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ABSTRACT

Bucket testing, also known as split testing, A/B testing, or
0/1 testing, is a widely used method for evaluating users’
satisfaction with new features, products, or services. In or-
der not to expose the whole user base to the new service,
the mean user satisfaction rate is estimated by exposing the
service only to a few uniformly chosen random users. In
a recent work, Backstrom and Kleinberg, defined the no-
tion of metwork bucket testing for social services. In this
context, users’ interactions are only valid for measurement
if some minimal number of their friends are also given the
service. The goal is to estimate the mean user satisfaction
rate while providing the service to the least number of users.
This constraint makes uniform sampling, which is optimal
for the traditional case, grossly inefficient.

In this paper we introduce a simple general framework for
designing and evaluating sampling techniques for network
bucket testing. The framework is constructed in a way that
sampling algorithms are only required to generate sets of
users to which the service should be provided. Given an
algorithm, the framework produces an unbiased user satis-
faction rate estimator and a corresponding variance bound
for any network and any user satisfaction function. Further-
more, we present several simple sampling algorithms that are
evaluated using both synthetic and real social networks. Our
experiments corroborate the theoretical results and demon-
strate the effectiveness of the proposed framework and algo-
rithms.
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1. INTRODUCTION

To evaluate users’ engagement or satisfaction from a new
service, feature, or product, providers usually perform bucket
testing (also known as split testing, A /B testing, or 0/1 test-
ing). In particular, providers often choose a small subset of
users to which a new service is offered. Based on these users’
behavior, the overall satisfaction of users can be estimated.
If the satisfaction is high enough, the service is released to
the entire user population. For example, web page layouts
significantly impacts users’ engagement. If a new page lay-
out is considered, bucket testing is used to verify that the
new layout is better than the existing one. This example
also demonstrates why the number of users exposed to the
new layout should be considered carefully. On one hand, it
should be large enough so that the measurements are sta-
tistically valid. On the other hand, it should be as small
as possible to limit the potential damage in case the new
page layout is ‘bad’; i.e., to mitigate the number of users
who ‘suffered’ from the experiment in case the new layout
is less successful than the existing one. Accordingly, each
bucket test is therefore given a budget, B, which represents
the maximal number of users it is allowed to effect.

In traditional bucket testing, users’ individual interactions
depend only on the user and the feature, in which case uni-
form sampling is optimal. In social networks and services,
however, the situation is more complex since users’ satisfac-
tion might depend on whether the service is also available
to their friends. For example, a messaging service may in-
herently be very useful but no user can enjoy it if none of
his friends use it. Thus, to measure users’ engagement the
service must be offered to at least some of their friends as
well. Other examples include, content tagging, games, cer-
tain kinds of ads, event invitations, etc. In [1], the authors
suggest to set a parameter d > 0 such that users’ interac-
tions can be measured only if at least d of their friends have
also received the service. We adopt this model as well.

Let the graph G(V, E) represent a social network, where
each node corresponds to a user and {i,j} € E iff users
¢ and j are connected (or ‘friends’). We denote |V| = n
and |E| = m. As in [1], we assume, for simplicity, that all
the nodes in G have at least d neighbors. Let f : V —
[0,1] be an arbitrary function over the users measuring the
user’s engagement or satisfaction. The aim of the test is to
estimate the mean value = =3, cv fi- For the algorithm
to evaluate f on a core set of nodes A, it must pay |B| from
its budget B. The set B 2 A is the d-closure (or fringe) set
of A, which is the minimal set containing A such that all
nodes in A have at least d neighbors in B.
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Intuitively, the sampling algorithm must balance between
two contradicting phenomena. If set A is chosen uniformly
at random, the measurement is unbiased but the fringe set
B is expected to be roughly d times larger than A. In other
words, a large portion of the budget is squandered away on
nodes for which the function f cannot be evaluated. This
results in a small number of evaluations, which increases the
estimator variance. On the other hand, if set A is chosen to
contain a heavily connected subset of nodes, the fringe set
B is not much larger than A and most of the budget can be
used. This, however, requires non uniform sampling, which
increases the estimator variance. The challenge is to balance
between these effects in order to minimize the variance, while
not breaking the budged limitation.

