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ABSTRACT

In the Internet music scene, where recommendation technology is
key for navigating huge collections, large market players enjoy a
considerable advantage. Accessing a wider pool of user feedback
leads to an increasingly more accurate analysis of user tastes, effec-
tively creating a “rich get richer” effect. This work aims at signifi-
cantly lowering the entry barrier for creating music recommenders,
through a paradigm coupling a public data source and a new collab-
orative filtering (CF) model. We claim that Internet radio stations
form a readily available resource of abundant fresh human signals
on music through their playlists, which are essentially cohesive sets
of related tracks.

In a way, our models rely on the knowledge of a diverse group of
experts in lieu of the commonly used wisdom of crowds. Over sev-
eral weeks, we aggregated publicly available playlists of thousands
of Internet radio stations, resulting in a dataset encompassing mil-
lions of plays, and hundreds of thousands of tracks and artists. This
provides the large scale ground data necessary to mitigate the cold
start problem of new items at both mature and emerging services.

Furthermore, we developed a new probabilistic CF model, tai-
lored to the Internet radio resource. The success of the model was
empirically validated on the collected dataset. Moreover, we tested
the model at a cross-source transfer learning manner — the same
model trained on the Internet radio data was used to predict be-
havior of Yahoo! Music users. This demonstrates the ability to
tap the Internet radio signals in other music recommendation se-
tups. Based on encouraging empirical results, our hope is that the
proposed paradigm will make quality music recommendation ac-
cessible to all interested parties in the community.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data Min-

ing
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1. INTRODUCTION

The convergence of the media industry with the Internet and the
appearance of mobile devices with rich media playing capabilities
have created a variety of new services. In particular, nowadays
users can consume, buy, share, and review media items in many
new exciting ways. Yet, the variety and volume of media items
is overwhelming. As a result, users may find it difficult to navi-
gate through the vast variety of new media items and get what they
like. To overcome this explosive content volume, helping users find
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items they like, many new recommendation services have emerged
in recent years. These services are usually based on users’ feedback
and stated preferences, and use editors, content analysis or rely on
the wisdom of crowds to tag their database items.

Music recommender systems often employ Collaborative Filter-
ing (CF) [22], which relies only on past user behavior—e.g., their
previous transactions or feedback—and does not require the cre-
ation of explicit profiles. Notably, CF techniques require no domain
knowledge or content analysis. CF excels at exploiting popularity
trends, which drive much of the observed user interaction, and typ-
ically would be completely missed by content based approaches. In
addition, relying directly on user behavior allows uncovering com-
plex and unexpected patterns that would be difficult or impossible
to profile using known data attributes. Consequently, CF attracted
much attention in the past decade, resulting in significant progress
and adoption by successful commercial systems.

Notwithstanding its great success, CF poses some restrictions on
system designers. First and foremost, as a paradigm relying on the
wisdom of crowds, its success strongly depends on having a suffi-
cient amount of user feedback signal on record. Therefore, a new
service with a limited user base will have to resort to alternative
recommendation approaches, at least until gathering a critical mass
of users. Given the vital role recommendation engines play in mu-
sic consumption, this may put new market players at a competitive
disadvantage. Furthermore, even successful CF systems sometimes
fail to model new items, which have a dearth of user signal, leading
to the item cold start problem.

The main goal of this work is to lessen these restrictions. It so
happens that there is a huge repository of “free music” that is avail-
able to users today and is not widely exploited, namely, online me-
dia streams such as Internet radio stations (referred to hereafter as
“stations”). We show that when properly analyzed, stations form an
invaluable collection of human generated musical signals. They al-
low modeling the nature of played tracks and artists, relating tracks,
as well as monitoring popularity trends. All these merely requires
collecting the publicly available metadata (namely, track and artist
names) of stations’ playlists along time.

We exploit the wealth of information provided by stations using
a new probabilistic recommendation model. For each station the
model predicts the corresponding probability distribution of items
to be played. The model offers the flexibility to represent stations
either directly or through the collection of previously played tracks.
Moreover, the temporal dynamics in the system, such as changes of
music type by time of day, or similarity of adjacently played tracks,
are naturally captured by the model. The model also shares infor-
mation between all tracks belonging to the same artist, which is
important to learning less frequent tracks. Furthermore, the model
caters for the kind of feedback prevalent at music recommenda-
tion which is mostly unary positive feedback in the form of playing
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events, and occasionally binary feedback including also negative
reactions (e.g., play/skip, like/dislike, thumbs-up/down).

By applying the model to a playlists’ dataset crawled from thou-
sands of stations, we show its ability to model genuine musical
patterns and establish similarity patterns across tracks, artists, and
stations. We also test the model in a cross-source learning setup,
where we transfer the learned model to a different musical domain
consisting of Yahoo! Music users. We find that the model learned
from stations data is valuable for building a recommender system
to Yahoo! Music users.

To summarize, we present a paradigm consisting of a new data
source together with a tailored model, which enables bootstrapping
music recommendation system. This enables young market play-
ers (or other interested parties, like researchers) to provide a quality
recommendation system for their items. At the same time, mature
systems would be able to exploit the proposed paradigm for miti-
gating the cold start problem typical to new items.

2. BACKGROUND AND RELATED WORK

There are different approaches to music recommendation, in-
cluding: (1) Expert-based approaches that are based on human
annotation of music data such as the Music Genome Project [4],
which is used by the Internet music service Pandora.com. (2) Social-
based approaches that characterize items based on textual attributes,
cultural information, social tags and other kinds of web-based an-
notations [13, 15, 25]. (3) Content-based approaches that analyze
the audio content for characterizing tracks and establishing item-
to-item similarities [2]. (4) Collaborative Filtering (CF) methods
that analyze listening patterns (or other sorts of feedback) by many
users, in order to establish similarities across users and items.

