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ABSTRACT
The aim of a web-based recommender system is to pro-
vide highly accurate and up-to-date recommendations to
its users; in practice, it will hope to retain its users over
time. However, this raises unique challenges. To achieve
complex goals such as keeping the recommender model up-
to-date over time, we need to consider a number of exter-
nal requirements. Generally, these requirements arise from
the physical nature of the system, for instance the available
computational resources. Ideally, we would like to design
a system that does not deviate from the required outcome.
Modeling such a system over time requires to describe the
internal dynamics as a combination of the underlying rec-
ommender model and the its users’ behavior. We propose to
solve this problem by applying the principles of modern con-
trol theory—a powerful set of tools to deal with dynamical
systems—to construct and maintain a stable and robust rec-
ommender system for dynamically evolving environments.
In particular, we introduce a design principle by focusing
on the dynamic relationship between the recommender sys-
tem’s performance and the number of new training samples
the system requires. This enables us to automate the control
other external factors such as the system’s update frequency.
We show that, by using a Proportional-Integral-Derivative
controller, a recommender system is able to automatically
and accurately estimate the required input to keep the out-
put close to a pre-defined requirements. Our experiments
on a standard rating dataset show that, by using a feedback
loop between system performance and training, the trade-
off between the effectiveness and efficiency of the system can
be well maintained. We close by discussing the widespread
applicability of our approach to a variety of scenarios that
recommender systems face.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering
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1. INTRODUCTION
Collaborative Filtering (CF) algorithms have become the

mainstream approach to building web-based recommender
systems [3]. The popularity of CF stems from its ability to
explore preference correlations between users; it uses a wide
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range of statistical approaches that allows recommender sys-
tems to identify items (movies, music, books, etc.) of inter-
est to web users based on their historical preferences. In
the research domain, this problem is often formalized as a
prediction problem: predicting unknown user ratings based
on a set of observed preferences [8, 16].

In the research literature, CF algorithms are evaluated in
a relatively static context: datasets are examined using tra-
ditional machine learning methodologies to produce cross-
validated results, by randomly splitting the data into train-
ing and test sets. In practice, these systems will experience
a continuous influx of new ratings: the deployment scenario
is dynamic and continuously subject to change [18]. Re-
cent work has delved into this domain and examined the
differences that emerge between the two contexts [9, 20]. In
particular, CF algorithms produce up-to-date recommenda-
tions by being regularly re-trained (e.g., daily) in order to
incorporate new ratings into the model of user preferences.
Given that state-of-the-art CF algorithms are, in general,
expensive to update, because of the limited resources avail-
able as well as the computation required to train the model.
Thus, system developers have to make a critical decision:
they must decide when and how frequently to update their
systems. In doing so, they must balance between the ben-
efit of a recently re-trained algorithm (which will produce
recommendations based on the latest user ratings) and the
cost that the business incurs from re-training. This problem
is often solved by iteratively re-training at a pre-defined in-
terval [23]. The point is further illustrated in Fig. 1. The
figure depicts the performance dynamics of the Movielens
1M dataset1 [10] (described in Section 4) for a period of 20
months. It shows that training only every fourth month re-
sults in a substantial performance loss compared to training
every month. In addition, as new users enter the system,
these users cannot receive reliable recommendations until
the system is re-trained on the new data points. This further
deteriorates the performance [4] and subsequently the sys-
tem may not be able to provide accurate recommendations
for those new users. This trend can be observed between
any time interval as long as new data enters the system, be-
cause the additional information would more likely to help
improving the performance.

In this paper, we propose a control-theoretic approach to
designing recommender systems. We propose a new method-
ology on how to design and manage a complex recommender
system in order to maintain the trade-off between the effec-
tiveness and efficiency of the system by applying modern

1We tested this hypothesis with other larger dataset and
found the same pattern.
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Figure 1: The effect on performance by reducing the update
time of the system (Movielens 1m). The performance loss is
calculated against a baseline of training every month.

control theory [25]. We demonstrate that modern control
theory has the potential to provide the required mathemati-
cal tools to both analyze and model the stability and robust-
ness (resistance to error and disturbance) of a recommender
system over time. We validate our approach by examin-
ing the dynamic relationship between the recommender sys-
tem’s performance and the number of new training samples
the system requires. We show that control theory would al-
low us to design the recommender system and its feedback
loop to effectively mitigate the effects of any forces (such
as noise in the data) that may arise during operation, that
would otherwise negatively affect the recommender system’s
performance over time. We further discuss how, after defin-
ing the system dynamics this way, the control loop can be
replaced with other signals, such as controlling the compu-
tational effort over time and the system’s update frequency.
We believe that, by grounding the operation of recommender
systems in control theory, this work not only contributes to
the growing body of research addressing temporal dynamics
in recommender systems, but will also be of significant inter-
ests to the wider research areas such as dynamic information
retrieval and filtering.
The remaining of the paper is organized as follows: we be-

gin with the related work (Section 2). We then formalize the
temporal recommendation as an instance of a control theory
problem (Section 3). In Section 4, we assess the use of the
principles of control theory to build systems that adaptively
respond to the continuous dynamics of online deployment.
This includes the parameter estimation of the dynamical
system and the analysis of various types of controllers. In
Section 5, we evaluate the controller design on a number
of the practical scenarios. We then discuss the merits and
weaknesses of this approach along with a number of practical
applications (Section 6). Finally, we conclude our work by
discussing further applications of control theory and future
directions of research (Section 7).

