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ABSTRACT

We introduce the concept of a vertex collocation profile
(VCP) for the purpose of topological link analysis and pre-
diction. VCPs provide nearly complete information about
the surrounding local structure of embedded vertex pairs.
The VCP approach offers a new tool for domain experts
to understand the underlying growth mechanisms in their
networks and to analyze link formation mechanisms in the
appropriate sociological, biological, physical, or other con-
text. The same resolution that gives VCP its analytical
power also enables it to perform well when used in super-
vised models to discriminate potential new links. We first
develop the theory, mathematics, and algorithms underly-
ing VCPs. Then we demonstrate VCP methods performing
link prediction competitively with unsupervised and super-
vised methods across several different network families. We
conclude with timing results that introduce the comparative
performance of several existing algorithms and the practica-
bility of VCP computations on large networks.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data mining

Keywords
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1. INTRODUCTION
Link prediction is the task of inferring links in a graph

Gt+1 based on the observation of a graph Gt. It may be
that t+1 follows t in time, or it may be that t+1 represents
some other evolution or manipulation of the graph such as
including additional links from experiments that are diffi-
cult or expensive to conduct. Link prediction stated in this
manner is a binary classification problem in which links that
form construct the positive class and links that do not form
construct the negative class. Link analysis, more loosely de-
fined, is the problem of identifying evolutionary processes
or growth mechanisms in a network that are responsible for
the formation of new relationships between nodes.
We formally define a new technique for performing both

link prediction and link analysis based on a restrictive rep-
resentation of the local topological embedding of the source
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and target vertices. This idea is a generalization and exten-
sion of the triangle counting approach for multi-relational
prediction in [6]. It also draws on concepts from literature
on graphlets as introduced in [19] and to a lesser degree from
motif analysis as discussed in [17].

Many existing link prediction models compress a selection
of simple information in theoretically or empirically guided
ways. By contrast the VCP approach preserves as much
topological information as possible about the embedding of
the source and target vertices. It also extends naturally to
multi-relational networks and can thereby encode a variety
of additional information such as edge directionality. It can
encode continuous quantities such as edge weights by bin-
ning into relational categories, such as high activity and low
activity. Information about the nature of relationships is
maintained as structures are identified within the network.
We proceed with a formal exploration of VCP, discuss its re-
lationship to isomorphism classes, provide algorithms that
formally describe VCP computations, and demonstrate the
potential of VCP in link prediction and analysis as well as
feasibility in terms of computational time. Fast forms of the
algorithms listed within this paper are all implemented in
C++ and integrated into the LPmade [14] link prediction
software and are thus freely available on MLOSS.

2. VERTEX COLLOCATION PROFILES
Formally, a vertex collocation profile (VCP), written as

VCPn,r
i,j , is a vector describing the relationship between two

vertices, vi and vj , in terms of their common membership in
all possible subgraphs of n vertices over r relations. A VCP
element, VCPn,r

i,j (x) is defined as a distinct embedding of vi
and vj within a particular isomorphism class of n vertices
and is represented by a uniquely addressable cell in the VCP
vector. Figure 1 illustrates the first 16 elements of VCP3,2

s,t ,
where the two relations correspond to edge directionality.

In general, we can encode the connectivity in any multi-
relational network of r relations with 2r different types of
connections. We use 2r instead of 2r−1 because structural
holes are often as important as links [5], and we consider
the lack of relation as itself a type of connection. Undi-
rected single-relational networks exhibit two types of connec-
tions: existent and nonexistent. Directed single-relational
networks are similar to undirected bi-relational networks
and have four types of connections: nonexistent, outward,
inward, and bidirectional.

The cardinality of VCPn,r depends upon the number of
vertices n and the number of types of relationship r in the set
of relationsR. The space grows exponentially in the number
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Figure 1: Elements of VCP3,2
s,t . 16 through 31 are

identical except with the presence of et,s.

H
H
H
HH

n
r

1 2 3 4

3 4 32 256 2048
4 32 2048 131072 8.4× 106

5 512 524288 5.4× 108 5.5× 1011

6 16384 5.4× 108 1.8× 1013 5.8× 1018

Table 1: Number of enumerated subgraphs compos-
ing VCP for values of n and r.

of vertices with the base as the cardinality of the power
set of relations. The formula for the number of subgraphs
is written in intuitive form in Equation 1. The multiplier
accounts for the number of possible collocation structures
disregarding any links between the source and the target.
The multiplicand is the number of different ways two vertices
with the same embedding can appear based on the different
link possibilities between them.

(2r)

(

n(n−1)
2

−1

)

× 2r−1 (1)

We can manipulate these to achieve the simpler formula
below.

2
n(n−1)r

2
−1 (2)

Table 1 illustrates the number of subgraphs respecting
vertex identity that compose the VCP given different values
of n and r.
The number of subgraphs grows at such a rate as to make

the sheer size of output unmanageable for large values of n
and r. The rate of growth of VCPs is much slower due to
superlinear increases in the isomorphisms with increasing n,
but nonetheless VCP cardinality also grows quickly. Fortu-
nately, the most important information is typically located
close to the source and target vertices, and many networks
have few types of relationships. When the number of rela-
tionship types is high, relationships can be compressed or
discarded in various ways albeit with a loss of information.