An important difference between our work and [1] is the
restrictions put on the satisfaction function. In [1] a random
biased coin model generates the function f : V. — {0,1}.
While this model makes sense and indeed is very useful for
analysis, we argue that it is restrictive. The first generaliza-
tion we propose here is that the function receives real values
f:V = [0,1]. Our rationale is that in many cases, mea-
sures of satisfaction take scalar values. These include: the
amount of time spent using an application, number of times
it was launched, increase in activity or in resulting revenues,
etc. Moreover, a random model for f is not always justified.
Here, we consider any fixed or even adversarially chosen sat-
isfaction function. Omne can easily verify that the variance
of estimating the mean of a random function f is always
dominated by the variance obtained (over the random bits
of the algorithm) for an adversarial choice of f. Thus, our
results hold for any model describing f, including the one
used in [1].

Second, the authors of [1] suggest to choose the core set
A according to different random walk procedures. While
this gives good results, we show that, in fact, there exist
a virtually unlimited number of valid algorithms.! We ar-
gue that any distribution over core subsets of nodes can be
used. If the probability of any node being in the sample is
strictly positive, the obtained estimator Z for p is also un-
biased. The only difference between different distributions
is the variance this estimator exhibits. Thus, for every net-
work, one should choose the distribution which minimizes
the estimator variance. Since one must choose an algorithm
before starting the bucket test, we bounds the variance from
above for any f.

The rest of this work is organized as follows. In Section 2
we present the meta algorithm which applies the specific al-
gorithms presented in Section 3. Connections of our concept
to the random walk approach of [1] is considered in Section
4. A gradient decent optimization procedure aimed to re-
duce the estimator variance is briefly described in Section 5.
Experimental setup and corresponding results are described
in Section 6. We discuss the results and conclude the work
in Section 7.

2. META ALGORITHM

We start by describing the meta-algorithm, which is iden-
tical for all distributions over core sets. The meta algorithm
is straightforward and is identical to the one in [1]. Ac-
cordingly, a given algorithm produces core sets from some

Tt is worth mentioning that the authors of [1] also consider
core sets including single nodes and pairs of nodes.
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distribution over subsets of graph nodes. Then, for each
selected core set it produces an unbiased estimator. It con-
tinues to do so until it exhausts the budget 5. The output
estimator is the mean of all estimators obtained during the
process. A formal description of the meta-algorithm is given
in Algorithm 1.

Algorithm 1 Network Bucket Testing Meta-Algorithm
: B, budget
: d, minimal degree threshold
: G(V, E), input graph
Input: Q, core set distribution over 2V
Input: g, such that (i) = >_ 4 cuppo) @(A)Lpcay
Output: Y, estimation of p = < ey f(3)
b+ 0;0+1;L«+1
while True do
Ay < drawn according to core set distribution @
By + d-closure (fringe) set of A
b+ b+ |B|
if b > B then
break
end if
Ze e Yien (@) s L L5 =L+ 1
end while
return: Y « 1 Zle Zy

Input
input
Input

The final estimator Y is unbiased since each of the Z es-

timators are:
YA,

A€supp(Q) i€A

1 7
;;f(.)

1

E(2) ()

f@)

= == Z Q(A)Lycay 1)

q(z) Aesupp(Q)

%ZfiZIM

i€V

where Q is the core set distribution over 2V, and q(i) denotes
the probability that node 7 is in the chosen core set (for more
details see Algorithm 1). Note that if ¢(i) = 0, for some 1,
expression (1) is not valid.

Since the overall estimator Y is unbiased for any distribu-
tion, the goal is to reduce its variance. Given the fact that
core sets Ay are chosen i.i.d. we have that

Var (Y) = % > Var(Z:) = %Var (Z) .

=1

To approximate the size of L, we compute the cost of this
experiment which is Y7, |Be|. Assuming |B,| < B and
enforcing that the cost is less than the budget, we get that
L ~ B/E (|B1|). Note that since |By| are also i.i.d. random
variables, applying Chernoff’s inequality, it is easily shown
that the value of L = (1+ 0(1))B/E (|B:|) with high proba-
bility. Finally, we have that

()

where we omit the subscript and use B and Z instead of
Bi and Z;. Since the budget B is fixed, the best choice
of distribution over core subsets and estimators is the one
minimizing E (|B|) Var (Z). This quantity is highly related

Var (V) ~ %E(|B|)Var 7).
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to the efficiency defined in [1] as |B|/|A|. If the engagement
function f is itself random, as assumed in [1], we can expect
Var (Z) to be proportional to 1/|A|.