Each of the above approaches comes with distinct disadvantages.
An expert-based approach is extremely time consuming and hard to
scale. Social tagging is unlikely to provide a complete characteri-
zation of music. Content based approaches, even at their best, miss
important relations and distinctions humans make between songs;
the reader is referred to the interesting piece by Slaney [26] on the
topic. The ability to directly model user desires makes CF among
the more accurate and serendipitous approaches to recommenda-
tion. In addition CF naturally learns popularity trends by observing
actual user behavior, which the other approaches overlook. How-
ever, its availability is severely hindered by the need to have a sub-
stantial amount of relevant user behavior on record. The approach
described in this paper aims at alleviating this central issue of CF.

Latent factor models constitute one of the leading CF techniques.
They characterize both items and users as vectors in a space auto-
matically inferred from observed data patterns. The latent space
representation strives to capture the semantics of items and users
(or, stations in our case), which drive their observed interactions. In
music, factors might measure obvious dimensions such as genres,
tempo or pitch or less well defined dimensions such as the emo-
tions provoked by the song or the social target audience. One of
the most successful realizations of latent factor models is based on
matrix factorization (MF); see, e.g., [12]. These methods have be-
come very popular in recent years by combining good scalability
with predictive accuracy. In addition, MF provides a substantial
expressive power that allows modeling specific data characteristics
such as temporal effects [11], item taxonomy [9] and attributes [1],
social relations [8], and 3-way interactions [21]. This paper adopts
some practices common at MF methods, while using a likelihood
maximization principle. This allows us the needed flexibility for
modeling temporal effects and tying tracks with their artists.

Literature provides several probabilistic CF models, most pre-
dict a probability distribution among rating values for a single item
[23, 24], or induce order among item pairs [20]. The probabilis-
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tic model we suggest predicts a probability distribution of all items
for a fixed station. In this sense, it bears more resemblance to a
few other works producing such distributions [6, 28], with an im-
portant distinction that we follow an MF-styled model with gradi-
ent descent optimization and an ability to account also for negative
feedback.

Among MF methods our work is mostly related to those dealing
with implicit user feedback (as opposed to the explicit feedback
more common in MF literature), such as [7, 16, 20]. Indeed such
methods could provide a reasonable alternative to the model we
suggest. We would argue that the unique appeal of our model is
in combining together: (1) An ability to produce a single probabil-
ity distribution over all items for a given user or station. (2) Bor-
rowing the rich expressive power of MF that offers a considerable
flexibility in modeling diverse real life situations. (3) While most
implicit feedback-oriented models use sampling for drawing items
a user did not interact with, our method employs a more principled
sampling approach (in Section 4.5). (4) The model we describe in-
cludes several accommodations tailored to music recommendation
and in particular to Internet radio signals. (5) Accounting for both
situations of unary (positive-only) user feedback and situations of
binary (positive and negative) user feedback.

Our work is related to the topic of automatic playlist generation,
though that subject has several aspects that are beyond the scope
of this paper (e.g., ensuring the overall coherence and diversity of
a full sequence). We would refer the reader to some recent works
on the subject [5, 19, 28]. In particular, Ragno et al. [19] mod-
eled playlist generation by initiating a random walk over expertly
authored streams, such as Internet radio playlists. We note that this
work also identifies Internet radio streams as a valuable resource.

A few recent works [14, 17, 27] introduced transfer learning
methods for collaborative filtering. They allow jointly modeling
user ratings made in different domains, in order to lessen the data
sparseness problem. This is related to our goal of inferring generic
models of user preferences in music from Internet radio playlists.
Our music-oriented work takes a different perspective, by focusing
on the identification of a viable source dataset and devising models
suitable for Internet radio streams.

3. INTERNET RADIO AS A DATA SOURCE

Our data source is Internet radio streams metadata, rather than
the more commonly used users’ playlists and feedback data. Hence,
instead of encompassing signals generated by many music fans, it
holds signals created by groups of professional music experts and
amateur music savvies.

3.1 Advantages

We argue that a dataset based on Internet radio streams metadata
provides several advantages:

o Freshness - The music arena is highly dynamic and music
trends are constantly changing. Existing datasets, whether
public or created by a single permission crawl, provide only
a snapshot of time. Therefore, they fail to follow the ever
changing music scene and cannot capture new trends. In con-
trast, an Internet radio based dataset can provide a continuous
cover where “fresh” metadata is constantly arriving.

o Completeness - Existing public music datasets usually pro-
vide only partial and/or implicit metadata of their playlists.
For example, the Yahoo! music dataset [9] does not expose
the artist and track names and uses numeric id’s instead. An-
other example is the Last.FM 360K dataset' where only artist

"http://mtg.upf.edu/node/1671.
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Rank Artist Title Album #Plays  #Stations
1(8) Katy Perry Last Friday Night (T.G.LLF.) Teenage Dream 4265 312
2(1) Adele Rolling In The Deep 21 4160 407
3(151) Bruno Mars Lazy Song Doo-Wops & Hooligans 3568 303
4(23) Lady Gaga The Edge Of Glory Born This Way 3099 262
5(59) Coldplay Every Teardrop is a Waterfall ~ Every Teardrop is a Waterfall ~ 3080 229
6(12) Adele Someone Like You 21 2903 243
7 (>420)  Alexandra Stan Mr. Saxobeat (Single) 2871 324
8(3) Foster the People  Pumped Up Kicks Foster the People-EP 2793 187
9 (43) LMFAO Party Rock Anthem (Single) 2733 194
10 (63) Britney Spears I Wanna Go Femme Fatale 2708 206

Table 1: Dataset top 10 tracks (Last.FM ranks are added in brackets).

information is provided. This trend is not likely to change in
the future, where the high valued data will continue to be
only partly exposed. In contrast to data keepers who tend to
protect their data assets, Internet radio stations are promoting
themselves by publicly exposing their content. Accordingly,
the lion’s share of Internet radio metadata is explicit and usu-
ally complete (although it is noisy and ambiguous in part).

o Robustness - Collectors of Internet radio based datasets are
not dependent on a single data source that may shut infor-
mation seekers off or may cease to exist. On the contrary,
a major portion of the radio stations are operated by a sta-
ble set of playlist editors with known identities. In addition,
with the growing trend of personalized music streams being
shared publicly, new stations are joining the scene constantly.

e Scale - The number of Internet radio stations is increasing
constantly and already measured worldwide in hundreds of
thousands. Since most stations are constantly streaming mu-

sic, Internet radio based dataset size is theoretically unbounded.

o Diversity - Playlists generated by a specific service provider
(such as Yahoo! and Last.FM) are expected to be biased in
nature according to the taste of the specific provider’s ed-
itors and/or users’ collective profile. In contrast, a dataset
based on metadata stemming from many thousands of inde-
pendent Internet radio stations is expected to be more diverse
and eclectic. We believe that some of the findings presented
in the sequel indeed indicate this phenomenon.

o Accessibility - Internet radio streams and metadata are con-
stantly accessible to every information seeker with Internet
access. Moreover, as we shall see in the sequel, the barriers
for monitoring and aggregating the metadata are quite low.