2.1 Isomorphisms
Isomorphic subgraphs are closely related to VCP elements.

In Figure 2, it is impossible to distinguish subgraph 1 from

s t s t s t s t s t s t s t s t

s t s t s t s t s t s t s t s t

s t s t s t s t s t s t s t s t

s t s t s t s t s t s t s t

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

s t

0: {0} 5: {6,9} 10: {16} 15: {22,25}
1: {1,2} 6: {7,11} 11: {17,18} 16: {23,27}
2: {3} 7: {12} 12: {19} 17: {28}
3: {4,8} 8: {13,14} 13: {20,24} 18: {29,30}
4: {5,10} 9: {15} 14: {21,26} 19: {31}

Figure 2: Subgraphs that form VCP4,1
s,t and the map-

ping of isomorphic subgraphs to VCP elements.

subgraph 2, and the prevalence of the frequency of each dur-
ing counting will depend upon implementation details of the
counting algorithm that determine the order in which the
vertices are selected. These subgraphs map to the same
VCP element, VCP4,1

s,t (1), and the count of that element is
the sum of the counts of the isomorphic subgraphs.

Isomorphisms that require a mapping between vs and vt,
for instance subgraph 1 and subgraph 8 in Figure 2, do not
share the same VCP element even though they reside within
the same isomorphism class. VCP elements ignore isomor-
phisms that require mapping vs to vt because VCP describes
the local embedding of these two explicitly identified ver-
tices. In undirected graphs, elements such as VCP4,1

s,t (1) and

VCP4,1
s,t (3) together supply information regarding symmetry

or asymmetry in the density of the embedding of vs and vt.
The distinction in directed networks is more obvious and
relates to the potential significance of the difference in the
local topologies of the source of a new link and its target.
Figure 2 shows all the subgraphs pertinent to VCP4,1 and
their corresponding mappings to elements.

Counting the number of elements in VCPn,r is related to
the complex problem of counting the number of isomorphism
classes in graphs of n vertices. In VCP3,r, each enumerated
subgraph maps uniquely to a VCP element. vs and vt are
fixed, and there is only one permutation of the remaining
vertex. In VCP4,r, there are two mappable vertices and the
number of VCP4,r elements is described as:

26r−2 + 24r−2 (3)

The derivation of a general formula for |VCPn,r| for all
n and r is extremely combinatorially involved and its dis-
cussion is beyond the scope of this paper. We have in-
stead provided software that computes VCP cardinalities
and subgraph-to-element mappings for 3 < n < 8 and 1 <
r < 8. For practical purposes, Table 2 shows the cardinality
of all VCPs with fewer than a million elements.

2.2 Addressing
We define a VCP addressing scheme similar to the isomor-

phism certificate addressing scheme in [12]. The subgraphs
from which the elements are derived are indexed by assign-
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Table 2: Number of elements in VCPn,r
i,j .

H
H
H
HH

n
r

1 2 3 4 5

3 4 32 256 2048 16384
4 20 1088 66560 - -
5 120 91520 - - -
6 996 - - - -
7 12208 - - - -

ing powers of 2r to edges in the adjacency matrix in increas-
ing lexicographical order starting with e1,3 and ending with
en−1,n. vs and vt are defined as v1 and v2 respectively, and
e1,2 is the edge of highest value. The value of each edge
is multiplied by the index of the lexicographically ordered
power set, P(R), corresponding to the ordered set of R rela-
tions on the edge. Figures 1 and 2 demonstrate the indexing
scheme for two different values of n and r. For any selec-
tion of vertices vs, vt, v3, ..., vn, this addressing scheme will
map the resulting multi-relational subgraph to an index that
exists within a set of indices of isomorphic structures.
We define the unique address of a VCP element as the

subgraph representative with the lowest index within the
corresponding isomorphism class. This addressing scheme
provides a unique address for all elements in all VCPs. The
addresses for elements in VCP4,1 are provided in Figure
2. Because manual identification of isomorphism classes is
error-prone and difficult especially as the number of sub-
graphs increases, we have provided a program that outputs
the mapping from all subgraph indices to their correspond-
ing element addresses for all VCPs.

2.3 Directionality
Directed networks with r relations can be treated simi-

larly to undirected networks with 2r relations with one ma-
jor caveat. The subgraph-to-element mapping differs with
directed networks. Taking exi,j momentarily as notation for
an edge of relation x and 2x as relation x in the opposite
direction, exi,j ≡ exj,i in undirected multi-relational networks,

but exi,j ≡ e2xj,i in directed networks. In the context of larger
subgraphs, this causes more isomorphic equivalences and de-
creases the cardinality of the VCP by comparison to its
undirected pseudo-equivalent, a fact demonstrated in Fig-
ure 3. For instance, VCP4,2 contains 1088 elements whereas
the directed variant of VCP4,1 contains only 1056 elements.

s t s t

s t s t

341 597

341 597

≡

≡

Figure 3: Subgraphs from undirected VCP4,2 and di-
rected VCP4,1. The directed subgraphs both map to
directed VCP4,1(221), but the undirected subgraphs
map to two different VCP4,2 elements.