It remains to compute the variance Var (Z) = E (Z°%) —
(E(Z))?. We start by calculating the second moment of the
estimate Z,

E(Z) = > Q)Y Y == F(0) ()
Ag2V zeAjeA
= ZZ w2 9)a(j) Z Q(A) L 3can
i€V jEV Ae2V
-y q” F)10)
zereV

(3)
where ¢ (i,7) = 3 4cov Q(A)L(i3ca,) is the probability
that both nodes ¢ and j are simultaneously included in a
core set A. Maximizing this expression over functions f
such that > f(i) = pn gives the worst variance possible.
It is easily verified that the maximal obtainable Value is

2
E(Z%) = Z -y~ This
bound, however, is overly pessimistic since it is obtained in
the unrealistic case where f(1) = pn and all other values
are f(i) = 0. We therefore need to enforce that the non zero
values of f are distributed over many nodes. A natural way

to achieve this is to limit ourselves to functions f such that

f(@) €]0,1].

assuming w.l.o.g. that max; ﬁ

Proposition 1 Let

. q(4,9)
W,3) = =~
©9) = 2@e()
and
Uy = arg max = Z W (i, )
{i,j}CU
Then

Var(2) < ) W(ij)/n* -1

{i,3}CU,

(4)

Proor. First, note that W is a positive semidefinite ma-
trix. This is because f"Wf = n’E (Z*) > 0 for all f.
Therefore, fTW f is a convex function of f defined over the
convex set f(i) € [0,1] and ) f(i) = pn. The maximal
value of such functions is obtained in an extreme point of
the body. Let u, be this extreme point u, (i) € {0,1} and
>, un(i) = pn. That is, for un nodes we have u, (i) = 1 and
for (1 — p)n nodes u, (i) = 0. Setting U, = {i|uu(¢) = 1}
completes the claim. [

Computing the RHS of (4) amounts to finding the heaviest
submetrix of size un of W. The heaviest subgraph problem
is notoriously hard [4][2]. It does, however admit scalable
approximation algorithms that work well in practice [3][7].
Regardless, in our scenario, it is natural to assume that u is
at least a small constant. Therefore, a random choice of U, is
expected to yields a p? approximation factor to the optimal.
Moreover, if any algorithms improves on the random choice
by a factor of ¢ then the solution is guaranteed to by a tp>
approximation to the optimal.?

2This discussion, goes beyond the scope of this paper.
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For the sake of simplicity, we use a more relaxed bound
which uses the spectral norm of W. Applying the Cauchy-
Schwarz inequality yields Var (Z) < n%)q(W)HuuH2 -yl
Here A\ (W) denotes the spectral norm of W (its largest
eigenvalue). Substituting ||u,||* = un we get that

Var(2) < (£00) <) o )
The largest eigenvalue A1 (W) can be easily calculated us-
ing various methods (e.g., the power iteration method). In
addition for this bound (expression (5)) being significantly
easier to compute, we will see in Section 6.7 that it is also
tight enough to provide valuable information.

As seen above, the variance of the estimator Y is propor-
tional to E (| B|) Var (Z), where both E (|B|) and Var (Z) are
complex functions of the core set distribution Q). In the next
section we describe specific algorithms for efficiently draw-
ing core subsets from a distribution @@ and producing the
probability vector g for every graph. Our goal here is to
reduce E (|B|) Var (Z) as much as possible.

3. SPECIFIC ALGORITHMS

In order to describe the algorithm we require some addi-
tional notations. Let Ny = {j € V : (i,j) € E} indicate
the set of neighbors of node i and N;¥ = {{i} UN;}. We
denote by N; ; = N; N N; (similarly N*J N;" N N;") and
M (%, j) = min{|N; ;|,d— 1} We also denote Q the distribu-
tion over subsets of nodes and Q(A) the probability of core
set A being chosen. Finally, let supp(Q) be the support of
Q, ie., A€ supp(Q) iff Q(A) >0

3.1 Naive Algorithm

Here the core sets are simply the nodes of the graph,
supp(@) = {{i} ]t € V}. In addition, the core set distri-
bution @ is Pr (A) = p(z), where p is some distribution de-
fined over the nodes of G. Hence, ¢(i) = Pr (i € A) = p(1).
Since each core set contains only one node and we randomly
pick d of its neighbors to form the closure set, we clearly
have |B| < d 4+ 1.* To compute the variance we note that
W (i,j) = o5 for i = j and zero otherwise. Since W is
a diagonal matrix in this case, its top eigenvalue equals its
maximal diagonal entry, we have that the spectral bound
(5) reduces to

- M) H.