2. RELATED WORK
The temporal dynamics of any recommender system is

the combination of two intersecting components, which have
each recently appeared in the literature. On the one hand,
the preferences of the system’s users may be subject to
change, as they are affected by seasonal trends or discover
new content. Evolution of preferences can be modeled as
a decay, so that, in the longer term, parts of users’ profiles
can expire [28]. Koren [19] also examined this problem, dis-

tinguishing between the transient and long term patterns of
user rating behaviors, so that only the relevant components
of rating data can be taken into account when predicting
preferences. In this way, recommender systems can retain
separate models of the core and temporary taste of any user.
Then, the core taste could be used in a longer period of time
while the temporary taste can expire if the user becomes in-
terested in items that do not match her previous temporary
taste. In particular, we note that the above studies focus on
user preference shift as a means toward improving prediction
accuracy.

The flip side of the recommendation temporal dynamics
relates to any temporal changes subsumed by the recom-
mender system itself as time progresses and the system is
updated. Current recommender systems address the fact
that users continue to rate items over time by iteratively
re-training their preference models. Modeling and evaluat-
ing the performance of recommender systems from the per-
spective of accuracy, diversity, and robustness over time was
addressed in [20, 21]. The central tenet here is that the reg-
ular, iterative update of recommender systems can be both
simulated and levied to improve various facets of the rec-
ommendations that users receive, which include temporal
diversity.

A middle ground between purely static and dynamic ap-
proaches to CF is the use of online learning algorithms. For
example, the authors in [27] proposed online regularized
factorization models that did not require time-consuming
batch-training. An active learning approach was proposed
to identify the most informative set of training examples
through minimum interactions with the target user [15].
However, the purpose here was to quickly address the prob-
lem of cold-start items and users; our model generalizes be-
yond this scenario.

In this work we adopt a different stance, by focusing on
adapting the updates of the system itself. By drawing from
the principles of control theory [26], we show that systems
do not need to be iteratively updated, but rather can be
updated as a response to fluctuating user activity. Control
theory stems from research relating to guiding the behavior
of dynamical systems; notable examples include dealing with
network traffic [12]. At the broadest level, control systems
require three components: (a) a system which produces an
output in a dynamic context (e.g., a recommender system),
(b) ameasure of the quality of the output (such as the RMSE
(Root Mean Squared Error) on the recommendations) and
(c) a mechanism to adapt or tune the system’s parameters
according to the measured quality of the output. The control
system binds these three components together into a closed
loop; in doing so, it provides a means for feedback relating to
the system’s performance to be input into the system itself.

Researchers have found that control theory can accurately
model the behavior of software systems and it provides a set
of analytical tools that can predict, with high accuracy, the
behavior of a real system. In [29], control theory was used
to monitor system growth and control whether the system
needs to perform an update. Based on the amount of new
data entering the system, it calculated the loss in accuracy if
the system was not updated, and decided whether the ben-
efit of preforming an update would outweight the computa-
tional cost associated with the update, based on a predefined
tolerable performance loss. This approach assumes that the
rate of data growth is a linear function of the performance
loss over time. The disadvantages of this is that the sys-
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Figure 2: The closed-loop control of a dynamical recom-
mender system.
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Figure 3: A mass attached to a spring and damper. y(t) is
the displacement. The damping coefficient is represented by
r in this case, where the spring constant is k. F (t) in the
diagram denotes an external force. In our case, y(t) is the
performance value while F (t) = u(t) number of new training
samples.

tem can only rely on a simplified relationship between the
data flowing into the system and the performance (which
might not be linear and also include additional factors) and
cannot directly control the disturbance introduced by the
dynamics of the recommender system as the actual output
of the system is not known to the controller. In [26], re-
searchers presented a workflow, based on classical control
theory, to design a feedback control system for an email
server to maintain a reference queue length. They used a
statistical model to estimate system dynamics, this was fol-
lowed by a controller design phase to analyze the system
response. They found that the analysis predicted to behav-
ior of the real system with high accuracy. Control theory
has also been applied to reputation systems, where the aim
was to identify and reduce the impact of malicious peers on
recommendation. In [22], a feedback controller was used to
adjust users’ recommendation trust based on the accuracy
of their rating.

3. A FEEDBACK CONTROL APPROACH
In this section, we present an adaptive temporal recom-

mendation architecture derived from control theory. The
key feature of this architecture is a feedback control loop
(illustrated in Figure 2) where the control function gener-
ates an input of the dynamical system that is adequate to
maintain performance, this input signal is realized and en-
tered into the system by the actuator. Then, the output of
the dynamical system is monitored and fed back to to con-
troller in order to compare it to the reference value, compute
the error and generate the next control input.
The idea of the feedback loop can be adopted to recom-

mender systems by the analogy of a simple physical system:
a weight attached to a wall with a spring and damper, as

illustrated in Figure 3. This simple system has one input,
F (t), which represents how much force has been applied to
pull the weight from the wall. The output, y(t), is how much
the weight will be displaced from its the current position. If
we try to keep the weight from the wall at a certain (stable)
distance, we need to balance a number of factors. While
there is an inherent relation between the input and output,
the amount of movement over time will also be affected by
the strengths of the spring and damper, which both exert
different forces on the system. In effect, we have a system
where the relation between an input and output value is de-
pendent not only on the input itself, but a number of other
implicit factors that are built into the system. A recom-
mender system follows a similar pattern: the output (per-
formance) relates to the input (training data) along with a
variety of hidden factors in the system. In order to control
the output, we therefore need to approximate this function:
we do so by observing the system over time. The system
keeps monitoring the performance and feeds the estimated
performance measure back to a controller. The controller
then reacts accordingly by modifying the input in order to
maintain a particular stable outcome. Note that the moti-
vation of this approach is to maintain instead of optimize
the system. It is suggested in [17] that there are multiple
objectives that a recommender system needs to fulfill, some
of them might directly contradict with the performance of
the system. This approach would enable us to directly de-
fine and control any aspect of a live system, given that the
input-output relationship of the dynamical system can be
defined.

