
semantic computing problems as exemplified by retrieving
Chinese recipes on Chinese Web. In particular, we draw our effort
on translating recipes into directed graphs, and making use of a
graph mining approach to extract useful features (patterns). To
accommodate powerful and semantically meaningful search that
can better cater for specific user needs, we have introduced and
incorporated into our RecipeView system a filtering algorithm and
a new similarity measurement suitable for complex graphs
embodying cooking graphs. It has been demonstrated that our
filtering algorithm is efficient in facilitating the process of
similarity search; in addition, its scalability allows an application
to update similarity records on the fly. Our newly proposed
similarity measurement features graph structure well, and can be
combined with frequent subgraph mining to handle graph-based
similarity search. Based on the RecipeView prototype system, we
have tested the precision /recall based on our method compared to
another graph matching approach (MCS). The results also shed
light on the suitability and usability of different algorithms for
applications involving complex graph data.

Figure 8. RecipeView screenshot: the target recipe (left window) with its most similar recipe (right window), and other top 10

similar recipes (shown on the right column)

987

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

In addition to recipes, any other types of data with operational
sequence features can make use of the modeling framework we have
proposed, including for example Web services and medical care
domains. Our future work lies in data quality assurance for such
application domains, in particular (semi-)automatic dirty data
identification and correction. Another interesting issue for future
research is to support (personalized) user adaptations and provide
recommendations for error handling in the course of recipe
execution.

7. ACKNOWLEDGMENT
Part of the work was done while Guozhu Dong was visiting the
Zhejiang Normal University, where he is a guest professor.
The work described in this paper has been supported, substantially,
by a grant from the Research Grants Council of the HKSAR, China
[Project No. CityU 117405], and a Strategic Research Grant of City
University of Hong Kong [No. 7002212].

8. REFERENCES
[1] Bunke, H., and Shearer, K. A graph distance metric based on

the maximal common subgraph. Pattern Recogn. Lett. 19, 3-4
(1998), 255-259.

[2] Cook, D. J., and Holder, L. B. Substructure discovery using
minimum description length and background knowledge.
Journal of Artificial Intelligence Research 1 (1994), 231-255.

[3] Conte, D., Guidobaldi, C., and Sansone, C. A comparison of
three maximum common subgraph algorithms on a large
database of labeled graphs. In Proc. of the 4th IAPR
International Workshop on Graph Based Representations in
Pattern Recognition (GbRPR), York, UK, 2003, pp. 589-607.

[4] Djoko, S., Cook, D. J., and Holder, L. B. An empirical study of
domain knowledge and its benefits to substructure discovery.
IEEE Transactions on Knowledge and Data Engineering 9, 4
(1997), 575-586.

[5] Government News.
http://www.cq.xinhua.org/food/200801/15/content_12221389.h
tm

[6] Homepage ChemIDPlus.
http://chem.sis.nlm.nih.gov/chemidplus/.

[7] Homepage Simpack.
http://www.ifi.unizh.ch/ddis/simpack.html.

[8] Inokuchi, A., Washio, T., and Motoda, H. An apriori-based
algorithm for mining frequent substructures from graph data. In
Proc. of the 4th European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD), London, UK,
2000, pp. 13-23.

[9] Karakoc, E., Cherkasov, A., and Sahinalp, S. C. Novel
approaches for small biomolecule classification and structural
similarity search. SIGKDD Explor. Newsl. 9, 1 (2007), 14-21.

[10] Kuramochi, M., and Karypis, G. Frequent subgraph discovery.
In Proc. of the IEEE International Conference on Data Mining
(ICDM), San Jose, USA, 2001, pp. 313-320.

[11] Li, Y., Meng, X., Wang, L., and Li, Q. RecipeCrawler:
collecting recipe data from www incrementally. In Proc. of the
7th International Conference on Web-Age Information
Management (WAIM), Hong Kong, China, 2006, pp. 263-274.

[12] Wang, L., Li, Q. A personalized recipe database system with
user-centered adaptation and tutoring support. In ACM
SIGMOD Ph.D. workshop on Innovative database research
(IDAR), 2007.

[13] Messmer, B. T., and Bunke, H. A new algorithm for error-
tolerant subgraph isomorphism detection. IEEE Trans. Pattern
Anal. Mach. Intell. 20, 5 (1998), 493-504.

[14] Salton, G., Wong, A., and Yang, C. S. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613-
620.

[15] Sanfeliu, A., and Fu, K. S. A distance measure between
attributed relational graphs for pattern recognition. IEEE
Transactions on Systems, Man and Cybernetics 13, 5 (1983),
353-362.

[16] Shasha, D., Wang, J. T. L., and Giugno, R. Algorithmics and
applications of tree and graph searching. In Proc. of the 21st
ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS), New York, USA, 2002, pp. 39-
52.

[17] Ukkonen, E. Approximate string-matching with q-grams and
maximal matches. Theor. Comput. Sci. 92, 1 (1992), 191-211.

[18] Ullmann, J. R. An algorithm for subgraph isomorphism. J.
ACM 23, 1 (1976), 31-42.

[19] Wang, L. CookRecipe - towards a versatile and fully-fledged
recipe analysis and learning system. Ph.D. thesis, Department
of Computer Science, City University of Hong Kong, Hong
Kong (Jan. 2008).

[20] Yan, X., and Han, J. gSpan: Graph-based substructure pattern
mining. In Proc. of the IEEE International Conference on Data
Mining (ICDM), Washington DC, USA, 2002, p. 721.

[21] Yan, X., Yu, P. S., and Han, J. Graph indexing based on
discriminative frequent structure analysis. ACM Trans.
Database Syst. 30, 4 (2005), 960-993.

[22] Yan, X., Yu, P. S., and Han, J. Substructure similarity search in
graph databases. In Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), New York,
USA, 2005, pp. 766-777.

[23] Yang, R., Kalnis, P., and Tung, A. K. H. Similarity evaluation
on tree-structured data. In Proc. of the ACM SIGMOD
International Conference on Management of Data (SIGMOD),
New York, USA, 2005, pp. 754-765.

988

WWW 2008 / Alternate Track: WWW in China - Mining the Chinese Web April 21-25, 2008 · Beijing, China

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

