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ABSTRACT

Searching over heterogeneous structured data on the Web
is challenging due to wvocabulary and structure mismatches
among different data sources. In this paper, we study two
existing strategies and present a new approach to integrate
additional data sources into the search process. The first
strategy relies on data integration to mediate mismatches
through upfront computation of mappings, based on which
queries are rewritten to fit individual sources. The other
extreme is keyword search, which does not require any up-
front investment, but ignores structure information. Build-
ing on these strategies, we present a hybrid approach, which
combines the advantages of both. Our approach does not
require any upfront data integration, but also leverages the
fine grained structure of the underlying data. For a struc-
tured query adhering to the vocabulary of just one source,
the so-called seed query, we construct an entity relevance
model (ERM), which captures the content and the struc-
ture of the seed query results. This ERM is then aligned
on the fly with keyword search results retrieved from other
sources and also used to rank these results. The outcome of
our experiments using large-scale real-world data sets sug-
gests that data integration leads to higher search effective-
ness compared to keyword search and that our new hybrid
approach consistently exceeds both strategies.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Relevance feedback

General Terms
Experimentation
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1. INTRODUCTION

A rapidly increasing amount of structured data can be
found on the Web today. This development is triggered by
the Linked Data movement, Semantic Web community ef-
forts, and recently, also enjoys strong support from large
companies including Google, Yahoo! and Facebook, and
governmental institutions. The amount of Linked Data alone
is in the order of billions of RDF triples, residing in hundreds
of data sources [11]. In this paper, we aim at supporting the
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exploitation of these structured Web data. In particular, we
alm at extending vertical search capabilities beyond internal
data to also incorporate external Web data into the retrieval
process. We illustrate the problem behind it based on the
following scenario:

There is a company running a movie shopping website.
Users can search for movies on this website via form-based
interfaces, and their requests are internally executed as struc-
tured queries against the company’s dataset. Now, the com-
pany aims to exploit the numerous Web data sources avail-
able as Linked Data, including data provided by a partner
company with similar offerings and an encyclopedia dataset
that contains additional movie related information. The
goal is to incorporate data from these external sources into
the search processes. However, the vocabularies and struc-
ture exhibited by these target data sources are different such
that issuing the same structured queries (called seed queries)
against these external sources may not produce any results.
Results satisfying the information needs behind these seed
queries may exist but due to mismatches in structural and
syntactical representation, they cannot be found.

In this paper, we study three different strategies that are
applicable to this search scenario:

(1) There are Information Retrieval (IR) solutions, which
treat both the data and queries as bags of words [5, 20].
Because structure information is ignored during query pro-
cessing, this strategy (called keyword search) often leads to
non-empty results — albeit with varying quality.

(2) The alternative is to employ database solutions, where
information needs are expressed as structured queries. Given
the richer representation of the information needs, the struc-
ture of the underlying data can be exploited and incorpo-
rated into the matching process. While this can improve the
quality of the results, this type of solutions requires upfront
investment in data integration, i.e. computation of ontology
and schema mappings and consolidation of data instances
that refer to the same object (entity mappings) [8, 9, 13, 4].
Based on these mappings, results from external sources can
be obtained via query rewriting [3, 23]. Integration efforts
are needed whenever the data changes. Clearly, integration
on the Web is hard due to the large number of sources and
their scale as well as their heterogeneity regarding differ-
ences at the schema and data level, which is illustrated for
our scenario in Figure 1. Here, entities representing movies
are displayed. One can observe that three different represen-
tations of “Steven Spielberg” are used for the same real-world
object. Also, different labels are used to express the same
attribute.