In the following sections we formalize how this metaphor
of a controller can be actualized and implemented in a rec-
ommender system. We take two distinct steps in designing
this system. First, we consider the recommendation accu-
racy as a stochastic yet controllable variable, and develop a
mathematical description of the underlying dynamic process
that can be controlled. Such a description allows practition-
ers to analyze their system with a wide range of analytical
techniques that are available from control theory. Then, we
use these techniques to define and estimate the best con-
troller strategy to generate the control of the system. We
describe the two components in the following subsections.

3.1 Modeling Performance Dynamics
We denote the performance of a recommender system as

y(t), where t represents time. Without loss of generality,
we assume lower values of y(t) indicate better performance.
We assume that performance can be observed directly by
monitoring user feedback and comparing it to the prediction
provided by the model (see Section 4). The number of new
training samples is denoted as u(t), and we consider this to
be an input signal to the dynamical system.

A top down approach to model a system’s temporal dy-
namics is to consider the physical laws that govern the sys-
tem. For instance, Newton’s second law of motion says that
an object with mass m subject to a force F (t) undergoes an
acceleration v′(t) that has the same direction as the force,
and its magnitude is directly proportional to the force and
inversely proportional to the mass, i.e., F (t) = mv′(t). By
taking the analogy, we consider that the change rate of the
performance is proportional to the number of new training
samples entering the system (y′(t) ≈ u(t)). To approximate
this, we assume that the number of new training samples is
also proportional to the current performance of the system
(y(t) ≈ u(t)). This can also be interpreted as the need to
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have a certain number of new training samples to maintain
the performance of the system. As a result, the dynamics
of the performance can be approximated by the following
simple differential equation:

ry′(t) + ky(t) ≈ u(t) (1)

where y′(t) (change rate of the system performance) is the
derivative of y(t). It is interesting to see that the above equa-
tion is similar to a mechanical system illustrated in Figure 3.
ky(t) ≈ u(t) is the analogy to Hooke’s law of elasticity that
the extension of a spring is in direct proportion with the load
applied to it, while ry′(t) ≈ u(t) follows a damping force.
We thus have two parameters r and k, which need to be esti-
mated from the performance dynamics of the recommender
system. To estimate them, we rewrite the dynamical model
in a form of discrete time:

y(t+ 1) =
r

r +Δtk
y(t) +

Δt

r +Δtk
u(t) + ε(t) (2)

where Δt denotes the unit of time interval. In addition, we
tackle the uncertainty in the system by adding random dis-
turbance ε(t) at time t. Eq. (2) is in fact a linear regression
system. For simplicity, this model can also be written in
matrix notation when drawing the observation over a time
period t ∈ [0, T ]:

y = YT θ + ε (3)

where y = (y(1), ..., y(t), ..., y(T ))T , θ =
(

r
r+kΔt

, Δt
r+kΔt

)T

,

and

Y =

(
y(0) ... y(t) ... y(T 1)
u(1) ... u(t) ... u(T 1)

)

Linear systems have been well studied in many research
fields. One of the standard solutions to obtain the parame-
ters is to employ the Maximum Likelihood (ML) estimation
from the observation over a time period t ∈ [0, T ]. We as-
sume that the error ε has a multivariate normal distribution
with mean 0 and variance matrix δ2I, where I is an identity
matrix of size T . Then the log-likelihood function of the
parameters is

L(θ, δ2|Y) = ln
( 1

(2π)T/2|δ2I|1/2 e
(y YT θ)T (y YT θ))

2δ2I

)
(4)

Differentiating this expression with respect to θ we find the
ML estimates of the parameter θ:
( r̂

r̂ + k̂
,

1

r̂ + k̂

)
= argmax

θ
L(θ, δ2|Y) = (YYT ) 1Yy (5)

where we set Δt ≡ 1 to sample the data per day. A problem
still remains: we need to choose input u(t) to increase the
accuracy and robustness of the parameter estimation. We
introduce a flexible way to add disturbance by using the
log-normal random walk model [7, 11]. We estimate the
mean (μ) and standard deviation (σ) from the input data
and simulate an additional time series that has the same
mean and variance. Let us define u(t) as the time series of
the input values over a predefined time period [0, T ]. The
modified input u(t) becomes as follows:

du(t) = μu(t)dt+ σu(t)dW (t) (6)

where W (t) is the Wiener process

dW(t) = ε
√
dt and ξ is the noise N(0, 1) (7)
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Figure 4: The time domain block diagram.

Essentially, this approach randomizes the time series de-
pending on the standard deviation of the intended input.
The advantage of this approach is that setting σ to zero we
get the exponential curve that represents the natural way of
data growth [20].