This is minimized using the uniform distribution p(i) = 1/n
and gives Var (Z) < (1 — p)u. In this case, it turns out, that
the naive spectral bound of (5) is tight.

The overall variance achieved by the naive algorithm for
any f and uniform node distribution is therefore

11

n min; p(7)

Var (Z) < (

1
Va'r( nawe) = =

5(d+1)(1-

M - (6)

3.2 Edge Algorithm

The first non trivial core set distribution can include any
two nodes that are connected in the graph, namely {i,j} €
supp(Q) if {i,j} € E. Setting the probability of choosing

3Recall our assumption that all nodes have at least d neigh-
bors.
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edge {i,7} to be p(i, ), we have
2d— Y p(i, )M, j)

{i.j}€E
p(4,5)

(Crew, 20:1) (Sren, 26 1)

A possible good assignment for p could be achieved by pro-
ducing a maximal weighted matching on the graph G, where
the weight of edge {3, j} is set to M (i, j), assigning probabil-
ity 2/n for all edges in the matching and probability zero to
all other edges. Admittedly, not all graphs yield good maxi-
mal weighted matching, or even any matching that includes
all nodes. We therefore experimented with a simpler edge
selection algorithm that applies to any graph.

3.3 Neighborhood Algorithm

Here the core sets are the graph nodes and their neighbors
supp(Q) = {N:‘|z € V}. In addition, we assign different
probabilities to each core set according Q(N;") = p(i), where
p is an arbitrary distribution defined over the nodes of G.
The node i will be referred to as the center of N;. Hence,
a node 7 belongs to the core set A if one of its neighbors (or
itself) is the center node of A. Therefore we have

L+ > () +2()) (d — Miy)

{i,.3}CE

ZkeN;j p(k)
(Zeews p8)) (Spens p0)

4. CONNECTION TO RANDOM WALKS

In [1], the authors suggested generating the core sets ac-
cording to a random walk, namely, start at any node and at
each step move to one of the neighboring nodes uniformly
at random. One can theoretically consider a core set distri-
bution @ that includes all length ¢ paths in the graph. The
probability of a core set A is the probability of it being the
set of nodes produced by the random walk. Although it is
computationally impossible to compute @ it is quite easy
to sample from it simply by simulating the random walk.
In order to execute the meta algorithm one must also be
able to compute ¢(i). It is well known as per [6] that after
a certain number of such steps, one reaches the stationary
distribution. According to the stationary distribution the
probability of being at node ¢ is proportional to its degree
deg(i). Therefore, the expected number of times a node is
included in a length ¢ random walk is t-deg(i)/ 3 ;< deg(i).
Setting q(i) = t-deg(i)/ >_;y deg(i) completes the descrip-
tion of the algorithm. It is worth noting that there is a slight
difference in notation between the ones in [1] and those used
here. There, a node can appear multiple times in the core
set, so in a sense, it behaves more like a list than a set. This
is the reason the authors of [1] introduced the multiplicity
of nodes in core sets into their estimator.

A similar view is also possible for the other variants of ran-
dom walks proposed in [1]. The authors use random walks
that try to balance the probabilities q(¢). This is possible
using a Metropolis-Hastings random walk as used, for exam-
ple, in [5]. Another option is to assign weights to edges and
transition with probabilities proportional to edge weights.
It turns out that it is possible, in most cases, to assign such

E(B]) <

W (i, )

E(B]) <

W (i, 5)
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weights that the probability of visiting each node is roughly
the same. Again, computing or storing @ is computationally
impossible but sampling from it is easy. Setting ¢(i) = ¢/n
and applying the meta algorithm is identical to the algo-
rithms in [1].

One problematic aspect of using random walks is that it is
impossible to compute the matrix W and hence impossible
to analytically bound the variance for arbitrary unknown
functions f. Surprisingly, there is a way to overcome this
problem. In particular, one can simulate a very large num-
ber of random walks and produce an empirical matrix W’.
It is not hard to see that after a sufficient number of sim-
ulations, we would have W’ ~ W at least in the spectral
sense. Moreover, it can be shown using sampling argumen-
tation, that O(n?log(n)) simulations would suffice for W’
to be close enough to W to give similar bounds.