(3) As the third category, we elaborate on a hybrid solu-
tion, which combines the flexibility of unstructured IR solu-
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DBpedia db:

Figure 1:

Data heterogeneity on the Web. Entities from three different Web datasets are represented

differently at the schema level (e.g. actors vs. starring) and data level (e.g. Spielberg, Steven vs. Steven

Spielberg).

tions (in the sense that no prior data integration is needed)
and the expressiveness of database-style querying by incor-
porating the structure of the underlying data. The idea
is to start with a structured seed query specified for one
particular source. Based on the content and structure of
the results obtained from this source, we construct an En-
tity Relevance Model (ERM) that can be seen as a compact
representation of relevant results mirroring the underlying
information need. Instead of relying on up-front computed
mappings for rewriting the structured seed query, we treat
the seed query as a keyword query and submit it against
external data sources to obtain additional results. These
candidates are obtained using a standard IR-based search
engine. Then, we create mappings between the structure
of each candidate result and the structure of the ERM on
the fly. These mappings are used for an additional round
of matching and ranking. Candidates which more closely
match the content as well as the structure captured by the
ERM are ranked higher. Thereby the structure of the ERM
and of the result candidates are incorporated into the search
process. Since, the same similarity metrics for creating the
mappings are reused for ranking, this on the fly integra-
tion comes for free. As a result, this hybrid strategy not
only takes structure information into account for more ef-
fective search, but also provides on the fly computed map-
pings that can support a pay-as-you-go integration paradigm
where data integration is tightly embedded into the search
process [16].

Contributions. The contributions of this work can be
summarized as follows: (1) We perform a systematic study
of the two main prevailing strategies towards searching ex-
ternal heterogeneous data sources. In particular, we show
how to adopt the data integration approach to our scenario
where the computation of entity mappings is challenging.
(2) To achieve the best of both worlds, we elaborate an a hy-
brid approach that does not rely on upfront data integration,
but uses a query-specific Entity Relevance Model (ERM) for
searching as well as for computing mappings on the fly. (3)
Based on large-scale experiments using real-world datasets,
we observe that the data integration approach consistently
provides better results than keyword search. The hybrid
approach yields best results, outperforming keyword search
by 120% and the data integration baseline by 54% on av-
erage in terms of Mean Average Precision. Further, this
hybrid approach is able to leverage upfront integration re-
sults, leading to additional quality improvement when pre-
computed mappings are considered. The qualitative differ-
ences between these approaches are: Keyword search and
the hybrid approach do not require upfront data integra-
tion. Additionally, the hybrid approach provides on the fly
computed mappings that can be used for a pay-as-you-go in-
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tegration process that can exploit user feedbacks for quality
improvement (as discussed in [16]).

Outline. Section 2 defines the research problem and gives
an overview of existing solutions and briefly sketches our
new approach. This approach of relevance based on the fly
mappings is presented in detail in Section 3. Evaluation
results are presented in Section 4. Section 5 discusses the
related work before we conclude in Section 6.

2. OVERVIEW

In this section, we present the setting of the addressed
problem, and provide an overview of three different solu-
tions.

2.1 Data Heterogeneity on the Web

The problem we address is situated in a Web data sce-
nario. The kind of Web data that is of most interest is RDF
data. For reasons of generality and simplicity, we employ
a generic graph-based data model that omits specific RDF
features such as blank nodes. In this model, entity nodes
are RDF resources, literal nodes correspond to RDF liter-
als, attributes are RDF properties, and edges stand for RDF
triples:

Data Graph. The data is a directed and labeled graph
G = (N, E). The set of nodes N is a disjoint union of enti-
ties Ng and literals Nr, i.e. N = Ng W Nr. Edges F can
be conceived as a disjoint union £ = Eg W Er, of edges rep-
resenting connections between entities, i.e. a(e;,e;) € Eg,
iff e;,e; € Ng, and connections between entities and liter-
als, i.e. a(ei,e;) € Er, iff e; € Ng and e; € Nr. Given
this graph, we call the set of edges A(e;) = {a(es,e;) €
E} the description of the entity e; € Ng, and each mem-
ber a(es,e;) € A(es) is called an attribute of e;. The set
of distinct attribute labels of an entity e;, i.e. A'(e;) =
{ala(e;, e;) € A(e;)}, is called the model of e;.

It is clear that this notion of data graph is sufficiently
general to capture not only RDF but also other types of
Web data. For instance, data in a relational database can
be mapped to this model by representing tuple ids as entity
nodes, other tuple values are literal nodes that are connected
to the corresponding ids that are in the same tuple, and for-
eign key relationships are captured as connections between
entity nodes.