In summary, we use the Maximum Likelihood estimation
(Eq. (5)) and and the lognormal random walk (generating
the input) to obtain the parameters r and k for a given
time series that represents the dynamics between the input
and the output of the system. The detailed experiments to
estimate parameter r and k can be found in Section 4.2.

3.2 Feedback Controller
The next question is how to design the input signal u(t)

so that the performance y(t) will stay as stable as possible.
That is if y(t) deteriorates from the desired value, how do
we change input u(t) to quickly alter the systems dynamics
and bring y(t) back to the desired value? This is done by
constructing a closed loop system. In a closed loop system,
the output is fed back and compared with a reference value
yr(t). The error signal, denoted as e(t) = yr(t) y(t), will
be sent to a controller (the process is illustrated in Figure 4).
Upon receiving the error feedback signal, the controller then
calculates how much modification is needed for u(t) at this
moment. In other words, the feedback on how the system
is actually performing allows the controller to dynamically
compensate for disturbances to the system and produce a
response in the system that perfectly matches the user’s
wishes. Our discussion here is limited to the situation where
the state of the system, in this case the recommendation per-
formance, can be observed. In practice, this is possible as we
can measure the recommendation performance periodically
by looking at users’ feedback or construct a validation set
over time. The approach is further explained in Section 4.
the PID (Proportional-Integral-Derivative) controller [5]. It
not only captures the linear relationship between the error
signal and input u(t), but also covers both the derivative
and the integral of the error signal. Formally, we have:

u(t) ≡ Ce(t) +B

t∑
0

e(t)Δt+D
e(t) e(t 1)

Δt
(8)

where the nonlinear relationship is represented by three pa-
rameters. The signal (u(t)) that the controller produces is
the combination of the proportional gain (denoted as C)
times the magnitude of the error, the integral gain (denoted
as B) times the integral of the error and the derivative gain
(denoted as D) times the derivative of the error. The con-
version of the integration from continuous to discrete time
is done by the backward Euler method [24]. The PID con-
troller is the combination of the three basic types of con-
trollers, each adding an extra layer to the system. The pro-
portional controller makes a change to the output that is
proportional to the current error value. The integral term
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accelerates the movement of the process towards the set-
point and eliminates the residual error that occurs with a
pure proportional controller. The derivative term slows the
rate of change of the controller output. In practice, not all
elements are needed. For example, in some cases, one can
find that D is not required and set to zero. In a nutshell,
the above equation feedbacks the error and uses it as the
outer force to change the dynamics of the performance. As
explained in the previous section we rewrite this dynamic
equation in a form of discrete time with uniform sampling
(Δt ≡ 1), combining it with Eq. (1) gives:

r̂
(
y(t)− y(t− 1)

)
+ k̂(y(t))

≈Ce(t) +B

t∑
0

e(t) +D
(
e(t)− e(t− 1)

)
(9)

where parameter r̂ and k̂ are obtained using the Maximum
Likelihood estimation introduced in Eq. (5). Tuning the
three parameters (C, B and D) offline is needed in order to
guarantee the desired performance. In control theory, the
system is usually modeled by transforming the discrete time
signal into the frequency domain using the z-transform. A
popular techniques to obtain the controller’s parameters in
z domain is called the Ziegler-Nichols method. In this pa-
per, we adopt this method along with a number of software
tools and manual tuning. We refer to [25] for the detailed
z domain analysis and the underlying mechanism to obtain
the three parameters while we primary focus on the design
pattern of the system.

4. DESIGNING A CONTROLLED RECOM-
MENDER SYSTEM

In this section, a series of experiments were conducted in
order to evaluate the performance of the proposed control-
theoretical approach of recommender systems. Without loss
of generality, the empirical study focused on the relation-
ship between the input (the number of training samples)
and the output (recommendation accuracy). We chose this
relationship, because the input and the output generalizes
the recommender system’s dynamics best, therefore, with
minimal modification it is applicable to a wide range of sce-
narios (see Section 5). Other inputs and outputs can be
obtained by following the same design principle and steps
presented here (for further suggestions see Section 6). The
experiments were conducted by emulating the real use of
recommendation systems with the widely used MovieLens
data set. The benefits of such an evaluation setup com-
pared to using an operational recommendation engine are
two-fold: first, it allows us to flexibly test various scenar-
ios, and make the individual experiments targeted and fo-
cused; second, using public datasets allows others to easily
replicate and compare the results, and validate our conclu-
sions. The MovieLens data consists of 1 million ratings for
3900 movies by 6040 users. Three widely used recommen-
dation algorithms; the user-based, the item-based and the
SVD method, were used as the basis of rating prediction.
As no significant difference was found among them in terms
of controllability, we only report the results obtained using
the popular SVD algorithm [13].
The design principle was evaluated in several stages by

building a dynamical recommender system step by step and
sampling the rating data over time. Specifically, to prevent
over-fitting, the rating data was randomly divided into three
sets; training, test and hold-out set. We fed the data into

Table 1: The R2 performance of the three input data set
which we estimated parameter r and k (Eq. (5)). The set
marked in bold was used to estimate the parameters which
was then tested on the remaining two sets. We used the row
colored gray for the further experiments.