S. GRADIENT DECENT OPTIMIZATION

In cases where the support of the core set distribution
is small, we can directly minimize the overall variance of
the estimator. That is, find values of @} that minimize
E (|B|) Var (Z). One obstacle in doing so is that an exact
expression for the variance Var (Z) is not available. From
Proposition 1 we have that Var (Z) < Z{i’j}cUﬂ W (i,5)/n>.
Alas, computing this value requires solving an NP-hard prob-
lem. We therefore replace it with a simple bound which sums
over all elements of W, namely, Var (Z) <3 ., v W (i, 5)/n?.
Although this bound is extremely naive, it serves well as
a surrogate to the actual value. The second obstacle is
that computing the closure set for a core set is also com-
putationally hard. For this problem we also use a sim-
ple bound which is the size of closure set achieved by a
greedy algorithm, B,. Finally we are faced with minimizing
P(Q) = E(|By]) Z{i,j}cv W(z,])/n2 Since ¢(Q) is a com-
plex function of the core set distribution we cannot hope to
minimize it exactly. We resort to minimizing ¥ (Q) heuris-
tically using Gradient decent method. The results of using
Gradient decent on Neighborhood algorithm core sets are
presented in the Section 6.6.

6. EXPERIMENTAL SETUP AND RESULTS

Evaluating algorithms’ efficiency or preferring one algo-
rithm to another is impossible in general. The correct choice
of algorithm heavily depends on a wide range of parameters.
While the authors of [1] report good results of their algo-
rithms when applied to portions of the Facebook network,
we observe that it does less well for others. Likewise, our non
trivial algorithms mostly outperform the naive implementa-
tion but for some values of f and some graphs the naive al-
gorithm still prevails. The number of variations possible in
the graphs, satisfaction functions, algorithms, and measures
of success, is practically endless. Nevertheless, we tried to
be as thorough as possible. Our choices are described below.

6.1 Graphs

The first crucial factor in the success of an algorithm is the
Network it operates on. In this work we examine 3 different
graphs, one real and two synthetic.

DBLP: we used the Digital Bibliography and Library Projects
(DBLP) entire database. It contains data about authors of
manuscripts. We associated each node in the graph with an
author, where an edge corresponds to co-authorship of at
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least one paper. The graph we obtained contains 845,211
nodes, each with at least one edge (authors with no co-
authors were discarded).
BA: a synthetic graph constructed according to the model
of Albert and Barabési [8]. We start with a ring graph of
size 10. Then we add nodes one at a time. Each new node is
connected by edges to 10 other nodes already in the graph
with probabilities proportional to their degrees.
WS: a synthetic graph constructed according to the model
of Watts and Strogatz [9]. To construct a network of n
nodes, we start with an n node ring graph. Then, we connect
each node to 10 nodes to its right along the ring. Finally, we
reroute each edge to a random node with probability 1/2.
One immediate problem we encounter is that, due to our
model, nodes with degree lower than d cannot be measured.
That is simply because, even if all their neighbors are chosen,
they would not have d chosen neighbors. One can think of
several solutions for this issue. For example, change the
model by deciding that such nodes are still measurable if all
their neighbors are chosen. Alternatively, define the mean to
not include those nodes and never measure their satisfaction.
However, since this is not the main point of the paper, we
chose (as in [1]) to simply remove those nodes. Note that
after removing some small degree nodes, other nodes might
become removable too. Here, we simply continued removing
those until all degrees in the graph were at least d. This
process will be referred to as trimming.

6.2 Satisfaction functions

As explained throughout the paper, one of the most cru-
cial factors governing the variance of our estimation is the
satisfaction function f. While our proofs bound the vari-
ance for all functions f simultaneously, we experimented
with only four kinds of such functions. These were taken
to represent extreme cases of network biases.

Uniform: samples uniformly, without replacement, exactly
un nodes from the graphs. Then, set f(i¢) = 1 for chosen
nodes and f(¢) = 0 otherwise. This serves mostly as a sanity
check and as a baseline. One cannot expect any meaningful
social feature to truly have such a satisfaction function.
BF'S: starts a Breadth First Search algorithm in an arbitrary
node of the graph and assigns a value of f(7) = 1 to all nodes
it encounters until it reaches a count of un nodes. Then, the
rest of the nodes are set to f(z) = 0. This function gives an
extreme graph topological bias.