Algorithm 1 VCP3,r

Input: network G = (V,E),
relations R,
i : vi ∈ V ,
j : vj ∈ V

Output: V CP
3,|R|
i,j

1: σi,j ← Φ(P(R), ei,j)
2: for k : ei,k ∈ Ei ∧ ej,k ∈ Ej do
3: σi,k ← Φ(P(R), ei,k)
4: σj,k ← Φ(P(R), ej,k)
5: λ← 22|R|σi,j + 2|R|σj,k + σi,k

6: V CP
3,|R|
i,j [λ]← V CP

3,|R|
i,j [λ] + 1

7: end for
8: for k : ei,k ∈ Ei ∧ ej,k /∈ Ej do
9: σi,k ← Φ(P(R), ei,k)
10: λ← 22|R|σi,j + 2|R|σj,k + σi,k

11: V CP
3,|R|
i,j [λ]← V CP

3,|R|
i,j [λ] + 1

12: end for
13: for k : ei,k /∈ Ei ∧ ej,k ∈ Ej do
14: σj,k ← Φ(P(R), ej,k)
15: λ← 22|R|σi,j + 2|R|σj,k + σi,k

16: V CP
3,|R|
i,j [λ]← V CP

3,|R|
i,j [λ] + 1

17: end for
18: λ← 22|R|σi,j

19: for k : ei,k /∈ Ei ∧ ej,k /∈ Ej do

20: V CP
3,|R|
i,j [λ]← V CP

3,|R|
i,j [λ] + 1

21: end for
22: return V CP

3,|R|
i,j

Therefore, the algorithms in Section 3 and the procedures
described by all provided code work with only minor ad-
justments, which are essentially related to the subgraph-
to-element mapping. We include software to construct the
mapping for VCP4,1 where there are actually two relations
corresponding to directionality.

3. ALGORITHMS
Algorithms 1 and 2 serve as reference algorithms and not

as optimized or even asymptotically optimal approaches for
VCP element counting. In fact, implementations of the
näıve VCP4,1 algorithm fail to return within a reasonable
time for networks with even thousands of nodes. Fortu-
nately, it is possible to design much faster approaches, and
we implemented these approaches and provide them as a set
of C++ files. We also present a more innovative algorithm,
Algorithm 3 for counting VCP4,1 that corresponds to the
approach in the code for that VCP.

3.1 3-Vertex VCP
Algorithm 1 demonstrates how to calculate VCP3,r for the

set of r relations in R. Φ(P(R), ex,y) refers to a procedure
to determine the index of the multi-relational edge ex,y in
P(R), the lexicographically ordered power set of relations.
This procedure can derive power set indices efficiently by
setting individual bits in the index according to the presence
of the relation corresponding to that bit and indexing the
bits by the natural order of the relations themselves.

This näıve algorithm first determines the contribution of
any edge types between vi and vj , the fixed source and tar-
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get vertices for the link. Then it counts subgraphs with a
third vertex connected to both vi and vj , subgraphs only
connected to vi, subgraphs only connected to vj , and both.
σ represents the identity of an edge within P(R) and λ rep-
resents the index of the subgraph. Because no isomorphisms
exist with only one mappable vertex, the algorithm directly
increments the VCP elements corresponding to the under-
lying subgraph index as contrasted to Algorithm 2 wherein
the subgraph index must be mapped to an element address.
A näıve implementation iterates through each vertex in

the network and determines the corresponding subgraph in-
dex by summing the edge contributions. For one free vertex,

this approach has complexity O
(

|V | log
(

|E|
|V |

))

per edge

output assuming O
(

log
(

|E|
|V |

))

neighbor search time for

the average case. This complexity is probably feasible for
small networks, but may require an unacceptably long time
for large networks. It is simple to improve upon this ap-
proach by considering only the vertices that are neighbors,
denoted by Γ(vx) of vi, vj , both, or neither and perform-
ing set operations. VCP3,1

i,j (0) is populated by subtracting

|Γ(vi) ∪ Γ(vj)| from |V | − 2. VCP3,1
i,j (1) and VCP3,1

i,j (2) are
populated by computing set differences |Γ(vi) − Γ(vj)| and
|Γ(vj)−Γ(vi)| respectively. VCPi,j is computed as the inter-
section |Γ(vi) ∩ Γ(vj)|. These operations can be performed
quickly especially in graphs in which adjacencies are repre-
sented as ordered lists of neighbors. This implementation

has average-case complexity O
(

|E|
|V |

)

per edge output.