Standard
Increase Stable Decrease Mean deviation
0.9863 0.6699 0.3974 0.6845 0.2947
0.9723 0.9439 0.9176 0.9446 0.0274
0.9702 0.9421 0.9314 0.9479 0.0200

(a) Input without noise
Standard

Increase Stable Decrease Mean deviation
0.9869 0.8852 0.7766 0.8829 0.1251
0.9646 0.9078 0.8726 0.915 0.0464
0.8945 0.9008 0.8840 0.8931 0.0084

(b) Input with noise (see Eq. (6))

the system incrementally, so that each day during the pre-
defined period of 30 days we randomly added a pre-specified
number of training samples to the training set based on the
requirements set by our feedback model and re-trained the
recommender system using all the data in the training set.
We then estimated the recommendation accuracy using the
available user feedback data from the next day. This process
was repeated each day, adding all the tested data points to
the hold-out set, which was then used to pick the required
number of data samples for the next cycle of training.

We started with the parameter estimation of performance
dynamics based on historical data. It was then followed by
the system analysis that aimed to identify the controllers
characteristics and choose the right parameters before de-
ploying the system. With the right parameters, we then
evaluated the chosen controllers with real data and simu-
lated scenarios. A potential drawback of such a controlled
evaluation configuration might be its lack of testing the
robustness of the system against any unseen environment
noise. We thus provided additional experiments to test how
well the system handles sudden changes over time. Finally,
we tested how our approach can be applied to balance the
trade off between computational cost and performance re-
quirements.

4.1 Parameter Estimations
4.1.1 System Dynamics
In order to design a suitable controller, first we need to

understand the dynamics of the system by obtaining the pa-
rameters that describes the recommender systems dynamics
(introduced in Eq. 1). The dynamics of the system is needed
for the controller design the simulate the feedback loop sys-
tem (that includes the recommender system and the con-
troller). Without an accurate description of the system dy-
namics, it is not possible to predict the system behavior and
obtain a suitable controller. To estimate the parameters us-
ing the approach proposed in Section 3.1, we devised three
scenarios that the recommender system might encounter.
The first one covers the situation when the data is grow-
ing exponentially which is the case where many new users
start using the system. The second is concerned with the
situation where growth flattens after some initial growth,
whereas the third one simulates the decrease of the training
data. This last scenario was to cover the possibility that the
controller might reduce the performance of the system.
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Figure 5: Parameter estimation (MovieLens 1m). The parameters introduced in Eq. 5 were learned on set (c) and tested on
(a) and (b).

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Tuned response

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Tuned response

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)
A

m
pl

itu
de

Tuned response

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Tuned response

(a) P-I (b) PD-I (c) PI-I (d) PID-I

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Tuned response

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Tuned response

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Tuned response

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Tuned response

(e) P-II (f) PD-II (g) PI-II (h) PID-II

Figure 6: Step response (MovieLens 1m). The first point represents the rise time of the system (90% of the target value) and
the second point marks when the system reaches steady state. The first row shows the fast controllers with 2-5 sec response
time, and the second row has the slower controllers with 5-10 sec response time.

Figure 5 illustrates the relationship between the number
of new samples and output the recommendation accuracy
measured by RMSE. The parameters were estimated using
Eq. (5) on one of the scenarios and tested on the remaining
ones to predict the accuracy of the system. The random
walk technique (described in Section 3.1) was used to gen-
erate the input sequences (how the influx of new ratings
evolves over time). They were estimated from the data to
represent the natural way of data growth. Adding noise to
the signal helped us model various input combinations. The
input was put through our recommender model to generate
the performance over a period of 30 days.
A key question for parameter estimation is how to con-

struct an input sequence such that the prediction of out-
put from a unseen input sequence would be as accurate as
possible. We measured how well the prediction fits to the
observed data using the coefficient of determination [14]

R2 = 1−
( T∑

t=0

(yh(t)− y(t))2/

T∑
t=0

(y(t)− ȳ)2
)

(10)

where R2 ∈ [0, 1], yh is the predicted output, y is the ob-
served output and ȳ represents the mean of the observed
output over a time period t ∈ [0, T ]. This measure is widely

used in statistical models to measure the prediction of fu-
ture outcomes; the higher the value is, the better it fits to
the data. Table 1 shows that the most robust parameters
across all the three scenarios were obtained by estimating
them on the data shown in Figure 5 (c) (the 6th row in Ta-
ble 1) as it generates the smallest standard deviation across
the three scenarios. This also suggests that adding noise us-
ing the random walk model helps improving the robustness
of the estimation. As illustrated in Figure 5(a) and (b), the
model produced consistent predictions despite the fact that
the data was noisy, therefore the parameters were robust to
be used for the next steps in the controller design.

4.1.2 Step Response and the Feedback Controls
Having obtained the system dynamics of recommender

model, we then studied what kind of controller best suits
our predefined control objectives and obtain the parameters
defined in Eq. (8). We evaluated four kind of controllers in-
cluding a Proportional (P), a Proportional-Derivative (PD),
a Proportional-Integral (PI) and a Proportional-Integral-
Derivative (PID) controller. To quickly test our ideas, we
used a standard PID design tool provided in the Control
System Toolbox in Matlab [6]. In a nutshell, this tool simu-
lates the behavior of the dynamical system given the internal
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Table 2: The general characteristics of the estimated rec-
ommendation controllers. The time measured by seconds
corresponds to days in our experiments (e.g. one training
cycle).