Data Heterogeneity. Web data reside in different datasets,

each represented by a data graph. Typically, real-world Web
datasets exhibit heterogeneity at the schema and the data
level. At the data level, entities in different datasets, which
refer to the same real-world object, may have different de-
scriptions. Differences at the schema level occur when the
same entity is represented in different datasets using at-
tributes with different labels (different models). As men-
tioned in the introduction, Figure 1 exemplifies this het-
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erogeneity exhibited by real-world datasets. Dealing with
these types of heterogeneity requires data integration. For
this, a large body of work on schema alignment and entity
consolidation (record linkage) can be leveraged to compute
mappings between data sources [8]. While mappings of vary-
ing semantics have been proposed, the most basic and com-
monly used one asserts that two elements (schema elements
or entities) are the same (i.e. same-as mappings).

2.2 Research Problem

Given this model of Web data, structured queries can
be specified to search over such datasets. The most com-
monly used language for querying RDF data on the Web is
SPARQL [1]. One essential feature of SPARQL is the Basic
Graph Pattern (BGP). Basically, a BGP is a set of conjunc-
tive triple patterns, each of the form predicate(subject, object).
They represent patterns because either predicate, subject
or object might be a variable, or is explicitly specified as a
constant. Answering these queries amounts to the task of
graph pattern matching, where subgraphs in the data graph
matching the query pattern are returned as results. Predi-
cates are matched against edges in the data graph, whereas
bindings to subjects and objects in the query are entity or
literal nodes.

One particular form of BGP with high importance are
so-called entity queries. Essentially, they are star-shaped
queries with the node in the center of the star represent-
ing the entity (entities) to be retrieved. Figure 6 provides 3
examples. According to a recent Web query logs study per-
formed by Yahoo! researchers, queries searching for entities
constitute the most common type on the Web [18]. Also,
most of the current Semantic Web search engines such as
Sig.ma * and Falcons [5] focus on answering these queries.
For the sake of clarity, we also focus on this type of queries
in this paper to illustrate the main ideas underlying our ap-
proach. Later, we will point out how our approach can be
extended towards supporting general graph patterns. This
however requires more complex algorithms for searching paths
between entity nodes matching the query keywords (i.e. match-
ing the seed query represented as keywords).

Problem. Based on her knowledge about the schema and
data of one particular source (e.g. the one owned by the
company in our scenario), it is possible for a programmer or
expert user to specify complex entity queries that specifically
ask for information from this source. It is however not trivial
to exploit external datasets for this kind of entity search
when they exhibit heterogeneity at the schema and data
level as discussed before. The problem we tackle is finding
relevant entities in a set of target datasets G, given a source
dataset G s and an entity query ¢s adhering to the vocabulary
of Gs.

2.3 Solutions

Clearly, if all datasets exhibit the same schema and data
representation, then ¢s can directly be used to retrieve in-
formation from G;. When this is not the case, the following
different solutions can be applied.

Keyword Search (KW). The first and most widespread
solution to this end is to use keyword search over so called
‘bag-of-words’ representations of entities [20, 5]. That is, the
description of an entity is simply a bag of terms. A query
is also represented as terms, which is then matched against
the term-based representation of the entities. Clearly, this

'http://sig.ma/
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directors rainer werner fassbinder theatrical release date
1982 type movie (2)

“Rainer Werner Fassbinder”

a:Directors (3)

e title veronika voss
irdirector,
a:Theatrical 1 Rainer Werner Fassbinder ::> director rainer werner
B released
ReleaseDate, i-released 1982 1982
:> title schindlers liste
1994 director spielberg
Amazon a: (1) steven type movie

Figure 2: KW: A structured query (1) transformed
into a keyword query (2) and matched against bag
of words representations of entities (3).

Schema Schema
Schema
Alignment Tool
Amazon a: Dbpedia db:
a:Directors db:director

a:Title = db:name

db:director

a:Directors
a:Theatrical
ReleaseDate

type

AActor = dbistarring

Amazon a: =

“Rainer Maria Fassbinder”

DBpedia db:

Figure 3: QR: A query for Amazon is rewritten into
a query for DBpedia with constants being replaced
with variables, and the missing mapping results in
an “empty” triple pattern.

approach is simple but also flexible in the sense that the
same keyword query specified for G5 can also be used for
G: because results from G; can be obtained when there are
matches at the level of terms. As illustrated in Figure 2,
this approach ignores structure information and vocabulary
mismatches.