‘We dare to conclude that the above advantages make Internet radio
streams a valuable highly accessible resource available for both-
researchers and service providers that wish to “feel” the pulse of
the lively music scene.

3.2 Collection procedure

The results reported in this paper are based on a snapshot of data
collected during a period of 15 days between September 22" and
October 6“‘, 2011. The data was collected across 4147 stations
(some of which were later filtered out). For each sampled track
play, we extracted the metadata, the station local time of play, and
its corresponding system time. The monitored stations are all asso-
ciated with the ShoutCast directory? and therefore tend to provide
metadata in a similar manner. This fact helps in retrieving and pars-

An Internet radio stations directory http://www.
shoutcast.com/. The number of listed stations may
vary from tens of thousands to more than one hundred thousand
stations, depending on their availability.

ing the track metadata. It is noted that the dataset can be arbitrary
large by sampling more stations over a longer period.

The collection of the playlists metadata consisted of three phases:
station list composition, playlist collection, and meta data parsing.
We first composed the list of stations, sampling all major genres
in the ShoutCast directory. Among these, were stations not nec-
essarily dedicated to music, for example stations under the sports
and news subdirectories. According to our examination of the data,
the stations also exhibit a global diversity, as we encountered many
European stations in our collection. We then monitored the listed
stations, while collecting and registering their playlist metadata, as
well as associated time of play information.

We applied some general parsing heuristics to each playlist, in
order to extract artist and track titles. Extraction was mainly based
on “~” (dash) separation, where a play is represented by a string
formatted as <artist name> — <track title>. Extractions were also
normalized in several ways: lower casing, preceding enumeration
elimination, etc. Normalized titles were then subjected to frequency
based filtering, to ensure they are not wrongly parsed.

3.3 Statistics

Rank  Name #Plays #Unique #Stations
tracks

14) The Beatles 84587 438 754
2 (49) Michael Jackson 22850 235 1033
3(47) AC/DC 20964 223 688
4(12) Rihanna 19308 89 798
5(90) Madonna 18671 191 890
6(7) Lady Gaga 18157 63 735
7 (33) The Rolling Stones 17961 371 796
8 (48) Black Eyed Peas 16151 105 758
9(18) Queen 15920 260 934
10 (3) Coldplay 15364 86 718

Table 2: Dataset top 10 artists (Last.FM ranks are added in
brackets).

In this subsection we demonstrate the richness of our dataset,
which is essential to supporting applications such as music recom-
mending systems. The statistics presented here include 563,417
unique tracks that were played a total of 6,727,692 times, by 96,681
different artists, over 3,541 stations. We have restricted our records
to include only stations that were playing at least 10 plays of more
than 5 different tracks. In addition, we have included only artists
associated with more than 10 plays.

Top tracks and artists.
The top 10 most played tracks are listed in Table 1 along with
their number of plays and number of stations. Corresponding ranks
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Rank  Stream Title Genre #Unique tracks ~ #Artists
1 RMNgoodtimes Wir Lieben Oldies  Oldies, Goldies, 60er 70er 80er 4273 1767
2 KX Classics Oldies 60s 70s 80s 4132 1369
3 AFTC Radio Free Form, Eclectic, Non-Commercial 3992 1359
4 Always Country Country 3864 782
5 AVRO 60ies Steenen Tijdperk 60s 3761 930
6 Humboldt 101 Easy Listening 3600 1276
7 HardRockin80s.com 80s, metal, rock 3472 578
8 Public Domain Jazz Big Band Jazz Swing 3452 139
9 3WK Classic Alternative Radio Classic Alternative, 80s, 90s 3446 660
10 SwissGroove Jazz, Funk, World, Soul, Brazil, Nu Grooves 3359 1805

Table 3: Dataset most diverse stations. Stations can be found on the ShoutCast directory and played using WinAmp.

reported by Last.FM appear in brackets®. Although the two rank-
ings are quite different, four tracks appear in both top-10 lists. Ex-
amining the list reveals that it includes 9 different artists compared
to the 5 artists included in the corresponding Last.FM list.

Similarly, the top 10 artists are listed in Table 2 along with their
number of plays, number of tracks, number of stations, and Last. FM
rank (in brackets). Here, 3 artists are also found among the top-
10 of Last.FM, where the rest lie within the top-100. The top
two artists are The Beatles and Michael Jackson, where the former
showing a staggering 3.8 fold increase in number of plays com-
pared to the latter or any other artist.

General statistics.

Next, we present a few general statistics of the dataset: (1) Num-
ber of plays per track/artist frequencies — Figure 1.a; (2) Number of
stations per track/artist frequencies — Figure 1.b; and (3) Number
of unique tracks per artist frequency — Figure 1.c.

It is observed that all distributions follow a power law or double
Pareto law with “healthy” long heavy tails.

Diversity.

The next two figures demonstrate the diversity of the monitored
stations. In Figure 1.d we plot a histogram of the number of unique
tracks per station (using bins of width 200; bin centers are shown).
It is observed that more than two thirds of the stations played at
least 200 unique tracks during the monitored period. Similarly, in
Figure 1.e the histogram of the number of unique artists per station
is plotted. It is observed that more than half of the stations hosted
at least 200 unique artists during the monitored period.