3.2 4-Vertex VCP
Algorithm 2 iterates through every pair of free vertices,

yielding a complexity of O
(

|V |2 log
(

|E|
|V |

))

from
(

|V |−2

2

)

pairs of free vertices. This requires trillions of operations
even for small networks. It is possible to reduce this time
greatly by restricting consideration to known neighbors as
described in the discussion of Algorithm 1, but näıve im-
plementations of this optimization involve many expensive
operations in hashes or balanced search trees.
Algorithm 3 instead uses a minimal number of set op-

erations implemented as merge operations on ordered lists.
Figure 4 provides an illustration of the sets mentioned in
the following explanation. First, the number of connected
pairs and unconnected pairs is computed once for the en-
tire network, and these values are represented as χG and ǫG
respectively. We must also track the connected pairs and
unconnected pairs internal to the vertices in our consider-
ation for the prediction output to differentiate VCP4,1(0)
from VCP4,1(10). We start by constructing a set of po-
tential “third position” vertices, Γ3, as Γ(vi) ∩ Γ(vj). For
each member of Γ3, we construct two disjoint sets of “fourth
position” vertices, Γ4 containing vertices reachable by our
current member of Γ3 but not contained within Γ3, and Γ4a

constructed from Γ3 excluding the current member of Γ3.
In Γ4, we count new connections and gaps in the configu-
ration, and we increment the counter for the corresponding
subgraph. For Γ4a, we do not count connections and gaps
since configurations using those set members are counted
when they serve as members of Γ3, or “third position” ver-
tices. Likewise, we only count subgraphs with two mem-
bers from Γ3 when the member from Γ4a compares lower.
This avoids multi-counting. After considering the config-
urations from all members of Γ4 and Γ4a, we account for

Algorithm 2 VCP4,1 (Simple)

Input: network G = (V,E),
i : vi ∈ V ,
j : vj ∈ V ,
subgraph-element mapping M

Output: V CP 4,1
i,j

1: for k : vk 6= vi ∧ vk 6= vj do
2: for l : vl 6= vi ∧ vl 6= vj ∧ l > k do
3: λ← 0
4: if ei,k ∈ E then
5: λ← λ+ 1
6: end if
7: if ei,l ∈ E then
8: λ← λ+ 2
9: end if
10: if ej,k ∈ E then
11: λ← λ+ 4
12: end if
13: if ej,l ∈ E then
14: λ← λ+ 8
15: end if
16: if ek,l ∈ E then
17: λ← λ+ 16
18: end if
19: V CP 4,1

i,j (M(λ))← V CP 4,1
i,j (M(λ)) + 1

20: end for
21: end for
22: return V CP 4,1

i,j

structures with isolates by contributing |V | − 2− |Γ3| − |Γ4|
to V CP 4,1

i,j (M(λ1)). We also account for multi-counting of

VCP4,1(0) due to duplicate consideration of gaps by sub-
tracting the same quantity from V CP 4,1

i,j (M(0)). Finally,

we compute VCP4,1(0) and VCP4,1(10) using our computa-
tions of vertices and gaps in the vertices we have encountered
in the single Γ3 and multiple Γ4 sets and subtract their con-
tributions from the contributions from the entire network.
It is possible to perform the entire procedure using a few
relatively inexpensive merge operations in ordered vectors
or lists and entirely avoiding hashes or balanced trees. This
exposition mostly describes the procedure to quickly com-
pute VCP4,1 albeit omitting minor implementation details.
We refer more interested readers to the code itself.

3.3 Extension to Complex Networks
It is trivial to extend VCP algorithms to networks more

complex than those on which we obtained our results. This
includes any form of edge feature such as directionality,
weight, temporality, different relation types, or any infor-
mation describing edges or vertex pairs that either exists
categorically or can be quantized. One amenable network
representation associates an ordered set of bits with each
edge. Each bit corresponds to the presence of a particular
relation or some Boolean descriptor for a pair of vertices.
The determination of the existence of an edge for single-
relational data instead becomes an evaluation of the edge
as the binary-coded integral value of the ordered set of bits.
This is one conceivable implementation for Φ(P(R), ex,y) in
Algorithm 1, which replaces the constant values for all λ
updates in Algorithms 2 and 3. For most values of r, this
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Algorithm 3 VCP4,1 (Fast)

Input: network G = (V,E),
i : vi ∈ V ,
j : vj ∈ V ,
subgraph-element mapping M
count of connected pairs χG,
count of unconnected pairs ǫG