Structured Query Rewriting (QR). Another view on
this retrieval problem is the database perspective. Here,
structure information in the entity descriptions is taken into
account. However, this also requires the query to be fully
structured. The strategy to query over multiple datasets
and to deal with data heterogeneity here is to rewrite the
structured seed query ¢s into a query ¢: that adheres to
the vocabulary of the target dataset G; € G;. For this,
same-as mappings are computed using entity consolidation
and schema mapping tools [8, 9, 13, 4]. Then, predicates
and constants in ¢s referring to attributes and entities in
G5 are replaced with predicates and constants represent-
ing corresponding attributes and entities in G;. While this
strategy can exploit the fine grained structure of data and
query, it relies on upfront data integration, which is prob-
lematic in the Web scenario because Web datasets are het-
erogeneous and evolve quickly. In our experiment on the
datasets prepared for the Billion Triple Challenge? for in-
stance, we observe that state-of-the-art entity consolidation
approaches [4] do not scale well to large datasets [21]. In par-
ticular, they are focused on the single-domain setting such
that for these heterogeneous datasets (where many of them
exhibit only small pairwise overlaps at the schema level),
only a relatively small amount of correct mappings could be
produced. Thus, rewriting constants using entity mappings
is especially challenging in this scenario.

In fact, it has been recognized that integration at the Web
scale is too complex and resource-intensive to be performed
completely upfront [16]. A more practical strategy to deal
with this dynamic and large-scale environment is to per-
form integration as you go [16], i.e. at usage time as the
system evolves. In this regard, an alternative solution is to
precompute schema mappings only. Then, entity mappings

http://challenge.semanticweb.org/
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that are needed for a specific query are obtained at run-
time. Figure 3 illustrate this: Schema mappings are used to
rewrite the query, triple patterns for which no corresponding
schema-level mappings exist are omitted, and constants are
replaced with variables (instead of being replaced with con-
stants that adhere to the vocabulary of the target source).
The resulting query captures only structure constraints of
the original query and thus, produces possibly much more
results than a query where constants are also rewritten. To
achieve that, a standard IR search engine can be leveraged
to limit the results to only those, which match the constants
expressed as keyword queries. That is, the constants that
have been replaced by variables in the first step, act as a
keyword query in the second step to perform on the fly en-
tity consolidation, i.e. to find entities in G¢, which match
the entities in G5 as represented by the constants (such as
“Rainer Maria Fassbinder 1982” in the example).

Our approach. In this paper, we present a framework
to address this problem of querying heterogeneous Web data
using on the fly mappings computed in a pay-as-you-go fash-
ion based on entity relevance models. This framework is in-
stantiated involving the following four steps. (1) First, we
compute an ERM from the results returned from the source
dataset G5 using gs. (2) Second, we treat gs as keywords and
using a standard IR-based search engine, we obtain result
candidates from the target datasets G:. (3) Then, a light-
weight on the fly integration technique is employed, which
maps the structure of result candidates to the structure of
the ERM. (4) Finally, the result candidates are ranked ac-
cording to their similarity to the ERM using the mappings
computed at runtime.

Figure 4: Example set R of two entities e1, e2 obtain
for query gs

3. SEARCH OVER HETEROGENEOUS DATA

In this section, we present how the entity relevance model
is constructed and discuss how this model can be exploited
for ranking and relevance-based on the fly data integration.

3.1 Entity Relevance Model

We aim at building a model that captures the structure
and content of entities relevant to the information need,
which is expressed in the seed entity query ¢s. The pro-
posed model is called the Entity Relevance Model (ERM).
The ERM builds upon the concept of language model, a
statistical modeling technique frequently applied in Infor-
mation Retrieval tasks. We start with a brief overview of
language models for IR (see [17] for more details).