Type Rise Time Settling Time Overshoot
(sec) (sec) (%)

P-I 1 2 0
P-II 5 10 0
PD-I 0 2 9.84
PD-II 1 5 8.21
PI-I 0 8 3.24
PI-II 0 10 36.8
PID-I 0 4 8.41
PID-II 0 10 15.7

dynamics of the recommender system and the controller. It
obtains the initial parameters using heuristic approaches,
such as the Ziegler-Nichols tuning method [30] to satisfy
certain initial requirements: they include closed-loop stabil-
ity, adequate performance and robustness. Then, this initial
design can be fine-tuned manually to achieve the specific re-
quirements for the given system. For details of the method,
we refer to [25], while staying focused on finding an ideal
controller that has the characteristics that satisfies our re-
quirements.
Four measures were used to obtain an insight into the

stability and the sensitivity of a feedback controller before
employing it in the system. Step response is defined as the
time behavior of the output of a general system when its
input suddenly changes from zero to one in a very short time;
Rise time refers to the time required for the output to reach
90% of the reference value. For example if the reference value
is set to one and the current output of the system is zero
(regardless of the metric used to quantify the output), rise
time shows how fast the system can reach 0.9. Essentially,
this value indicates how fast the system can respond to a
change in the rate of influx of ratings. However, fast rise
time might cause the output to exceed the desired value:
this is called the overshoot of the signal. In some cases,
for example when we aim to control the computation of the
system, it is desired to keep overshoot as low as possible, as
if the system requires more computation than it is available
this might cause server overflow. We also measured how long
it takes for the feedback system to remain within a specified
error band (settling time). The error band is defined to be
±1% of the target value. In some cases, the system stabilizes
at a different value that is required; thus steady-state error is
defined as the difference between the output and the target
value after the output has reached the steady state.
A recommender system requires a controller with a fairly

fast response time, that is the controller should react to
changes as fast as possible. Ideally, this would be less five
training cycles given the fact that a training cycle in practice
can be as long as a day. This should also be accompanied
by a fast settling time and a small steady-state error. These
requirements would ensure that the system converges to the
reference value quickly which is important in order to gain
control of the system in a reasonable time frame. Figure 6
depicts the step response of the four controllers, whereas
the main characteristics are also summarized in Table 2.
For each of the controllers, we have two configurations, one
of them was set to be “fast” (in terms of rise time) (mark
I), and the other one is designed to be “slow” (mark II)

Table 3: The speed, precision, stability and overshoot of the
controllers for reference value 0.86. The best performing
controllers in terms of error are colored gray.

Type Settling RMSE-SS SD-SS Overshoot
Time (error) (stability) (%)

P-I 18.6 0.00637 0.00479 0.35632
P-II 23 0.01049 0.00346 0
PD-I 19.8 0.00495 0.00448 0.49484
PD-II 20.8 0.00599 0.00377 0.18454
PI-I 18.8 0.00597 0.00620 1.14088
PI-II 18.6 0.00556 0.00479 0.49416
PID-I 19.2 0.00449 0.00460 0.83654
PID-II 18.6 0.00452 0.00455 0.72810

with a maximum settling time of ten training cycles. The
slower controllers are generally more stable and less likely to
overshoot, which might be desirable in some scenarios, for
example if the computational resources are scarce.

Figure 6 shows that all the controllers reach the desired
output and remain stable. However, controllers that include
an integral part (such as PID and PI) were slower to set-
tle, and overshot the target considerably. This may be due
to the fact that the integral controllers are intended to re-
duce the residual error over time by accumulating the er-
rors. In addition, this becomes an important issues as, com-
pared to physical systems, recommender systems might not
always have the required number of training samples avail-
able which affects accumulated error over time. We thus
introduce a linear discounted output to add it to the inte-
gral controller as follows

yi(t) =

{
y(t) + 1

r+k
(ui(t)− u(t)) if ui(t) > u(t)

y(t) if ui(t) ≤ u(t)
(11)

where yi(t) represents the modified output (performance)
discounted by the difference between the required input (ui(t))
(defined by the controller) and the actual input (u(t)). This
compensates the discrepancy between the required and the
available training samples. Essentially, the influence from
the integral part is discounted when the required number of
training samples is not available.

By contrast, we observe that the derivative term helped
increasing the response time of the feedback system. The PD
controller was faster than the P controller, while settling at
the same time. In this regard, the PD controller possesses
the more suitable characteristics of controlling a feedback
recommender system in our case.

4.2 Controlled Recommendation
Having learned the parameters and understood the gen-

eral characteristics, we are now ready to deploy the con-
trolled recommender systems and evaluate their performance
by replacing the simulated system dynamics with a real
recommender system. We first studied the initialization.
We picked three different reference values (0.95, 0.90, 0.86).
Without any control and the use of all the available data:
they can be reached in 4, 9 and 18 days respectively, given
the rate of data growth in the data set. We ran the ex-
periments with the four controllers discussed above to see
how the system behaves with respect to the change of the
reference value. This is executed by adding the controllers
analytically obtained in the previous section to the real sys-
tem and compare the behavior of the system predicted by
the analysis to the behavior of the real system.

The five-fold cross validated results are shown in Figure 7.
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Figure 7: The characteristics to reach certain reference values (0.95, 0.90, 0.86) per controller (MovieLens 1m). The controllers
in the first row converge faster whereas the controllers in the second row are are slower but more stable.