Degree Percentile: assigns the value of f(i) = 1 to all
nodes in the top p percentile in terms of degree. In other
words, f(i) = 1 for the un nodes whose degree in the graph
is the highest. Then, the rest of the nodes are set to f(i) = 0.
Here we simulate another extreme case of degree bias. This
is an important case for two reasons. First, our algorithms
are heavily influenced by node degrees and so this choice of f
might present a ‘difficult’ scenario. Second, in reality, social
features are not independent of degree biases. This is be-
cause the node degree usually relates to the user’s activity or
‘socialness’ in some sense. This function is the extreme case
of all satisfaction distributions that are positively correlated
with the degree.

Degree Bias: proposed in [1] and gives a less extreme de-
gree bias. Nodes are chosen randomly with probability pro-
portional to log(deg(z)). The process terminates when we
have picked pun nodes. Then, we set f(i) = 1 for chosen
nodes and f(i) = 0 otherwise.
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Degree D
DBLP Uniform | BFS | Perce- ogree
. Bias
ntile

Naive 0.41 0.41 0.42 0.41
Edge 0.38 0.37 0.20 0.36
Edge-Matching 0.32 0.38 0.34 0.32
Neighborhood 0.34 0.85 0.63 0.34
Neighborhood-20 0.32 0.53 0.39 0.32
Neighborhood-40 0.28 0.57 0.46 0.28
Neighborhood-GD 0.24 0.48 0.43 0.24
Simple-RW 0.30 0.47 0.32 0.29
Metropolis-H-RW 0.29 0.47 0.42 0.28
Matrix-Scaling-RW 0.27 0.49 0.43 0.27
Triangle-Closing-RW 0.26 0.49 0.44 0.26

Table 1: The table gives the Normalized RMSE
scores for the various algorithms and satisfaction
functions. The graph here is the DBLP graph and
the satisfaction functions mean is © = 0.1.

(o Degree
Barabasi Uniform | BFS Pergce— Dfegree
- Bias
ntile
Naive 0.31 0.31 0.31 0.31
Edge 0.34 0.30 0.17 0.33
Edge-Matching 0.31 0.30 0.29 0.30
Neighborhood 0.54 0.60 0.41 0.54
Neighborhood-20 0.40 0.38 0.23 0.38
Neighborhood-40 0.40 0.40 0.23 0.39
Neighborhood-GD 0.36 0.34 0.19 0.35
Simple-RW 0.33 0.31 0.17 0.32
Metropolis-H-RW 0.36 0.35 0.28 0.35
Matrix-Scaling-RW 0.30 0.31 0.28 0.30
Triangle-Closing-RW 0.31 0.31 0.28 0.30

Table 2: The table gives the Normalized RMSE
scores for the various algorithms and satisfaction
functions. The graph contains n = 10° nodes and
is generated according to the model of Albert and
Barabisi [8]. As before, the satisfaction functions
mean is p = 0.1.

6.3 Algorithms

All the algorithms we have examined produce their esti-
mates according to the meta algorithm (see Algorithm 1).
Here we describe algorithms by the manner in which they
choose core sets. All Random Walk (RW) based algorithms
are described briefly below (see [1] for more details). We
have included those to serve mostly as a baseline but also to
validate their results on graphs other than Facebook. These
algorithms perform random walks on the network and col-
lect nodes they encounter into the core set (see Section 4).
Below, we shortly recap each of the tested algorithms.
Naive: each core set includes one single node chosen uni-
formly at random (see Section 3.1).

Edge: refers to core sets of size two. An edge is chosen
uniformly at random and the core set contains its supporting
nodes (see Section 3.2).