Language Model. The main idea here is to see doc-
uments and queries as samples from different probability
distributions also called language models. More precisely, a
language model is a multinomial distribution, which assigns
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(1) ERM
as k(as) w : Ps(wlas)
label 1 world:0.2, on:0.2, wires:0.2, ...
starring 0.5 klaus:0.25, 16witsch:0.25, barbara:0.25,. ..
director 1 rainer:0.33, werner:0.33, fassbinder:0.33
released 1 1973:0.5, 1982:0.5
language 0.5 german:1
type 1 film:1
(2) e
at w: Py(wlay)
i:title e:0.33, t:0.33, 1994:0.33
i:actors coyote:0.5, peter:0.5

i:directors | spielberg:0.33, steven:0.33, i:0.33
i:producer | spielberg:0.33, steven:0.33, i:0.33
type movie:1

Figure 5: (1) ERM constructed from the entities
e1,ez of Figure 4. The ERM has a field for each
attribute with label a;. Each field is weighted with
k(as) and has a language model P;(w|as) defining the
probability of w occurring in field as.

(2) Representation of the entity e; of Figure 1 with
language models for each attribute labeled a;.

a probability to every word w in the vocabulary. Consider-
ing the underlying statistical process that leads to the gen-
eration of query and document samples, the corresponding
query and document language models can be reconstructed
when the samples are large and representative. A Maximum
Likelihood Estimator is often used for this. For example,
given a document corpus C', the vocabulary of terms V, the
language model P(w|D) representing document D € C can
be estimated as follows:

n(w, D)

PwlD) = X5

+ (1 =X P(w|C) (1)

where n(w, D) is the count of word w in D, | D| is the docu-
ment length, and P(w|C) is a background probability, which
is used for smoothing controlled by the parameter A. While
a query (@ may be too short as a sample, it has been shown
that pseudo-relevance feedback (PRF) results obtained for it
can serve as a representative sample of the information need,
from which a query model (called relevance model) can be
reconstructed. Thus, instead of the query, a relevance model
P(w|Q) is reconstructed of PRF results [14]. For ranking,
a document D is considered relevant to a given query @, if
their probability distributions are close in “distance”. One
way to achieve this is using the negative cross-entropy —H:

H(QIID) = Y P(w|Q)log P(w|D) (2)

weV

We adopt this modeling approach to the problem of search-
ing structured Web data. Our goal is to model both the
structure and the content of entities. The idea behind the
ERM is to represent the attribute structure of entities by a
set of language models, and each language model captures
the content of the respective attribute. Hence, instead of us-
ing language models to represent entire documents, we use
them for modeling attribute values.

Entity Relevance Model. The ERM = (Rs, As,Ps) is
a composite model consisting of a set of entities Rs C Ng, a
set of attributes A; C E, and a set of language models Ps.
Each Ps € Ps is associated with a weight defined through
the function k : Ps — [0, 1]. The entities Rs are obtained by
submitting the query ¢s against the source dataset G5 and
used as pseudo-relevance feedback. As denotes the set of all
distinct attribute labels that are associated with the entities
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R, ie. A; = {ala € A'(e),e € Rs}. For each distinct at-
tribute label as € As, we compute a corresponding language
model Ps(w|as) € Ps and its weight k(as). The language
model P;(wl|as) specifies the probability of any word w € V/
occurring in the nodes of data graph edges with label as,
where V is the vocabulary of all words. Let N(e;, as) be the
set of nodes that is connected with e; through edges with
label as, i.e. N(es,as) = {ejlas(ei,e;) € E}, we compute
P;(wlas) from all entity descriptions for e; € R as follows:

ZeiERS Ze]-EN(ei,as) n(w7 6]‘)

Pi(wlas) =
ZeiERS ZEjEN(ei,as) |€]"

®3)

where n(w, e) denotes the count of word w in the node e
and |e| is the length of e (the number of words contained in
e). The outer sum goes over the entities e; € Rs and the
inner sum goes over all values e; of attributes with labels as.
Thus, entity descriptions, which do not have the attribute
as, do not contribute to Ps(w|as). In order to capture the
importance of these attribute-specific language models, we
compute k(as) as the fraction of entities having an attribute
with label as:
n(as, Rs) (@)

| Rs|

where the numerator denotes the number of entities having
an attribute with label as and the denominator is the total
number of entities in Rs. In summary, an ERM can be
seen as a query specific model built from pseudo-relevance
feedback entities retrieved for the seed query ¢gs. An example
for an ERM constructed from two entities is illustrated in
Figure 5 (1).