Output: V CP
4,1
i,j

1: υ ← 2
2: χ← 0
3: ǫ← 0
4: Γ3 ← Γ(vi) ∩ Γ(vj)
5: for k : vk ∈ Γ3 do

6: λ1 ← 0
7: if ei,k ∈ E ∨ ek,i ∈ E then

8: λ1 ← λ1 + 1
9: χ← χ+ 1
10: else

11: ǫ← ǫ+ 1
12: end if

13: Γ4 ← Γ(vk)− Γ3

14: υ ← υ + |Γ4|
15: for l : vl ∈ Γ4 do

16: λ2 ← λ1

17: if ei,l ∈ E ∨ el,i ∈ E then

18: λ2 ← λ2 + 2
19: χ← χ+ 1
20: else

21: ǫ← ǫ+ 1
22: end if

23: if ej,l ∈ E ∨ el,j ∈ E then

24: λ2 ← λ2 + 8
25: χ← χ+ 1
26: else

27: ǫ← ǫ+ 1
28: end if

29: if ek,l ∈ E ∨ el,k ∈ E then

30: λ2 ← λ2 + 16
31: χ← χ+ 1
32: else

33: ǫ← ǫ+ 1
34: end if

35: V CP
4,1
i,j (M(λ2))← V CP

4,1
i,j (M(λ2)) + 1

36: end for

37: for l : vl ∈ Γ3 ∧ l > k do

38: λ2 ← λ1

39: if ei,l ∈ E ∨ el,i ∈ E then

40: λ2 ← λ2 + 2
41: end if

42: if ej,l ∈ E ∨ el,j ∈ E then

43: λ2 ← λ2 + 8
44: end if

45: if ek,l ∈ E ∨ el,k ∈ E then

46: λ2 ← λ2 + 16
47: χ← χ+ 1
48: else

49: ǫ← ǫ+ 1
50: end if

51: V CP
4,1
i,j (M(λ2))← V CP

4,1
i,j (M(λ2)) + 1

52: end for

53: ζ ← |Γ3|+ |Γ4|

54: V CP
4,1
i,j (M(λ1))← V CP

4,1
i,j (M(λ1)) + |V | − 2− ζ

55: V CP
4,1
i,j (M(0))← V CP

4,1
i,j (M(0)) + |V | − 2− ζ

56: end for

57: ρ← ei,j ∈ E ∨ ej,i ∈ E

58: V CP
4,1
i,j (M(16))← V CP

4,1
i,j (M(16)) + χG − (χ+ ρ)

59: V CP
4,1
i,j (M(0))← V CP

4,1
i,j (M(0))+ǫG−(ǫ+¬(ρ))−(2|V |−υ)

60: return V CP
4,1
i,j

s t

Г3

Г4Г4 Г4

Figure 4: A depiction of the sets considered within
Algorithm 3.

can be implemented as a constant-time operation equivalent
to retrieving the value of a variable, so the asymptotic cost
of populating the VCP vector is unaffected. Excepting the
additional costs of writing output and of allocating and deal-
locating the storage necessary to hold the additional multi-
relational structural elements, which is inexpensively pro-
portional to 2r, the computational complexity of the multi-
relational extension is no greater than for single-relational
networks.

4. RESULTS
First, we illustrate how VCP can serve as a powerful link

analysis and modeling tool. Then we perform a standard
comparison of the link prediction efficacy of VCP and a se-
lection of other methods. Timing results are rarely provided
in link prediction work despite vast differences in the run-
ning time and feasibility of methods. For this reason and
because we believe many might suspect that a completely
theoretically aligned implementation of VCP is computa-
tionally unachievable, we also provide comparative timing
results.

4.1 Data
We present results for several different data sets to demon-

strate the performance of the techniques under compari-
son for different families of networks. Though all of these
data sets contain information with which to generate edge
weights, we are interested in providing purely structural
comparison here, so all quantitative results are presented
based on networks constructed without edge weights.
calls is a stream of 262 million cellular phone calls from a

major cellular phone service provider. We construct directed
networks from the calls by creating a node vi for each caller
and a directed link ei,j from vi to vj if and only if vi calls vj .
sms is a stream of 84 million text messages from the same
source as calls and constructed in the same manner. These
two data sets are not publicly available.
condmat-collab is a stream of 19,464 multi-agent events

representing condensed matter physics collaborations from
1995 to 2000. We construct undirected networks from the
collaborations by creating a node for each author in the
event and an undirected link connecting each pair of au-
thors. For all experiments involving condmat, we use the
years 1995 to 1999 for constructing training data and the
year 2000 for testing.
dblp-cite is a citation network based on the DBLP com-

puter science bibliography. Each researcher is a node vi and
directed networks are formed by viewing a citation by re-
searcher vi of work by researcher vj as a directed link ei,j .
The dblp-collab network uses the same raw data, but links
are based on co-authorship collaborations. An undirected
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Table 3: Some basic properties of the data sets. These figures are reported for networks constructed using
all available longitudinal data. C represents average clustering coefficient and ra represents assortativity
coefficient.

Name Directed Vertices Edges C ra
calls X 7,786,471 33,292,508 0.127 0.212
condmat-collab 17,216 110,544 0.642 0.177
dblp-cite X 15,963 344,373 0.128 -0.046
dblp-collab 367,725 2,088,710 0.617 0.254
disease-g 399 15,634 0.665 -0.310
disease-p 437 81,158 0.818 -0.406
hepth-cite X 8,249 335,028 0.352 0.097
hepth-collab 8,381 40,736 0.466 0.237
huddle 4,243 997,008 0.591 -0.211
patents-collab 1,162,227 5,448,168 0.531 0.141
sms X 5,016,746 11,598,843 0.048 0.042

link exists between vi and vj if both are an author on the
same paper.
disease-g is a network in which nodes represent diseases

and the links between diseases represent the co-occurrence
of particular genotypic characteristics. Links are undirected.
This network is not longitudinal, but finding unobserved
links is an important task, so we have no choice but to esti-
mate performance by randomly removing links to construct
test sets. disease-p is from the same source as disease-g.
The difference is that the links in disease-p represent the
co-occurrence of phenotypic characteristics. Predictions of
common expressions between diseases are uninteresting since
expressions are either observed between diseases or they are
not, so practically speaking the value of phenotypic pre-
dictions is negligible. Nonetheless, holding out phenotypic
links and subsequently predicting their presence is equally
instructive for the purposes of predictor evaluation.
hepth-cite and hepth-collab are formed in exactly the