Top 10 most diverse stations are listed in Table 3, along with their
genres, numbers of tracks, and number of artists. These stations
(and many others as is observed in Figure 1.d) have hardly played
tracks more than once over the data collection period. Also visible
from the table is the diversity of genres declared by these stations.

The next figure provides an educated guess to the question whether
an aggregation performed on a larger scale would provide more di-
versity and richness. To produce the curve, we ordered the stations
randomly and monitored the increase in number of unique tracks as
a function of the number of stations. The results are plotted in Fig-
ure 1.f, which averages multiple random orderings of the stations.
Examining the figure it is observed that the curve is obviously sub
linear but has not reached its asymptote. Hence, with more than
3000 monitored stations we have not exhausted the diversity poten-
tial of the Internet radio streams resource, and adding more stations
is likely to materially increase the number of tracks.

4. PLAYLIST MODELING
‘We model playlists using a latent factor model, where each playlist
induces a probability distribution over the items. Model parame-

3LastFM charts are available at http:/www.last.fm/
charts

ters are learned in order to maximize the probability of playing the
listened items. The model directly captures the relations between
tracks and their corresponding artists, thereby indirectly tying all
tracks belonging to the same artist. In addition, the model utilizes
temporal effects underlying the data.

4.1 Basic notions

We observe musical items that are arranged within playlists as-
sociated with stations. Here items refer to both tracks and artists
unless otherwise stated. Ultimately, we are interested in environ-
ments where both users and stations coexist. In particular, we will
be interested in modeling new users based on the station editors
wisdom. Hence, based on the context, we may exchange the notion
stations with users, which are indexed by u, and are technically in-
terchangeable with stations. We denote timestamps by ¢, where a
timestamp corresponds to the start play of a track. The artist play-
ing track ¢ is denoted by a(z). The sequence Ps denotes a list of
tracks played by station s along with their associated timestamps.
These playlists are arranged within a train set S.

4.2 Modeling outline

We propose a method for modeling playlists. More specifically,
given a playlist, the model predicts the probability distribution of
the next played item. Our model maps both items and stations to
latent factor vectors, a representation proven successful in many
recommendation systems. Formally, the latent factor representation
is defined as follows:

e Each item i is mapped into a vector p; € R®.

e Each station s is mapped into a vector vs € R,

Typically, we use a latent space dimensionality of 20 < ¢ < 50. In
addition, we introduce biases for items, such that the bias of item
¢ is denoted by ¢; € R. Such biases reflect the varying popularity
levels of items. Henceforth, we denote all model parameters by ©.

Musical artists often have a distinct style that can be recognized
in all their songs. Therefore, we share parameters to reflect the
affinity of tracks by the same artist. Parameters associated with a
track ¢ sum both its own specific representation, together with the
one associated with its artist (a(z)). This helps in modeling sparsely
observed tracks. Each track ¢ is associated with an artist-enhanced
latent factor vector

def
4 = i+ Pagi) 6]
Similarly, the artist-enhanced bias of track ¢ is

bi o Ci + Ca(d) @

We denote by rg;;; the affinity of item ¢ to station s at time ¢;
exact definition will follow shortly. Accordingly, given a target
station at a certain time, we can rank all items by their decreasing
affinity values. We model the likelihood of observing i as the item
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Figure 1: Dataset statistics: (a) Number of plays per track/artist frequencies; (b) Number of stations per track/artist frequencies; (c)
Number of unique trackd per artist frequency; (d) Number of unique tracks per station; () Number of unique artists per station;
and (f) Cumulative number of unique tracks (the stations are randomly ordered).

played in station s at time ¢ by the multinomial distribution

exp(Tsi;t)
S exp(rase) @

In the followings we often omit © from the probability definition,
using the notation P(i|s; t). The learning task is finding the model
parameters that maximize the log-likelihood of observing the train
set, which in turn dictate all station-item affinities.

P(i|s;t,©) =

4.3 Station-item affinities
A first approximation of the affinity function would be

reie = b + ¢l v C))
Hence, affinity depends on the inner product between the respective
factor vectors, and on the item bias. This follows a common prac-
tice in matrix-factorization (MF) recommenders [12]. However,
the reader should note the difference between the setups. While
MF deals with recovering provided ratings, usually by minimizing
a squared error loss, we will aim at a log-likelihood maximization
involving a unary (or sometimes binary) observed signal.

Radio stations are likely to play different kinds of music during
different times of the day, in order to cater to the time-dependent
moods and contexts of their listeners. Hence, we split the day into
different time slots. In our implementation we use 8 equal slots
(12am—-3am, 3am-6am, 6am-9am,. . . ); alternative choices could be
considered as well. Accordingly, we introduce the notation 1 <
slot(t) < 8 as the integer denoting the slot corresponding to time

t. The station profile during time slot & is denoted by latent factor
vector v € R, which is added to the model parameters set O.
In addition, it is expected that adjacently played items will be
more tightly related. This stems from the increased chance that
both were played at the same program, and also from a tendency
of playlist editors to impose smoothness between closely played
items. Hence, for a station s, a timestamp ¢, and a time window
w, we denote by P the set of tracks played in station s during
time [t — w,t). Utilizing the item vectors, this set of items will

be characterized by the vector |Ps(t‘w) | 705 Zjepu,w) g;j- In our

implementation a time window of 30 minutes was used.
Thus, we extend (4) to account for the aforementioned temporal
effects by evolving it into

U5+U§slot(t))+

1
ﬁ Z a | O
VIPs"™ ] jepitm

4.4 Log-likelihood maximization

We seek model parameters (©) in a way that maximizes the log-
likelihood of the training set

L(S;0) = 3" > log Pils;t,0) ©)

P,€S (i,t)EPs

def T
Tsist = bz+q1

Note that playlist Ps is not a set, so the same item can appear in it
multiple times.
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Let us consider the case where negative feedback is also to be
found, e.g., when we observe users skipping tracks or voting them
down. We would like to account also for such feedback by maxi-
mizing the likelihood of not playing those negatively voted items.
We denote by N, the list of items with negative feedback associated
with s. Then, the maximized log-likelihood becomes

L(S;0) dof Z Z log P(ils; t, ©)

P€S (i,t)E€Ps

+Z Z log(1—P

NES (i,t)EN,

(ils;t,©)) 0

Within the scope of this paper, we do not encounter negative
feedback, and hence concentrate on optimizing (6). However, in
other conceivable scenarios, when models are applied to users, neg-
ative feedback is expected to emerge. In such scenarios, pursuing
optimization of (7) would follow an optimization process analo-
gous to the one to be described shortly.