k(as) =

3.2 Search Using ERM

We tackle the problem of searching over heterogeneous
data in a way similar to entity consolidation. That is, given
the results e; € R, from the source dataset obtained for the
seed query, we aim at finding entities in the target datasets
which are similar to Rs. We use the ERM as the model
of those relevant results. In particular, we estimate which
entities e; of G; are relevant for the query gs by measuring
their similarity to the FRM and rank them by decreasing
similarity. We model a candidate entity e; analogously to
the ERM: e; = (A, P:) where Ay = A’(e:) is the set of
attributes of e; and P, is a set of language models. Similar
to the ERM, P; contains a language model P;(w]|a:) for each
distinct attribute label a; € A;. Let N (a¢) be the set of value
nodes of the attribute aq, i.e. N(a:) = {e;lai(es,e;) € E},
Pi(wl|ay) is estimated as follows:

ZejeN(at) n(w7 ej)

ZejEN(at) |ej|

Pt(w|at) = (5)

Here, the sum goes over all values e of attributes with label
at, n(w,e) denotes that number of occurrences of w in e,
and |e| denotes the length of e. Figure 5 (2) illustrates an
example.

We calculate the similarity between the FRM and a can-
didate entity e; by measuring the “distance” between a lan-
guage model of FRM and a language model of e; using the
(negative) cross entropy —H. We sum over these “distances”
and weight each summand by k(a.) and the parameter (,,):
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Sim(ERM,e;) = > Blas) - k(as) - H(Ps(w|as)|| P (wla:)
as€As

(6)

The parameter 3 gives us the flexibility to boost the im-

portance of attributes that occur in the query gs as follows:

:{;

In particular, we apply this similarity calculation only
when we know which attribute label as of ERM should
be matched against which attribute a; of e;. We address
this problem in the next section and show how the ERM
can be exploited to create on the fly schema mappings, i.e.
mappings between an attribute a: and a field as of ERM.
Equation 6 applies to corresponding pairs of attribute and
field. If there is no mapping between as and a;, then we
use a “maximum distance”. This distance is computed as
the cross entropy between Ps(w|as) and a language model
that contains all words in the vocabulary but the ones in
P, (w|as).

For constructing the language models of the ERM and
of the candidate entities, a maximum likelihood estimation
has been used, which is proportional to the count of the
words in an attribute value. However, such an estimation
assigns zero probabilities to those words not occurring in the
attribute value. In order to address this issue, Pi(w|a;) is
smoothed using a collection-wide model ¢ (w), which cap-
tures the probability of w occurring in the entire dataset
Gs. This smoothing is controlled by the Jelinek-Mercer pa-
rameter X\. As a result, the negative cross entropy —H is
calculated over the vocabulary V of field as as:

if as ¢ gs

Blas) if as € gs,b> 1

(7)

H(P:||P) =) _Ps(wlas) -log( A~ Pi(wlar) + (1 = X) - es(w) )

weV (8)

3.3 On The Fly Integration Using ERM

We want to determine which attribute of an entity needs
to be compared to a given field of the ERM constructed for
gs- The ERM is not only used for search, but also exploited
for this alignment task. The details for computing mappings
between entity attributes a; € A and ERM fields as € As
are presented in Algorithm (1). The rational of the algo-
rithm is that a field as is aligned to an attribute a; when
the cross entropy H between their language models is low,
i.e. a mapping is established, if H is lower than a threshold
t (normalized based on the highest cross entropy, line 12).
The algorithm iterates over n - r comparisons in worst case
for an ERM with n fields and an entity with r = |A’(e;)]
attribute labels. Note that n and r are relatively small (see
Table 1 and Table 3) because this algorithm operates only
on entities that are requested as part of the search process
compared to full-fledge upfront integration that takes the
entire schema into account. Further, ranking requires the
same computation (Equation 8) and thus the entropy values
computed here are kept and subsequently reused for rank-
ing. Moreover, for a faster performance, ERM fields having
a weight of k(as) < ¢ can be pruned due to their negligi-
ble influence (see Section 4.6 and 4.7). In addition, existing
mappings can be reused to reduce the number of compar-
isons even further.
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Algorithm 1 On the fly Alignment

