A JavaScript RDF store and application library for linked
data client applications

Antonio Garrote Hernandez
Universidad de Salamanca
antoniogarrote@usal.es

ABSTRACT

In this paper we present a pure JavaScript implementation of
an RDF store supporting the SPARQL query language that
can be executed in modern browsers as well as in server
side JavaScript platforms. We also present a declarative
JavaScript library, built on top of the store, that makes
it possible to build rich web clients combining the power
of structured linked data, lightweight RDF notations like
JSON-LD and the SPARQL query language with the dy-
namic nature of the DOM event model to provide a simple
development framework appealing to general web develop-
ers with little prior knowledge of the semantic web stack of
technologies.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Storage

; H4 [Information System Applications]: Communica-
tion Applications

General Terms
Design

1. INTRODUCTION

RDFStore-js ! is a JavaScript implementation of an RDF
quad store with support for the SPARQL query and update
language that can be executed in the browser and in the
Node.js ? server side JavaScript platform.

RDFStore-js supports all of SPARQL 1.0, most of SPARQL
1.1/update and a significant portion of SPARQL 1.1 query.
The Node.js version of the store also implements the SPARQL
protocol for RDF so it can be used as a stand-alone SPARQL
end-point, accessible through HTTP requests.

"https://github.com/antoniogarrote/rdfstore-js
http://nodejs.org/

Maria N. Moreno Garcia
Universidad de Salamanca
mmg@usal.es

1 1
" WebWorker !
H Parser H
1 1
1 1
| A :
! AST !
! Proc. !
| Y :
: Lexicon :
i %4 |
1 1
! Store > ngry »| Backend !
! Engine !
1 A \A 1
1 1
i \ / Index I
: \ !

1
1 1
1 Events |
i i
1 1
1 1

g}."ret Notifica
1en tions

Figure 1: RDFStore-JS architectural components

The main goal of the library is to provide the foundation for
the data layer of complex JavaScript client applications. It
can also be used as a general purpose RDF library for server
side applications using RDF as the exchange format in APIs
despite of the final persistence layer being used.

The store supports loading of remote RDF graphs in SPARQL
queries using browser’s native networking features or an ad-
ditional input/output interface. The store includes parsers
for JSON-LD and N3/Turtle serializations of RDF. Support
for additional RDF serializations can be added as extensions.

2. DESIGN

The store takes advantage of advanced browser features,
providing persistent storage and multi-threaded execution
where available in the browser. These features are also avail-
able in the node.js using server side implementations of the
browser APIs. The figure 1 shows the main components of
the store architecture.

2.1 In-Memory Storage and Indexing

RDFStore-js storage model is based on a single conceptual
table where RDF quads composed of subject, predicate and
object plus an additional graph URI are stored in a lexicon
component. Additionally, a set of b-tree indexes are gener-
ated to improve the performance of data retrieval queries.

These indexes are the minimal number of indexes needed
to cover different query patterns in SPARQL basic graph
queries [2] and are used to speed range scans over the lexi-
con.

2.2 Persistent Storage

Persistence has been added to the lexicon and indexes in dif-
ferent ways in browser and node.js implementations of the
store because of the different storage layers of both plat-
forms.

Browser persistence is based on the use of the Web Storage
API [4]. This API defines a localStorage object wrap-
ping a persistent key value map capable of storing String
JavaScript objects. Storage capacity is also limited to a few
mega bytes of data, 15 MB being the current default ca-
pacity in most implementations. The lexicon and indices
of the store are saved in this persistence layer using a cus-
tom serialization scheme for JSON objects encoding quad
components.

Persistent storage is complemented with the use of a write
through cache component. Due to the limitation in the web
local storage size, the whole storage can be kept at the same
time in main memory.

Persistence in node.js has been achieved using MongoDB *
as the storage engine for the RDF graph. RDF quads are
encoded as MongoDB documents using a different serializa-
tion, consisting of a normalized representation of the term
value with an additional term type tag. This representation
makes innecessary the use of a lexicon and makes it possible
to leverage the full power of MongoDB native indices in the
retrieval of quad patterns.