4.5 Optimization process

Learning proceeds by stochastic gradient ascent. Given a train-
ing example (s, ,t) we update each parameter § € © by

po= 2P0 _, (6 -5 % ) ®

where 7 is the learning rate.

However, such a training scheme would be too slow to be practi-
cal, as each update rule requires summing over all items. Thus, we
resort to sampling the weighted sum in (8), which is based on the
importance sampling trick proposed by Bengio and Senécal [3].

With importance sampling we draw items according to a pro-
posal distribution. In our case we assign each item a probability
proportional to its empirical frequency in the train set, and denote
this proposal distribution by P(i|S). Consequently, items are sam-
pled with replacement from P(%|S) into a list 7. An efficient way
to do so is to uniformly sample an (s,%,t) tuple from the train-
ing set, and add 4 to J. Thus, the expensive-to-compute P(i|s;t)
probabilities are approximated with the weighting scheme

exp(rsize) / P(i]S)
2 jeg xP(rsje) /P(4]S)

Consequently, the approximated gradient ascent step given train-
ing example (s, 4, t) will be

a si; . a s7;
A9 =n (get - Zw(as)’éé"ﬁ) (10)

JjeT

®

w(i|s) =

As mentioned in [3], it is desirable that the size of set J grows as
the training process proceeds, because at later training phases more
delicate parameter adjustments are needed. We employ a simple
rule for controlling the sample size (|7]) based on fitness of cur-
rent estimate. Given a training example (s, 7, t), we keep sampling
items into 7 till satisfying:

S P(ilsst) > Plilsit) & S exp(rae) > exp(ra) (1)
jeT JjET

The adaptive sampling automatically lets the sample size grow when
parameters are nearing final values and the correct item is getting
a relatively high probability. For efficiency we also limit the maxi-
mal sample size to 1000. Henceforth, we dub the method described
in this section as a station-based model.

We provide a few finer details on tuning the learning algorithm.
In our implementation we ran the process for 20 sweeps over the
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training data. During the k-th sweep we set the learning rate to
n = 0.005/k, based on validation data performance. Factorization-
based recommenders usually employ regularization in order to avoid
overfitting. The most common regularization is weight decay, which
penalizes the squared magnitude of each learned parameter; see,
e.g., [12]. This amounts to assuming a normal prior centered at
zero for each parameter. In our experiments we observed that such
a weight decay has a very minor positive impact on generalization
performance. Thus, we have set the corresponding weight decay
constant to 10™*. Finally, in order to ensure numerical stability
(important due to exponentiation operations) we clip all parame-
ters to the [—1, 1] range throughout the whole learning procedure.

4.6 Modeling new users

A central goal of our work is leveraging the learned parameters
in order to model new users or stations. Another related case is
modeling evolving users as they add more tracks into their playlist.
These scenarios may require a real time derivation of the user rep-
resentation, hence re-training the model would not be desirable. In
the followings we will discuss ways to fold new users into trained
models, without requiring re-training.

When encountering a new user u, or a new station s, affinity
functions (4) or (5) cannot be employed because they rely on pre-
computed parameters associated with the users/stations, namely,
their latent factor vector vs (or vy,).

We modify the original affinity definition (4-5) to allow a direct
incorporation of new stations. The employed principle is that we
can profile a station s through its playlist Ps, replacing the station
factor vector v, with |Ps|7%% 37 jep, 45~ This principle was suc-
cessfully practiced in various matrix factorization techniques [10,
18]. More specifically, now we map each item ¢ into three dis-
tinct factor vectors p( ),pEQ) R pgd) e R, corresponding to the three
distinct roles an item assumes: being recommended, annotating a
station, and annotating a time window. Additionally, we tie the
track and artist representation as before, by using the three summed

def def
(1) (2) Z('2) + pf&)’

(1) (1)
q; Dy +p a(i)’ 4q;
pES) + pi&), in parallel to (1). Then, the affinity function
between station s and item ¢ at time ¢ is defined as

> 4
\/ |P“ ] sepgw
12)

As usual, we learn the model parameters so as to maximize the
log-likelihood of the train data. Importantly, since none of the
model parameters describe stations, handling a new station becomes
trivial. Namely, both existing stations, rapidly updated stations, and
new users can all equally use the same affinity function (12), which
allows ranking items without needing to retrain the model. In the
following we will call such a model a station-less model.

As we will see in Section 5, the station-less model produces re-
sults of accuracy comparable or a bit better than those achieved by
station-based model of Subsection 4.3. However, its training time
is slower because of the indirect representation of stations. Hence,
as an alternative, we can still train the model according to the orig-
inal station-based representation. Then, when facing a new station
s we profile items affinity to s at time ¢ by

vectors for track i:
3) def
ol

Tszt - b+( (1))

Z (2)
\/|P JEPs

Tsist = bz + qu

ooy

‘P(t w)| ]GP(t w)

v P
13)

We will compare the two alternatives ((12) and (13)) in Section 5.
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5. EMPIRICAL STUDIES

5.1 Quantitative analysis

Evaluation cases.

We have based our empirical study on the Internet radio dataset
described in Section 3; hereafter denoted as IRDB. For training and
evaluating the models, we filtered out less reliable items, i.e., those
appearing in less than three stations or played less than 10 times.
Three major evaluation cases were considered.

First, we experimented with a “weak generalization” test. Here,
each station went through a 75:25 split, with its earlier 75% plays
inserted into the train set, and the latest 25% plays inserted into the
test set. This represents a scenario of modeling existing stations.