Input: ERM, Entity e, Threshold ¢ € [0, 1]

Output: Mappings A := {(as,at)|as € As,a¢ € Ay Unull}
1: A:=new Map

2: for all a; € A5 do

3: candMappings := new OrderedByV alueMap

4: for all a; € A’(e) do

5: if a;x ¢ A.values then // If not already aligned
6: h — H(Ps(wl|as)||Pr(w|at)) // see equation (8)
7. candM appings.add(a, h)

8: end if

9: end for

10:  bestA — candMappings. firstValue

11: worstA «— candMappings.lastValue

12: if bestA < t-worstA then

13: ay — candMappings. firstKey

14: A.add(as, at)

15: else

16: A.add(as, null) // no mapping found
17: end if

18: end for

19: return A

4. EXPERIMENTS

In this section, we report on the experiments conducted
with the three solutions discussed in Section 2. We experi-
mented with different parameter settings and observed that
performance is stable when the employed parameters are in
certain ranges (will be discussed in Section 4.6). Results
reported in the following are obtained using the configura-
tion: b =10, ¢ = 0.8, t = 0.75. The smoothing parameter A,
whose effect on retrieval performance has been studied ex-
tensively for IR tasks, was set to 0.9, a common value used
in literature. We follow the Cranfield[6] methodology for
the experiments on the search effectiveness and adopt the
same methodology to analyze the effectiveness of mapping
computation.

4.1 Datasets

Our experiments were conducted with 3 RDF Web datasets,
DBpedia 3.5.1, IMdb, and Amazon. In every experiment,
one of them serves as the source dataset and the other two
represent the target datasets. DBpedia is a structured repre-
sentation of Wikipedia, which contains more than 9 million
entities of various types, among them about 50k entities
typed as films. The IMdb and Amazon datasets are re-
trieved from www.imdb.com and www.amazon.com [23], and
then transformed into RDF. The IMdb dataset contains
information about movies and films, whereas the Amazon
dataset contains product information about DVDs and VHS
Videos. These three datasets are representative for our Web
scenario because a vertical search application running one of
these datasets (e.g. the one owned by the company in our
scenario) could benefit from incorporating the other two into
the search process. Further, the datasets exhibit the het-
erogeneity previously illustrated in Figure 1. Table 1 gives
details about each dataset.

#Distinct [A(e)]
Dataset #Entities Attribute +StdDev.
Labels
Amazon 115K 28 18.44+3.8
IMdb 859K 32 11.44+6.4
DBpedia 9.1M 39.6K 9+18.2

Table 1: Dataset statistics

4.2 Queries and Ground Truth

Our goal is to find relevant entities in the target datasets
G for a given query ¢s. In this setting, we can determine the
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relevant entities in G; by manually rewriting the query ¢s
to obtain a structured query ¢: adhering to the vocabulary
of G € G;. Figure 6 shows such a set of queries, one of the
queries serves as the source query ¢s and the results of the
other two queries capture the ground truth for the retrieval
experiments.

We created three query sets, each containing 23 SPARQL
BGP entity queries of different complexities, ranging from
2 to 4 triple patterns that produce a varying number of
results, see Table 2. The queries represent information needs
like retrieve “movies directed by Steven Spielberg”, “movies
available in English and also in Hebrew”, or “movies directed
by Rainer Werner Fassbinder, which were released in 1982”.
The last query is illustrated in Figure 6.

[ Rel. Entities [[ Amazon [ IMdb | DBpedia |

max 153 834 47

avg. 32.2 114.9 10.9
median 18 21 5

min 1 1 1

Table 2: Results per query and dataset.
[ Source Dataset [[ [ERM] £ StdDev. |

Amazon 14.14+3.6
IMdb 15.8+6.7
DBpedia 23+5.4

Table 3: Average number of fields of an ERM.

4.3 Systems

We implement the strategies as discussed previously in
Section 2.