same way as dblp-cite and dblp-collab respectively. The
raw data for these networks is a set of publications in the-
oretical high-energy physics. In particular, we used a data
set post-processed by the Knowledge Discovery Lab at the
University of Massachusetts for use in [16] rather than the
original 2003 KDD Cup competition data set. This form
of the data set offers advantages in data quality and entity
consolidation and disambiguation.
The huddle data set from [20] is transaction data gath-

ered at a convenience store on the University of Notre Dame
campus. The data was collected from June 2004 to Febru-
ary 2007. Products are represented by nodes, and products
purchased together in the same transaction are represented
by undirected links.
The patents-collab data set is constructed from the data

at the National Bureau of Economic Research. Nodes rep-
resent authors of patents and undirected links are formed
between authors who work together on the same patent.

4.2 Experimental Setup
To run our experiments, we integrated VCP with the LP-

made link prediction software [14]. LPmade uses a GNU
make architecture to automate the steps necessary to per-
form supervised link prediction. This integration will allow
those interested in VCP for link prediction and other pur-
poses to test it on their networks easily.
We compare link prediction output against representatives

from different predictor families established as strong by pre-

vailing literature [13]. The unsupervised selections include
the Adamic/Adar common neighbors predictor [1], the Katz
path-based predictor [11], and the preferential attachment
model [2, 18]. We also compare against the HPLP super-
vised link prediction framework contributed by [15] includ-
ing the PropFlow feature. HPLP combines simple topologi-
cal information such as node degree and common link predic-
tors into a bagged random forests classification framework
with undersampling, a framework that the authors showed
works well.

When performing classification using VCPs, we opted for
the bagged [3] random subspaces [9] implementation from
WEKA 3.5 [22]. This classification scheme offers signifi-
cantly lower peak memory requirements than random forests
while simultaneously providing the potential to handle fea-
ture redundancy [9]. We considered presenting results with
HPLP also using random subspaces, but we determined that
random subspaces produced decreased or comparable per-
formance to the original reference implementation, so we
present HPLP results unmodified using random forests [4].

We used the default values from HPLP of 10 bags of 10
random forest trees, 10 bags of 10 random subspaces for
VCP classifiers, and training set undersampling to 25% pos-
itive class prevalence in training. We did not change the size
or distribution of the testing data. For undirected networks,
we resolve f(vs, vt) 6= f(vt, vs), by computing the arith-
metic mean to serve as the final prediction output. By de-
fault, LPmade includes features that consider edge weights
such as the sum of incoming and outgoing link weights, and
PropFlow inherently considers edge weights. We are inter-
ested in the comparative prediction performance of the link
structure alone, so we ran all predictors on the networks dis-
regarding edge weights. There are many different ways to
assign edge weights to all the networks here, and the par-
ticular choice of edge weight and the precise decision about
how to incorporate it into the VCPs would distract from the
study.

Computing and evaluating predictions for all possible links
on large, sparse networks with any prediction method is in-
feasible for multiple computational reasons including time
and storage capacity. Link prediction within a two-hop
geodesic distance provides much greater baseline precision
in many networks [15, 21], so effectively predicting links
within this set offers a strong indicator of reasonable deploy-
ment performance. For all compared prediction methods, we
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Table 4: The distributional divergence of highly ver-
sus lowly ranked links as output from Adamic/Adar
on the sms network.

Address Element Distance

0 s t 0.006

1 s t 0.091

2 s t 0.052

3 s t 0.063

4 s t 0.006

5 s t 0.116

6 s t 0.051

7 s t 0.106

restricted the prediction task by distance and only consid-
ered performance comparisons for potential links spanning
two hops within the training data due to their higher prior
probability of formation and computational feasibility.
Reciprocity is an important consideration for link forma-

tion in directed networks, so when performing undirected
VCP computations on directed networks, we deviate slightly
from the definitions above to consider existing reciprocal
links as a different relation type and accordingly double the
width of the VCP feature space to include elements with
and without the reciprocal link.

4.3 Link Analysis
VCPs can assist with a variety of functions regarding link

analysis, and post hoc analysis of link prediction output is an
interesting example. We start with the performance of the
Adamic/Adar predictor in the sms network. As we show
in Table 5, it achieves AUROC performance of 0.642 and
AUPR performance of 0.009410. It may be helpful to us
as modelers to understand better why Adamic/Adar fails.
We can do this by looking at other simple characteristics of
the graph such as degree, centrality measures, or clustering
coefficient, but VCPs offer a fine-grained and informative
view of links as they are embedded in the broader topology.
We select the Adamic/Adar predictor and first extract

the positives from the top 10 million predictions and place
them in one set. We place all remaining positives in a sec-
ond set. For the positives in each of these sets, we can
very quickly compute the VCPs of our choice. For sim-
plicity in the demonstration, we choose undirected VCP3,1.
Since sms is a directed network, we extend VCP3,1 to in-
clude reciprocal edges between vi and vj if they exist. This
procedure provides two multi-column distributions of corre-
sponding columns. One logical first step is to compute the
distributional divergences of these columns. The distribu-
tions are highly skewed, so we use Hellinger distance [10],
a non-parametric measure of divergence ranging from 0 to√
2. The distances are shown in Table 4.
We select the most divergent element, the fifth, and ex-

amine the distribution of highly ranked and lowly ranked
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Figure 5: Distributional comparison of extended
VCP3,1(5) membership for highly ranked and lowly
ranked Adamic/Adar prediction outputs.