We also experimented with a more difficult “strong generaliza-
tion” test. Here we initially made a 75:25 split of whole stations,
creating two station-disjoint subsets known as StrongGen1 and Stro-

ngGen?2. The smaller subset, StrongGen2, is further split into (pseudo)

train and test subsets, with the early 75% plays of each station re-
siding in the train subset, and the last 25% residing in the test set.
The models are fully trained only on StrongGenl. Then a trained
model will observe some, or all, of the ratings in StrongGen2’s train
subset in order to predict its test subset. This represents a scenario
of exploiting an existing model for predicting new stations or users.

Finally, we experimented with an even more challenging “cross-
source learning” test. Here, a model fully trained on IRDB was
used to predict the behavior of Yahoo! Music users. We relied on
a dataset providing Yahoo! Music ratings, which was publicized
during the KDD-Cup’11 contest, henceforth referred to as YMDB;
see [9]. Matching the two datasets became all the more challeng-
ing, since most activity in YMDB was performed around the year
2005 or earlier. Given the shifts in musical trends throughout the
6+ year period separating the datasets, we are facing a truly out of
sample test. In order to make the two datasets comparable, we fil-
tered out of YMDB all items we could not match with IRDB items.
Additionally, since YMDB is based on explicit user feedback (0-
to-100 ratings), we took the > 80 ratings as positive feedback and
discarded all other ratings.

Statistics of the resulting datasets are brought in Table 4. For
each of the aforementioned evaluation cases we provide the num-
ber of playlists (number of stations at IRDB, or number of users at
YMDB), the number of distinct items, the number of play (or posi-
tive feedback) events in the train set, and the number of play events
in the test set. Note that at IRDB many items are repeating within
the same station. Hence, we also devise an arguably purer test set
without repetitions of items already played at the station (within ei-
ther train or test period). This considerably reduces the number of
plays in the test set, as shown in the last column of the table.

Evaluation metrics.

In order to measure the accuracy of the model we adopt a metric
that was promoted in the KDD-Cup’11 challenge*. We pair each
played item in the test set with a randomly drawn item not played
by the user. We use the model to rank the two items for the relevant
station (or user). The fraction of successfully ranked pairs is the
metric value.

We picked this metric for several reasons. First it is a reason-
able proxy of the relevant task we are after, which is suggesting the
“right” item to the user. Notably, compared with other appropriate
metrics that would require evaluating many competing items, the
employed metric is much cheaper to compute. Finally, it can ele-

4http: //kddcup.yahoo.com
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gantly diminish effects attributed to the tendency of favoring uni-
versally popular items, as we will shortly explain.

We have experimented with three flavors of the metric, capturing
different performance aspects, by changing the criteria for select-
ing the played item or for selecting the paired non-played item, as
follows:

1. NonRepeat-vs-Uni. We account only for test items that have
not previously appeared in the train or test set for the same
station, corresponding to the right-most column of Table 4.
Then, we compare each such played item against a random
item uniformly picked from the items set.

2. NonRepeat-vs-Pop. As demonstrated in Figure 1.a, the num-
ber of plays per items follows a power law distribution. By
the nature of the power-law distribution, we expect a played
item to be more popular than a randomly picked item. Hence,
having a played item being ranked higher than a randomly
chosen item may merely reflect the ability to separate pop-
ular items from less popular ones. Accordingly, we rectify
NonRepeat-vs-Uni in a way that better measures the person-
alization power of the algorithm. For each of the items in the
test set we pick a competing item with probability propor-
tional to the item’s popularity (popularity is precisely defined
as P(i|T); see Section 4.5). This way, the played and the
randomly picked items are coming from the same distribu-
tion. Other details of this metric equal those of NonRepeat-
vs-Uni. Clearly, results under this metric are expected to be
lower than those of NonRepeat-vs-Uni.

3. Played-vs-Pop. In the music domain, it is expected that over
an extended period playlists will repeat already played songs.
After all, listeners are expected to enjoy their favorite tracks
more than once. Hence we offer an alternative to NonRepeat-
vs-Pop, where we consider all played items in the test period,
regardless of whether it is their first play in the station or not.
This corresponds to the fifth column in Table 4. We expect
prediction of repetitive plays to be easier than predicting first
time plays. Hence, results under Played-vs-Pop are expected
to be higher than those of NonRepeat-vs-Pop.

Baseline methods.
We compared our model against three baselines, as follows:

e Popularity. This baseline always favors the more popular
item (i.e., the item with more plays overall).

e Genre. We used an internal Yahoo! Music database for as-
sociating tracks with genres. This way we could associate
45,713 tracks with one to six genres each. Overall, there are
130 editorial genres with the most popular being: Rock, Pop,
Classic Rock, Country, Electronic/Dance, Metal, Alternative
Rock, Hard Rock, Soft Pop, and Classic Soul. For each sta-
tion we compute the genre distribution during the train pe-
riod. Then, we score an item based on the mean probabil-
ity its genres receive on the respective station. Since not all
tracks could get associated with genres (mostly due to in-
complete match between the databases), when applying this
baseline we considered only a the subset of items that were
assigned at least one genre.

e k-Means Since not all tracks could be associated with genres,
we offer an alternative based on “made-up genres”. Here we
ran k-Means clustering on the items, where an item vector
corresponds to its probability distribution across stations. We
treat clusters as genres, and score items just like in the Genre
baseline. It was observed that refined clustering improves
results, so we have partitioned the data into 1,000 clusters
when using this baseline.
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Dataset #playlists  #items  #plays(train) #plays(test)  #non-repeat-plays(test)
IRDB 3,535 167,695 5,955,208 1,983,049 247,109
StrongGenl 2,649 167,185 5,967,980 N/A N/A
StrongGen2 886 140,971 1,478,073 492,204 59,069

Yahoo! Music 203,956 41,727 18,783,943 4,596,710 4,596,710

Table 4: Summary statistics for Internet radio weak- and strong-generalization data, and for Yahoo! Music data.

Results.

We begin with reporting the weak generalization results. We
experimented with the station-based and station-less models, de-
scribed in Section 4. For both models we picked the dimensional-
ity of the latent factor space to be 20. Changing the dimensionality
to 10 or 50 had a very minor impact on the metrics reported here
(skipped for brevity). The two models were compared against the
three aforementioned baselines, as shown in Table 5.