2.3 SPARQL Queries Parsing and Processing

The process of answering SPARQL queries over a collection
of RDF graphs saved in the store starts with the parsing of
the SPARQL query. This process is performed in two steps.
First, the textual SPARQL query is parsed into a complex
JSON object representing the abstract syntax tree for the
query. Second, the abstract syntax tree is transformed into
a different JSON object containing the representation of an
equivalent SPARQL algebra expression according to W3C’s
SPARQL semantics.

The parsing step is performed using a parsing expression
grammar (PEG)* [1] that is capable of parsing SPARQL
queries, SPARQL 1.1 and SPARQL Update queries as well
as turtle documents.

2.4 Threaded Execution

JavaScript applications running in the browser or in node.js
are restricted, with the exception of the Web Workers API
[3], to a single execution thread. To avoid blocking the appli-
cation due to IO bounded operations, JavaScript platforms
offer evented asynchronous interfaces to most IO blocking
operations as well as a synchronous blocking one.

Shttp://www.mongodb.org/
“http://pegjs.majda.cz/

One exception to the single threaded environment of JavaScript

applications is the Web Workers API [3]. This API makes it
possible to execute JavaScript code in a different sand-boxed
thread. Both threads cannot share any state and must com-
municate exclusively exchanging string messages.

The store takes advantage of this API where available, to
execute SPARQL queries concurrently in a different thread.
The upper layer of the store is the Store module. This mod-
ule defines the final interface that can be used by client code
interacting with the store as a set of asynchronous functions.
If the Web Workers API is detected, the store module is
loaded on a web worker and a different module named RDF-
StoreClient is loaded on the main thread. Both modules
implement the same interface, but invocation of the meth-
ods of the RDFStoreClient module results in messages being
sent to the previously created web worker. When the final
results of the query are ready, they are returned to the client
in an additional message and will be finally delivered to the
client code in an asynchronous callback invocation. Encod-
ing and decoding of results and request arguments between
threads is accomplished using standard JSON to String se-
rialization.

If Web Workers are not available in the browser, the Store
module will be loaded in the main thread instead, without
any required modification of the client code.

2.5 Benchmarking

Performance evaluation of the store has been accomplished
using the LUBM ° benchmark for a single university on
different web browsers being executed on an average lap-
top computer. Test cases have been generated using the
LUBM data generator and then transformed into JSON-LD
before running the tests. The final amount of data loaded
are 100545 triples stored in a single graph. The table 1 shows
the results obtained in milliseconds. Since the store does not
support inference, some queries in the benchmark has been
re-written using UNION clauses that test for explicit patterns.
An additional query that simply returns all the triples has
also been added. The text of the queries ¢ as well as the code
to run the tests are included in the source code distribution
of the library.

2.6 Events API

JavaScript client applications need to react to user events
changing the state of the application. As a result, different
components of the application need to be updated as the
result of these state changes.

To make it easier to build this kind of event dispatching
logic, an events API has been added to the store. As the
rest of the public store interface, the events API can be used
at two different levels, the SPARQL query level or the RDF
node level.

At the SPARQL level, client code can subscribe to SPARQL
queries using the startObservingQuery/stopObservingQuery
functions. Each time a modification of the store RDF graph

®http://swat.cse.lehigh.edu/projects/lubm/
Shttp://antoniogarrote.github.com /rdfstore-js/queries. txt

| Query | Chrome 16 | Safari 5 | Firefox 11 | MSIE 9 |

0 0.552 1.176 0.834 0.771
1 0.005 0.033 0.043 0.016
2 0.018 0.149 0.046 0.111
3 0.005 0.022 0.026 0.023
4 0.155 0.502 0.311 0.603
5 0.043 0.091 0.109 0.131
6 0.023 0.039 0.045 0.057
7 0.324 0.573 0.73 1.678
8 0.828 1.581 1.789 2.548
10 0.008 0.022 0.024 0.027
11 0.001 0.003 0.006 0.003
12 0.003 0.007 0.011 0.006
13 0.042 0.103 0.098 0.119
14 0.009 0.028 0.024 0.035

Table 1: LUBM-1 results for different browsers

changes the results of the queries tracked by the events API,
the new set of results will be returned to the subscribing call-
back functions.