Adamic/Adar outputs more closely in Figure 5. The fifth
element is one in which a reciprocal link precedes the target
link in the prediction. The distributions indicate that highly
ranked predictions in Adamic/Adar tend to have more con-
nected source vertices than lowly ranked predictions. Since
having many neighbors in common tends to follow from sim-
ply having many neighbors, this is not surprising, but the
greater dissimilarities of elements 1, 5, and 7 and lesser dis-
similarities of 6 and 2 suggest that the connectedness of the
link initiator may be more significant than that of the re-
ceiver. Adamic/Adar as a model fails to sufficiently separate
links containing low-degree source vertices in this network.

In this particular case, we could have obtained the same
information by examining the degree distributions of the two
sets, but 4-vertex VCPs offer much more distinctive struc-
tural information with their greater complexity. This is only
one of many ways to perform post hoc link prediction anal-
ysis that focuses on the causes of type 2 error in prediction
output. Similar analysis could be applied to analyze type 1
error in an attempt to increase precision. Many more pow-
erful and imaginative variations on these techniques apply
to link analysis and clustering in general.

4.4 Prediction Performance
The area under the receiver operating characteristic curve

(AUROC) can be deceptive in scenarios with extreme imbal-
ance [8] and area under the precision-recall curve (AUPR)
exhibits higher sensitivity in the same scenarios [7]. We will
provide results for those interested in traditional AUROC,
but we will also present AUPR results and will mainly re-
strict our analysis to those results. Table 5 shows the com-
parative AUROC and AUPR performance of Adamic/Adar,
Katz, preferential attachment, HPLP, and VCPs in link pre-
diction for potential links spanning a geodesic distance of
two hops.

In general, we expect the information content of VCPs to
increase in the left-to-right order presented in the table. De-
pending on the significance of directedness in the network,
the expectation of performance from VCP 3D and VCP 4U
may change. We point the reader to calls, dblp-cite,
dblp-collab, disease-g, disease-p, hepth-cite, huddle,
patents-collab, and sms as conformant examples. We sus-
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AA Katz PA HPLP VCP 3U VCP 3D VCP 4U VCP 4D
calls 0.698 0.641 0.424 0.782 0.802 0.814 0.834 0.849
condmat 0.663 0.630 0.585 0.588 0.637 - 0.582 -
dblp-cite 0.794 0.791 0.773 0.841 0.830 0.847 0.843 0.868
dblp-collab 0.697 0.623 0.523 0.691 0.640 - 0.695 -
disease-g 0.930 0.907 0.820 0.970 0.923 - 0.964 -
disease-p 0.898 0.920 0.932 0.922 0.939 - 0.951 -
hepth-cite 0.826 0.794 0.766 0.838 0.836 0.846 0.845 0.851
hepth-collab 0.606 0.619 0.547 0.592 0.598 - 0.622 -
huddle 0.879 0.875 0.875 0.877 0.881 - 0.888 -
patents-collab 0.793 0.671 0.532 0.800 0.680 - 0.816 -
sms 0.642 0.581 0.472 0.714 0.735 0.730 0.791 0.802

(a) AUROC

AA Katz PA HPLP VCP 3U VCP 3D VCP 4U VCP 4D
calls 0.000505 0.011465 0.000092 0.018005 0.031655 0.033091 0.033533 0.035127
condmat 0.000195 0.000183 0.000177 0.007763 0.011917 - 0.008589 -
dblp-cite 0.000314 0.000246 0.000234 0.016030 0.009207 0.015265 0.011427 0.018137
dblp-collab 0.008777 0.006723 0.003251 0.007772 0.007152 - 0.009410 -
disease-g 0.221299 0.193863 0.061694 0.466716 0.155165 - 0.444153 -
disease-p 0.629516 0.676419 0.673601 0.390074 0.552765 - 0.633316 -
hepth-cite 0.003967 0.003784 0.003225 0.054846 0.046140 0.059245 0.056244 0.063387
hepth-collab 0.008563 0.009328 0.005060 0.006123 0.007197 - 0.007156 -
huddle 0.000790 0.000746 0.000745 0.039914 0.039394 - 0.046803 -
patents-collab 0.006962 0.005678 0.001684 0.006735 0.005564 - 0.007709 -
sms 0.009410 0.009164 0.002986 0.011594 0.025206 0.026063 0.027073 0.028201

(b) AUPR

Table 5: Comparative performance for Adamic/Adar (AA), Katz, preferential attachment (PA), HPLP, and
VCP. For VCP, U indicates that directionality is ignored and D indicates that it is considered.
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Figure 6: ROC and precision-recall curves for selected networks.
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Figure 7: Timing analysis for three different networks. Network size information is available in Table 3.