Method NonRepeat- NonRepeat-  Played-

vs-Uni vs-Pop vs-Pop
Popularity 65.12% 39.91% 50.26%
Genre 78.41% 73.89% 79.33%
k-Means 74.61% 72.83% 83.80%
station-based model 90.91% 87.38% 95.72%
station-less model 91.41% 88.66 % 95.95%

Table 5: Comparative model accuracy under a weak-
generalization test.

Among our two models, it seems that the station-less model of-
fers a slightly better accuracy than the station-based model. How-
ever, recall that its training is slower. A single iteration of the
station-based model takes around 12 minutes, whereas a station-
less model iteration takes about 20 minutes; all measured on an
Intel Xeon X5650 2.67GHz CPU machine. As expected, com-
paring newly played items against popular items (NonRepeat-vs-
Pop) is the most difficult task, where our models could achieve
about 88% accuracy. Under all three metrics the models compare
very favorably against the baselines. The NonRepeat-vs-Uni met-
ric demonstrates one advantage a CF method has in comparison
with popularity-oblivious methods such as Genre and k-Means re-
ported in the table. While the CF models reach about 91% accu-
racy on such a metric, Genre and k-Means cannot utilize this source
of information achieving significantly lower accuracies (75-78%).
Considering the simplistic popularity-based method, as expected it
behaves no better than random on NonRepeat-vs-Pop and Played-
vs-Pop metrics, which remove popularity effects. On the other
hand, even when popularity effects are in-place, namely under the
NonRepeat-vs-Uni metric, Popularity merely achieves a 65.12%
accuracy, indicating that adequate playlist modeling has to go much
beyond offering popular items.

Moving on to the strong generalization tests described in Table 6,
results pretty much remain the same. We are encouraged by the
generalization ability of the models that enables modeling unseen
stations with about same accuracy achieved on pre-learned stations.

Method NonRepeat- NonRepeat-  Played-

vs-Uni vs-Pop vs-Pop
Popularity 65.24% 34.59% 49.94%
Genre 78.70% 74.86% 80.21%
k-Means 74.37% 72.83% 83.99%
station-based model 90.38% 86.96% 91.90%
station-less model 90.23% 87.98% 92.56 %

Table 6: Comparative model accuracy under a strong-
generalization test.

We also explored the way prediction accuracy increases with the
number of observed plays. Here we take the model trained on the
StrongGenl stations, and gradually apply it to more and more plays
of the StrongGen?2 stations. We let the model observe just the last

K train plays of each station, with K ranging between 10 and 250.
We are tracking the moving performance of our accuracy metrics
on the StrongGen?2 test set; see Figure 2. We provide the results
of the station-based and the station-less models, along with those
of the better baseline, Genre. As expected accuracy of all metrics
improves with number of observations, stabilizing at between 100-
150 observed plays. Note that NonRepeat-vs-Uni is high (except
for Genre) even with very few observations, as this metric benefits
from popularity effects which do not require personalization.
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Figure 2: Strong generalization accuracy as a function of the
number of observed plays per station.

Finally, we report the results of the cross-source learning test,
where we predict behavior of Yahoo! Music users based on a
model learned on IRDB. In order to establish a strong yardstick,
we trained the station-based model directly on YMDB itself. The
reader should note that at YMDB there are no repeating items for
the same user, hence we dropped the Played-vs-Pop metric which
became identical to the NonRepeat-vs-Pop metric. The results are
described in Table 7. It seems that popularity effects are very strong
at YMDB, as the naive Popularity method, which was allowed to
observe YMDB’s popularity distribution, achieved a 93.18% accu-
racy on the NonRepeat-vs-Uni metric. This also shows the disad-
vantage of content-based approaches like Genre, which completely
miss the big accuracy gains that could be made by differentiating
popular from less popular tracks. On the other hand, when remov-
ing the popularity effects, by using the NonRepeat-vs-Pop metric,
YMDRB is found to be inherently more difficult than IRDB, as re-
flected by the worsened performance of the station-based model
even when trained on YMDB itself.

As expected, IRDB-trained models could not match the accuracy
of a YMDB-trained model on the YMDB test set. Yet, our station-
based model could achieve, on both metrics, accuracies that are
within 5-6% of the YMDB-trained model. We argue that consider-
ing the significant disparity between the two datasets (over 6 years
mean time distance, and rating-orientation vs. playing-orientation)
achieving such a small accuracy difference is quite impressive.
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Method NonRepeat-vs-Uni ~ NonRepeat-vs-Pop
Trained-on-YMDB 96.33% 82.85%
Popularity-on-YMDB 93.18% 46.95%
Genre 78.22% 75.19%
k-Means 63.94% 59.99%
station-based model 91.25% 77.14%
station-less model 90.79% 75.13%

Table 7: Cross-source learning: evaluating IRDB-trained mod-
els on YMDB. The Trained-on-YMDB and Popularity results
were learned on YMDB and are brought for comparison.

Artist and genre prediction.

We also evaluated the model success in linking tracks belonging
to the same artist or genre. IRDB contains 113,103 tracks, each as-
sociated with an artist. For each track we compute the most similar
track based on cosine similarity of their respective factor vectors,
thereby generating 113,103 closest track pairs. Then we report the
fraction of track pairs that share the same artist. We repeat the same
experiment with genres. Here we consider only the aforementioned
45,713 tracks which we could associate with genres. We report the
fraction of pairs that share a genre. Besides using a 20-D model
we also report results of 50-D and 100-D models, as dimensional-
ity somewhat matters here. As a reference, we also report results
by a random matching between items. All results are reported in
Table 8.

Before we discuss the results we emphasize the following. Since
our model explicitly accounts for the given track-artist relations,
we have to re-train the model without exploiting this information,

in order to justify the tests reported here. Hence, we re-trained the

station-based model while replacing Equations (1)-(2) with g; ef

def
p;and b; = ¢;.