At the RDF node level, the functions startObservingN-
ode/stopObservingNode can be invoked to receive notifica-
tions whenever the state of an RDF graph node changes.
The new value of the RDF node will be returned to the
callback functions as graph objects according to the RDF
Interfaces specification.

2.7 JavaScript - RDF Application Library

SemanticKO 7 is a complementary application development
library implementing mechanisms to establish declarative

Bound JavaScript node objects subscribe to changes in the
RDF node kept in the store using RDFStore-JS events API.
Every time the values in the RDF node graph change, the
Node object is notified and it changes the values of the
observable properties accordingly.The change in these ob-
servable properties triggers the re-evaluation of dependent
DOM Node objects bound to related RDF nodes or triggers
changes in the properties declared in data-bind attributes.
As a result an updated DOM tree is computed reflecting
the changes in the RDF graph. In the opposite direction,
interaction between the user and HTML DOM nodes will
automatically change the value of bound RDF nodes.

3. CONCLUSION

RDFStore-JS implements an RDF store that can be used
as the foundation for the data layer in a client application,
allowing the storage, query and manipulation of data from
different services that can be merged easily thanks to the use
of the RDF data model and the SPARQL query language.

RDFStore-JS shows how RDF stores and the SPARQL query
language can play an important role in web development,
not only as the persistence layer for server applications, but
also as a middleware layer in the client.

The store also offers APIs with different granularity, one
based in the use of raw SPARQL queries and RDF graphs
serializations and an alternative API where RDF nodes are
manipulated as JSON objects much in the same way as other
JavaScript libraries. This API is also an example of the
use of recent semantic standards for the integration of RDF
data in JavaScript applications like JSON-LD or the RDF
Interfaces APL.

bidirectional bindings between RDF graphs stored using RDFStore-

JS and the DOM tree of a HTML document. The library is a
modified and extended version of KnockoutJS &, a JavaScript
library implementing the Model-View-ViewModel architec-
tural pattern [5].

The following snippet shows how RDF data for a status
update stored in the RDF store together with its author
and described using the SIOC vocabulary can be bound to
elements in a HTML document:

<div class=’MicroblogPost’
about=’<http://test.com/posts/twitter/342>">
<div class=’header’>
<span class=’creator’
rel=’[sioc:has_creator]’>
<img class=’avatar’
data-bind=’attr: {src: [sioc:avatar]}’>

</div>
<div class=’body’
data-bind=’text: [sioc:content]’>
</div>
</div>

"https://github.com/antoniogarrote/semantic-ko
8http://knockoutjs.com/

Additionally, RDFStore-JS also provides an evented API
that fits in the JavaScript asynchronous execution model.
SemanticKO builds on this evented API to provide an appli-
cation development library, where declarative bindings be-
tween the DOM tree of a HTML document and the RDF
graph maintained in the store are automatically updated to
respond to the user interaction with the application.

4. REFERENCES

[1] B. Ford. Parsing expression grammars: A
recognition-based syntactic foundation. In Symposium
on Principles of Programming Languages, pages
111-122, 2004.

[2] A. Harth and S. Decker. Yet another rdf store: Perfect
index structures for storing semantic web data with
contexts. Deri research paper, DERI, 2005.

[3] L. Hickson. Web workers. Last call WD, W3C, Sept.

2010.

http://www.w3.org/TR /2009 /WD-workers-20091222/.

I. Hickson. Web storage. Last call WD, W3C, Oct.

2011. http://www.w3.org/TR/2011/WD-webstorage-

20111025/.

[5] J. Smith. Wpf apps with the model-view-viewmodel
design patter. MSDN Magazine, Feb. 2009.

4