pect that the exceptions indicate cases in which the classi-
fication algorithm was either overfitting the training set or
failed to create a sufficiently optimized model in the high-
dimensional space.
In 7 of the 11 networks, VCP classification offers supe-

rior AUPR performance. In a slightly different selection of
7 networks, it offers superior AUROC performance. In some
of the cases in which VCP offers the best performance, the
differences are quite wide. In the sms network it offers an
AUPR that is 2.3 times as high as the best competitor. In
the condmat network, it offers AUPR 1.53 times the nearest
competitor. In two of the networks in which VCP classifi-
cation does not provide the best performance, HPLP does.
As an interesting side note, when weights are removed as
they were to obtain these results, HPLP does not always
outperform the unsupervised predictors.
Figure 6 shows a closer look at the performance differ-

ences. The black dashed line represents the baseline perfor-
mance of a random predictor. Across all the selected net-
works, VCP maintains high precision longer at increasing
values of recall. This is especially important in link predic-
tion where high precisions are so difficult to achieve.
Despite the strong and competitive performance that the

VCP method of supervised prediction exhibits, it is not our
intent to present the most effective possible classification
scheme. Our experiences with random forests, random sub-
spaces, and other classification techniques suggest that the
potential for improvement through feature selection and al-
ternative classification algorithms is high. Another option
for potential improvement is to concatenate VCP3,r and
VCP4,r into a single feature vector. VCPs contain much
information, and the task is simply to determine how best
to leverage it to achieve whatever goals are desired.

4.5 Timing
We used two different types of machines for timing. All

feature computation and VCP generation was performed se-
rially on a quad-core Opteron 2218 running at 2.6 GHz with
1 MB cache and 4 GB of main memory. Some classification
runs required more than 4 GB of memory with the speci-
fied training set undersampling and algorithm parameters,
so all WEKA classification was performed on a dual quad-

core Xeon E5620 running at 2.4 GHz with 12 MB cache and
32 GB of main memory. To some degree, timings are imple-
mentation dependent, and though the implementations of
predictors, feature computations, and VCPs are not näıve,
we cannot claim that they are fully optimized. Figure 7
shows the results.

Adamic/Adar, O
(

|E|
|V |

)

per prediction, and preferential

attachment, O(1) per prediction, perform very few opera-
tions to generate their output. They are so inexpensive to
compute that they are invisible within the same scale as
Katz and the supervised prediction methods for all three
networks in Figure 7. We note that for all three networks
the total time to perform supervised link prediction with
VCPs is often less than that necessary for HPLP. Most of
this is due to the expense of the Katz feature, which involves
finding paths up to length 5 with the aid of memoization in
our implementation. Based on these results, Adamic/Adar
is clearly an effective and inexpensive option for a wide va-
riety of networks, but VCP offers significant potential for
performance enhancement.

Perhaps the most interesting conclusion lies in the incon-
sistency of the results in terms of the breakdown of time
requirements for different components. Timing is related to
the interplay between the specific algorithms involved, the
local densities or global density of the graph, and the raw size
of the graph in terms of the number of vertices and edges.
Whether the bulk of time is consumed in feature generation,
VCP computation, training, or testing varies greatly across
networks as does the total time for any particular method.

The VCP implementations provided are slightly limited
in efficiency because of the graph implementation to which
they are tied in LPmade. With a more amenable support-
ing graph implementation and slight changes to the selection
of data structures, we expect that it would be possible to
decrease the running time of the VCP vector computation
itself by a factor of at least 2. Nonetheless, the computa-
tion of even VCP4,2 is competitive in terms of running time
with much simpler and less effective path-based prediction
methods.

The results in Figure 7 show that VCP is more efficient
from a cost-performance standpoint than classification based
on computing and combining simpler unsupervised predic-
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tors. Further, VCP computations are naturally parallel, and
the extended times for the sms network include computing
VCPs for tens of millions of vertex pairs. The extended fea-
ture vector of VCP4,2 greatly increases training time, but
feature selection or the application of different training algo-
rithms or parameters could reduce this greatly, and training
is parallelizable across bags.

5. CONCLUSIONS
VCP is a new method of link analysis with solid theoretical

roots. We presented evidence of its utility in some applica-
tions here, but there are many possible applications. It is
useful for post hoc analysis of classification output, compar-
ative analysis of network link structure, and it competes ef-
fectively with an existing recently published method, HPLP,
often outperforming it by wide margins. In well-established
networks with past observational data, VCP can serve as a
sensitive change detection mechanism for tracking the evolv-
ing link formation process. In addition to link prediction and
link analysis for the purpose of network growth modeling,
VCP can be used for link or vertex pair clustering. Its abil-
ity to handle multiple relations naturally extends its utility
into many domains and offers an alternative to the practice
of combining or discarding edge types or edge directionality.
The VCP computations for the directed and undirected

variants of both VCP3,1 and VCP4,1 are integrated into the
LPmade link prediction framework. The LPmade branch
containing the software is available at http://mloss.org/

software/view/307/. Most of the data sets are publicly
available elsewhere, but we have also published all pub-
lic data sets to http://nd.edu/~rlichten/vcp so that our
experiments can be repeated with the same longitudinal
thresholds and thus the same network saturation. We have
provided code to perform VCP subgraph-to-element map-
pings at the same location.
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