Method Yosame genre  %same artist
random 12.48% 0.02%
station-based 20-D 63.42% 8.16%
station-based 50-D 63.92% 8.81%
station-based 100-D 63.79% 8.89%

Table 8: Fraction of nearest item pairs that share the same
genre or the same artist. Results of random pairing are brought
as a reference.

First, we analyze the artist-linking results. When randomly form-
ing track-pairs, 0.02% of the pairs contain two tracks of the same
artist. A quite negligible fraction, as expected. However, when
picking pairs based on cosine similarity of the model’s factor vec-
tor, the fraction of shared artist pairs jumps over 400 times, reach-
ing best result with a 100-D model where 8.89% of the pairs share
an artist. This demonstrates the ability of the model to uncover true
musical properties.

We also analyze the genre-linking results. Interestingly, even
with a random match, 12.48% of track pairs share at least one
genre. This is attributed to the fact that the leading genres are ex-
tremely popular, with each covering a significant fraction of the
tracks. Still, when picking neighboring tracks based on our model,
the amount of pairs sharing a genre jumps more than 5-fold up to
63.92%. Note that it would be difficult to reach significantly better
results, as some human based genre assignments are quite subtle
and not well defined (e.g., compare the genre “Film Scores” with
“Shows & Movies”, or “Indie Rock™ with “Alternative Rock™). In
this sense, artist linking is a more natural task than genre linking.

5.2 Qualitative analysis

When examining our model, we have found that very often it
captures the true nature of music. We would like to give a taste

April 16-20, 2012, Lyon, France

of our qualitative experience with the model, by providing a few
results we found to exhibit particularly interesting intuitions.

The model was able to identify, using cosine similarity, individ-
ual band members as related to the band itself. In Table 9, we
show that artists found most similar to “The Beatles” are the band
members themselves. Notably, all similarity values are above 0.9,
corresponding to the top 0.2%-quantile of artist pairs.

Rank  Artist Similarity Score

1 Paul McCartney 0.927
2 John Lennon 0.925
3 George Harrison 0.920
4 Ringo Starr 0.916

Table 9: Artists most similar to ‘“The Beatles”.

Another good example is “Crosby, Stills and Nash”. Although
the band changed its name, upon addition of a new member (Young),
to “Crosby, Stills, Nash and Young” the model finds similarity at as
high as 0.906 between the new name and the former one.

An especially interesting observation surfaced by the model was
finding Kylie Minogue as the one most similar to Madonna. Indeed,
it is a known fact that these two artists were in great competition for
a very similar audience in the past. However, looking only at user
feedback/playlists from recent years, it will be a very hard insight
to gain, as in this period Kylie Minogue was not very active in her
musical career and therefore may not receive a strong enough sig-
nal. Radio stations however, have the world knowledge which can
bind music across time and genres, and by incorporating this into
our model we are able to offer recommendations with the human
touch otherwise hard to gain.

To investigate the intra-artist understanding of the model, for
each artist we have calculated the standard deviation of factor vec-
tors for corresponding tracks. For this exercise we used an afore-
mentioned version of the model where artist information is omitted
from the tracks vector. We filtered out artists with less than 15
tracks and less than 1000 plays. As shown in Table 10 “The Bea-
tles” are associated with the least standard deviation. From a pure
content analysis viewpoint, it may be considerably hard to find the
proper association between the different styles within the discog-
raphy of this band. However, our model captures the fact that in a
sense “The Beatles” define a style of their own, which transcends
the mere combination of instruments and harmony. At the other
end of the spectrum we find “Celine Dion”. This may be explained
by the fact that as a bilingual singer she has many tracks that are
mostly appreciated only by her French speaking audience and are
totally obscure to her other fans. Another reason that may account
for her “diversity” are her several “soundtrack super hits” like the
theme song of Titanic attracting a much wider crowd than the rest
of her English repertoire.

Artist Standard Deviation
The Beatles 1.942595597
Tina Turner 1.979493839
Pet Shop Boys 2.019336532

Celine Dion 11.19272216

Table 10: Artists sorted by the standard deviation of their songs
factor vectors (including only artists with at least 15 tracks and
1000 plays).

6. CONCLUDING REMARKS

By leveraging the wisdom of crowds, collaborative filtering (CF)
brings important benefits to recommendation technology. How-
ever, the flip side of getting this wisdom is the need to get a rea-
sonably sized crowd providing it. A major limitation of CF is its
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need of elaborate user activity on each considered item. This poses
a challenge to new service providers, which do not have enough in-
formation in order to facilitate building an appealing collaborative
filtering system. In fact, we observe an effect of “rich get richer”,
where large media providers could build well tuned CF systems
leveraging their vast number of users, and by this way maintain a
quality advantage.

We try to break this “rich get richer” cycle in music recommen-
dations, by tapping into the publicly available wisdom of the In-
ternet radio editors. This would enable interested parties such as
small ventures and research groups build quality CF systems. In a
similar manner this concept benefits more mature providers facing
the cold start problem related to items new to the system. By track-
ing a huge number of human crafted playlists, we model the ingre-
dients of a successful playlist. The proposed probabilistic model
is carefully designed for the needs of music recommendation, by
accounting for the typically unary user feedback such systems ob-
serve, together with temporal effects specific to music playing and
artist-track linkage. The model enables synthesizing new playlists
that will appeal to the unique tastes of individual users. This allows
young market players create collaborative filtering music recom-
mendation at low initial cost.

Another direct application of this work is a station recommen-
dation system, which will suggest the Internet radio station most
suitable to the user’s taste. Additional applications are building
general music database, and music trend detection systems along
the lines of Tables 1-2.

Our model is based on the wisdom of (many) experts, instead of
the wisdom of crowds typical to CF systems. This raises several
interesting questions that deserve further exploration: can a diverse
group of experts match (or exceed) the wisdom of the crowd? What

distinguishes experts-generated data from crowd-sourced data? (e.g.

can we expect a longer memory and less bias towards commer-
cially promoted items?) How reliance on identified experts can be
exploited for better explaining the reasoning behind specific rec-
ommendations to the end-user?
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