First, we observe that all the controllers can stabilize the
system to the reference value. The behavior of the system
was consistent with our understanding of the offline step re-
sponse analysis. The analysis also correctly predicted which
controllers were tend to overshoot, but the extend of the
overshoot was less than it was anticipated. This was due to
the fact that the rate of performance improvement slows as
the data grows. The rate of overshooting therefore decreased
when the system approached a lower reference value (bet-
ter performance). The PD controller (Fig 7(c)) overshot the
target, but it was faster to settle with much smaller steady
state error. We also observed that the PID controllers (Fig-
ure 7 (d) and (h)) had a relatively big steady state error,
mainly due to the integral part of the controller which ac-
cumulated the residual error over time.
Our observations were further quantified in Table 3 by in-

troducing the following metrics. Settling time was measured
as the time spend to settle within ± 1% of the target value.
We also monitored the stability and the steady state error
of the system. To measure stability of the performance over
time, we define SD-SS, which measures the error from the
mean; to measure the error, we define RMSE-SS as the root
mean squared error from the reference value (note that we
also used RMSE to measure the recommendation accuracy).
Both SD-SS and RMSE-SS were calculated from the point
where the system settles. The results shows that all the con-
trollers (except the P-II) have relatively small errors. The
best controllers in terms of error (RMSE-SS) were the PD-I,
PID-I and PID-II controller which are marked gray in the
table. The differences between the three best controllers (in
terms of RMSE-SS) were not statistically different, but their
values were statistically different from the other controllers.
We also observed that that the slowest controller was the

P-II (which did not even reach the reference value). It was
followed by the PD-II, and the rest of the controllers pro-
duced similar results (not statistically different). This differs
from Table 2, where the setting time varied significantly. In
the case of the PI-I controller, it had a long predicted set-
tling time in Table 2, but we observed in Figure 7(c) that it
reached the target value fast and it stayed slightly below the
reference value. We believe this may be due to the fact that

Table 4: The speed, precision, stability and overshoot of the
controllers. The best performing controllers in terms error
are marked gray.

Type Settling RMSE-SS SD-SS Overshoot
Time (error) (stability) (%)

P-I 18.2 0.00473 0.00476 0.68955
P-II 20 0.00689 0.00529 0.50125
PD-I 18 0.00448 0.00463 0.93336
PD-II 18.8 0.00549 0.00559 0.98527
PI-I 17.6 0.00807 0.00629 1.82811
PI-II 20.6 0.01376 0.00751 2.50716
PID-I 17.8 0.00641 0.00540 1.32989
PID-II 17.8 0.00914 0.00592 1.86331

(a) Reference change from RSME 0.90 to 0.925.
Type Settling RMSE-SS SD-SS Overshoot

Time (error) (stability) (%)
P-I 18.5 0.00569 0.00520 0.74247
P-II 25.4 0.00763 0.00325 0.00513
PD-I 18.5 0.00499 0.00503 0.85006
PD-II 20.7 0.00547 0.00489 0.46552
PI-I 17.9 0.00580 0.00543 1.25541
PI-II 17.8 0.00489 0.00505 1.04460
PID-I 18.3 0.00546 0.00499 1.22198
PID-II 17.6 0.00552 0.00518 1.27250

(b) Untunning the parameters of the used recommendation
predictor (SVD algorithm).

in practice (as in the simulation) the change of the reference
value is much smaller than the theoretical change in step re-
sponse. Thus, the settling happens faster in the simulation.
In addition, fewer overshoots were observed in the simula-
tion than in step response. This is mainly due to fact that
increasing recommendation accuracy becomes more difficult
as accuracy increases (the non-linear relationship between
the input and output in Eq. (1)). In terms of stability, as
predicted, the slower controllers (mark II) were more more
stable their faster counterparts.

Table 4 (a) extends the experiments by considering the
reference value change from RSME 0.90 to 0.925. To fur-
ther evaluate the reaction of system the with respect to un-
expected changes, we introduced disturbance within the un-
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derlying recommender model (SVD algorithm). We ran the
experiments with the same settings as before, but in day 15
we untuned the parameters of the SVD model, in order the
simulate an extreme version of disturbance in the model.
This change has a sudden effect on the overall recommen-
dation accuracy. The controllers did stabilize the system by
compensating the number of new training samples. Table 4
(b) summarizes the results of the experiment.
In Table 4(a) and (b), the top performing controllers were

marked gray and they were statistically significant from the
other ones. It is interesting to see that the PD controllers
still performed consistently well in these two experiments,
suggesting that the PD controllers are the best for our rec-
ommender system. We also observed that the controllers
(the PI and the PID controllers) with a integral part were
unstable in our system, thus not recommended. The inte-
gral part performed well when the system was required to
improve the recommendation accuracy rapidly (Table 3 and
Table 4(b)), but performed poorly when the performance
was to be reduced (e.g., Table 4(a)).

5. EVALUATION
5.1 Computation Cost and Update Frequency

One of the benefits of the proposed feedback control is
the ability of handling the trade-off between computational
complexity and performance2. This would enable recom-
mendation providers to have a principled tool to control the
system and predict the resources needed for a predefined
quality of service even if the near future usage of the system
is unknown. Computing recommendations is expensive, par-
ticularly for a large scale system. The feedback controller
can be fine tuned to achieve the best level of recommenda-
tion performance given limited resources. In addition, by
fixing the required computational resources needed to train
the model, it is possible to predict the update frequency of
the system, given the resources available. As the fixed com-
putational complexity would determine how long it would
take to train the model using the available resources. We
can also produce highly regular updates independent from
the rate the new samples enter the system. To achieve this,
two main characteristics of the system should be considered.
First, it is critical to reduce the overshoot, as overshooting
the target performance could threaten the stability of the
system. Second, it is desirable to have the fastest response
time so that it would minimize performance loss.
We evaluated the ability with the PD-II controller as it