Edge-Matching: a variant of the former Edge algorithm.
Here, the core sets are also pairs of nodes supported by
edges. The idea is to create a set of edges that behaves like a
matching but is simpler to obtain. The process proceeds as
follows. Start with an empty edge set E,,. For every node,
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Watts- ) Degree Degree
Strogatz Uniform | BFS | Perce- Bi &
. ias
ntile
Naive 0.31 0.31 0.31 0.31
Edge 0.29 0.31 0.25 0.29
Edge-Matching 0.28 0.31 0.28 0.28
Neighborhood 0.27 0.44 0.24 0.27
Neighborhood-20 0.30 0.44 0.25 0.30
Neighborhood-40 0.27 0.44 0.25 0.27
Neighborhood-GD 0.28 0.41 0.26 0.28
Simple-RW 0.28 0.34 0.24 0.28
Metropolis-H-RW 0.29 0.35 0.27 0.29
Matrix-Scaling-RW 0.28 0.34 0.27 0.28
Triangle-Closing-RW 0.27 0.34 0.27 0.27

Table 3: The table gives the Normalized RMSE
scores for the various algorithms and satisfaction
functions. The graph contains n = 10° nodes and
is generated according to the model of Watts and
Strogatz [9]. As before, the satisfaction functions
mean is p = 0.1.

pick the edge connecting it to its neighbor (in G) with the
least degree with respect to F,,. In case of ties, pick the
one maximizing M; ; (for definition see Section 3). Add the
picked edge to E,, and continue. The core sets are pairs of
nodes supports of edges in E,, chosen uniform at random.
Neighborhood: corresponds to a uniform distribution over
the sets N;'. This is achieved by selecting a node and its
neighbors uniformly at random (see Section 3.3).
Neighborhood-k: a variant of the former Neighborhood
algorithm. Here, the algorithm also chooses nodes and their
neighborhoods but avoids doing so for nodes of very high
degree. More accurately, Neighborhood-k£ chooses node i
uniformly at random. Tehn, if |N;f| < k it returns N;"
otherwise it returns a singleton core set {i}.
Neighborhood-GD: here the core sets are still N;". How-
ever, the distribution @ over them is optimized using Gra-
dient decent method (see Section 5) to reduce the overall
estimation variance.

Simple-RW: a random walk algorithm which uses the stan-
dard transition probability, i.e., move from node i to j with
probability 1/deg(i).

Metropolis-Hastings-RW: moves from node i to j with
probability min(1/deg(i), 1/deg(j)), and stays in node ¢ with
the remainder probability. This produces a uniform station-
ary distribution but tends to visit the same nodes many
time.

Matrix-Scaling-RW: moves from node ¢ to j with prob-
ability w(%, j). The latter probabilities are computed by an
iterative process that strives to make the stationary distri-
bution as uniform as possible.

Triangle-Closing-RW: the transition probability between
nodes ¢ and j depends on the node h visited before i. If
{h,j} € E the transition probability is w’(, j). If {h,j} € E
this probability is increased by a factor a > 1 to be aw’ (i, 5).
The weights w’ are chosen to produce a node distribution
which is as close to a uniform distribution as possible.

6.4 Measure of Success

Our main measure of success for an algorithm is the Root
Mean Square Error (RMSE) of its outputs. Assume we exe-
cute an algorithm ¢ times and produce outcomes Y1, ..., Y.
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Figure 1: Estimate normalized RMSE for the DBLP
graph and the Degree Bias satisfaction function plot-
ted vs. the budget B.

Since the satisfaction function f has mean p the normalized
RMSE is given by £ (3 30;_, (Y; — p)%)"/?. We chose RMSE
as our measure of success since it embodies both accuracy
and reliability. Note that since RMSE (squared) estimates
E[(Y; — u)?]/u?, by Markov’s inequality we also get confi-

dence intervals.

6.5 Experimental Results

Tables 1-3 give the RMSE values achieved by the different
algorithms for different choices of f. Each combination of
algorithm and satisfaction function was run 1000 times and
the RMSE value is calculated according to Section 6.4. For
all tables we set the budget B to 1% of the network size.
This is a reasonable budget for actual bucket tests.

In Figure 1 the estimate normalized RMSE for the DBLP
graph and the Degree Bias satisfaction function is plotted vs.
the budget B. It is clearly visible that the RMSE decreases
with the increase in budget.

6.6 Gradient Decent Experiments

To demonstrate the benefits of the Gradient Decent opti-
mization (see Section 5) we applied the Neighborhood algo-
rithm to the DBLP graph. As before, we iteratively trimmed
the minimal degree in the graph to be 10. This resulted in
a graph containing n = 57285 nodes. In Table 4 we pro-
vide several statistics for three different distributions over
Neighborhood algorithm core sets, N;r for all ¢ € V. The
first is uniform (Uniform), the second is relative to 1/|N;"|
(Degree) and the third is the probability Q(N;") assigned
by the Gradient Decent procedure (GD).