has been proved to be the best in the previous experiments.
Figure 8 (a) depicts the computational efforts (measured in
CPU time) for the baseline (no controller) and for the PD-II
controller with two reference values (0.86 and 0.90), respec-
tively. As illustrated, once the required performance has
reached, the computational cost becomes stable. Figure 8
(b) and (c) further demonstrate this by plotting the com-
putational gain (i.e., reduced computational effort) versus
performance loss over the baseline. Setting the reference to
0.86 can save up to 15% in computation while the accuracy
is reduced only by less than 1%. This difference becomes
more obvious if we set the reference to 0.90, where the com-
putational effort can be reduced by up to 55% while the

2It should be emphasized that an alternative formulation
is needed to obtain the optimal control signals by directly
optimizing the specific goal (either the computation costs or
recommendation accuracy). We leave this formulation for
future work.

performance loss is not more than 6.2%. This ratio is due to
the fact that performance improvement slows down as the
number of training samples increases (modeled in Eq. (1)).
Moreover, the PD-II controller has 0.5% - 1.0 % overshoot
predicted by the analysis and the preliminary experiments,
this would guarantee that the system stays stable over time
and would not go over the predefined computational cost.
Therefore, this approach would enable practitioners to use
the system to its full extent without risking the overall sys-
tem stability (by going over the resources available). By
controlling the computational effort we can make accurate
predictions of how many times the system can be updated,
so that the system can provide fresh recommendations when
it is required. If we set the reference value to 0.90 (using less
training samples), we can provide 3200 updates a day (with
our resources it takes 27 seconds to update the model), but
we could only provide 2400 updates with the reference value
0.86 where we use more training samples to train.

It is important to note that this approach shows the up-
per bound of the performance loss, as we chose to randomly
subsample the data, but by using simple selection strategies
(e.g. always train with the latest data), it would substan-
tially reduce the performance loss. Also, the approach can
easily be tailored to produce incremental updates or updates
per user instead of considering the whole data as long as the
system dynamics is learn on the appropriate inputs/outputs.

6. DISCUSSION
There are a number of shortcomings of this method that

can be addressed by extending a model towards a more fine-
tuned way of controller design. We chose to represent the
system with one single state (performance) and consequently
one controller in this paper. The reason behind this is that
we aimed to concentrate on understanding the controllabil-
ity of the system dynamics, and evaluate how a control-
theory oriented approach can model system dynamics. This
approach can be easily extended and broken down to con-
trol each individual user and item or any other way that is
convenient in practice.

Instead of controlling the update frequency we can extend
this approach to provide a prediction of when the system
needs to be retrained given the worst performance accept-
able. As the controller described in the previous section
produces a signal of how many training samples are needed
to converge to the reference value at a given time, this value
can be used to compute the next time the system needs re-
training. As shown earlier, the performance of recommender
system decreases if it is not retrained periodically, this rate
of decrease can be used to calculate the next time our system
reaches the pre-defined reference performance. We define
this as the deterioration rate per sample and can be esti-
mated from historical data. It shows how long it would take
for the recommender system to return to its initial perfor-
mance after adding one sample. In other words, if we know
that we need to remove a number of samples to reach the
reference value immediately, this would be a good indica-
tion of how long it would take for the recommender system
the converge to the reference value without removing any
samples.

It is important to note that breaking down the perfor-
mance of the system to days or even hours shows that the
system dynamics is sensitive to a number of factors. These
include how much the system knows about the user and the
item in question, the temporal change in taste of the user,
how obscure or mainstream the item is. This paper has
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Figure 8: Computation vs performance (MovieLens 1m). The baseline approach has no controller employed. This is compared
to keeping the performance at 0.86 and 0.90 respectively with the PD-I controller

not directly provided answers to these questions, but the
study about the impact from the number of training sample
provides a guideline and design pattern as to how to deal
with those factors. If we are able to identify all the factors
that constitute to the system dynamics, we might be able
to stabilize them over time by designing a control loop for
each individual factor, or considering them as disturbance
or noise.

7. CONCLUSION
In this paper, we have shown how Modern Control The-

ory can help us design and analyze dynamical recommender
systems. By proposing to use a simple spring and damper
model to deal with the performance dynamics and deploying
it with PID controllers, we have achieved a stable control of
the recommender system over time. Not only providing a
flexible method to handle the trade off between computa-
tional cost and performance, this approach also provides a
way to identify and analyze the characteristics of the dy-
namics, and provides principled tools to achieve the desired
objectives.
There are other fruitful opportunities in this research di-

rection. An interesting study would be to consider what
types of input signals might be useful to keep the perfor-
mance steady. For instance, it is worth exploring the con-
trol strategies with active learning, that defines which sam-
ples should be added to the training set to maximize per-
formance. Instead of choosing randomly from the availably
samples the controller can follow pre-defined strategies, e.g.,
the data points could be selected based on their age, the es-
timated difficulty of the user/item etc. These factors would
provide further practical solutions to manipulate the perfor-
mance of the system.
The idea is also useful to apply to other online services

as they all inherently exist in a time-dependent context [18].
Similar dynamics occurs in a web page content [2] and revis-
itation habits [1]: control theory could be used to respond
to the flow of information to control the outcome of the dy-
namical system.
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