By examining the table we observe that the Gradient De-
cent optimization reduces (@), mainly by reducing the av-
erage closure set size. In parallel, it also increases the effi-
ciency of the algorithm. On the other hand it increases the
largest eigenvalue when compared to that calculated for the
Uniform distribution.

While it is hard to foresee the exact strategy that Gradient
Decent optimization follows to reduce ¥(Q), Figure 2 may
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Figure 2: Probability distributions of the size of core
sets for the DBLP graph. The three distributions
represent different distributions over the core set
N;+. Uniform, selects each with constant probabil-
ity, 1/n. Degree, selects N,y w.p. proportional to
1/|N;+|, and GD selects N, w.p. according to the
output of the Gradient Decent optimization.

provide some insights. In Figure 2, the DBLP graph degree
PDF is plotted for the three core set distributions (Uniform,
Degree, and GD). It is apparent that the GD optimization
causes the graph degree PDF to drop much faster than those
of the Uniform and Degree distributions. It turns out that
the GD optimization reduces the probabilities of higher de-
gree nodes. In fact, for the DBLP graph, it assigned a zero
probably to any Neighborhood core set of size greater than
114. Hence, more than half of the core sets were discarded!

| | Uniform | Degree | GD |

Average core set size E (JA]) 22.92 17.096 | 15.31
Average closure set size E (] By|) 72.56 54.77 | 26.29
Efficiency bound E (JA]) /E (]By|) 0.316 0.312 0.58

%W (i, j) 1.360 | 1.315 | 1.20
P(Q) 98.71 72.00 31.66
W) 1.718 4.621 | 2.13

Table 4: Statistics for different distributions over
Neighborhood algorithm core sets applied to the
DBLP graph.

6.7 Spectral Bounds

Being able to analytically bound the accuracy (RMSE) of
a network bucket test is crucial for two main reasons. Before
the test, the administrator must choose the best algorithm
to use. After the test, he/she must supply error bounds
on the resulting estimate. Given the discussion following
Proposition 1, this is a hard computational task. However,
using the spectral bound of Equation (5), designers can get
a rough bound for this quantity. To demonstrate the ben-
efits of this bound we use values from Table 4, derived for
the aforementioned Neighborhood algorithm core set distri-
butions, to calculate bounds for the DBLP graph. The cal-

3 T T T T T
—&— Neighborhood - spectral bound
—— Neighborhood simulation (Uniform)
o5k —<— Neighborhood simulation (BFS) i
’ —<+— Neighborhood simulation (Degree Percentile)
—+— Neighborhood simulation (Degree Bias)
P 4

0 . . . . .
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Budget (percentage of n)

Figure 3: Estimate normalized RMSE upper bound
plotted vs. the budget B for the DBLP graph us-
ing the Neighborhood Algorithm. Along with the
bounds we give simulation results for different sat-
isfaction functions, namely, Uniform, BFS, Degree
Percentile, and Degree Bias. As expected, all simu-
lation results reside below the theoretical bound.

culated bounds along with their corresponding simulation
results are plotted in Figure 3 for p = 0.1.

7. DISCUSSION AND CONCLUDING RE-
MARKS

In this paper we proposed and analyzed several algorithms
for network bucket testing. The achieved results are com-
parable or better than previous algorithms depending on
the setup. However, we argue that the contribution goes
beyond that. First, our algorithms are simple to program,
provide unbiased estimates, efficient to execute, and ana-
lyzable. Moreover, we can efficiently produce good error
bounds for their performance. This gives us the ability to
choose the best algorithm for a network well before running
the test.

In addition, the framework lets designers analyze a very
large variety of algorithms. For example, one can consider
core sets of triangles in the graph. Or, cover the graph
with small tightly connected subgraphs and consider those
as core sets. Indeed, the possibilities are endless. We hope
the derivations also provide walk-through examples on how
to analyze those.

An additional benefit which is not mentioned in the pa-
per but is an immediate outcome of the Gradient Decent
approach: That is, one can combine any number of different
algorithms and consider the superset of their core sets. Ap-
plying the Gradient Decent process to the core superset can
automatically mix the different algorithms. The resulting
mixed algorithm is guaranteed to perform at least as good
as the best single algorithm.
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