Keyword Query (KW). IR style keyword search on
Web data has been proposed [20, 5] and implemented as an
adoption of Lucene®, an IR engine, which applies a doc-
ument and query length adjusted TF/IDF-based ranking
function. We use the Semplore implementation [5], which
uses a virtual document for every entity description and use
the concatenations of attribute labels and attribute values
as document terms. In the same way, we transform the
structured query into a keyword query by using the concate-
nations of predicates and constants of the structured query
as terms. The resulting keyword query retrieves all virtual
documents representing entity descriptions, which contain
some of the corresponding terms.

Query Rewriting (QR). This system is based on query
rewriting using precomputed schema mappings. We created
same-as mappings with the tools Falcon-AO [13] and Aroma
[7] using their default configurations. Table 4 shows the
number of mappings between the datasets. Then, to rewrite
constants at runtime as discussed, we apply the KW baseline
on top to limit the search results produced by the rewritten
query to those that match constants formulated as a keyword

query.

[ Datasets [ Falcon-AO[13] [ Aroma[7] |
Amazon-IMdb 5 8
Amazon-DBpedia 11 11
IMdb-DBpedia 12 4

Table 4: Number of mappings.

Hybrid (ERM). 3 different versions are employed:

(1) ERM computes mappings on the fly.

(2) ERM, relies entirely on the alignment computed up-
front by Falcon-AO. This version of ERM can be seen as a
combination of our approach and query rewriting that mim-
ics the QR baseline. The precomputed mappings are used

3http://lucene.apache.org
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“Rainer Werner Fassbinder”

[db:Rainer_Werner_Fassbinder}

“Fassbinder, Rainer Werner”

a:Directors

a:Theatrical

ReleaseDate type

a:Movie

Amazon a: DBpedia db:

db:director

db:Film

i:directors

Figure 6: Example of manually created queries that serve as ground truth.

to obtained a rewritten query, which is processed to obtain
results. However instead of using keyword search on top, we
use the ERM and apply our approach for ranking.

(3) ERM, combines these two approaches. It uses pre-
computed mappings and creates additional mappings on the
fly for those attributes, which could not be mapped upfront.

4.4 Search Effectiveness

We use the standard IR measures precision, recall, mean
average precision (MAP) and mean reciprocal rank (MRR).
We retrieve the top five thousand entities using the initial
keyword search, rank them, and compute the metrics based
on the top one thousand entities returned by each system.
The results for six different retrieval settings are shown in
Figure 7:

First, we examine the scenario without prior data integra-
tion. Here, finding relevant entities in the target dataset is
only possible with KW or ERM. When comparing their
results (Figure 7), we observe that ERM outperforms KW
across all metrics and retrieval settings and improves over
KW by 120% on average in terms of MAP. Looking at the
different retrieval settings, we can see that FRM performs
best between IMdb and Amazon (i.e. when IMdb or Ama-
zon are either source or target dataset), where MAP are
0.8 and 0.95, respectively. The reason for this is that both
datasets hold only entities from similar domains, movies and
DVD/Videos, and describe them using similar attributes.
DBpedia seems to be the most difficult one, mainly due
to its schema complexity: It is very heterogeneous, con-
taining information about different types of entities. Thus,
whereas only one type have to be considered in the other
datasets, identifying the relevant types out of a much larger
set of possible candidates is also part of the retrieval prob-
lem here. Further, entities in DBpedia often exhibit re-
dundant attributes with same values, e.g. name, title and
rdfs:label, which leads to higher ambiguity during the com-
putation of mappings. Across all retrieval settings, FRM
yields MAP above 0.5. Also similarly good performance
could be achieved for MRR and P@10, which consider the
top of the ranked results. The robustness of the retrieval
performance of ERM can be observed in Figure 8, which
shows the interpolated precision across the recall levels. It
can be observed that precision is fairly stable over differ-
ent recall levels. One exception is the setting with IMdb as
the target and DBpedia as the source dataset (Figure 8(e)).
Here, performance decreases notably at recall levels above
0.3. This is because there are some outlier queries, which
have much more relevant entities than others, and the rank
of some entities obtained for these queries were relatively
very low. However, PQR, where R is the number of relevant
entities, is still above 0.5 even for this setting (Figure 7(c)).

In the next scenario, we examine the performance in the
presence of precomputed alignments. Now, applying QR
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to retrieve entities is possible. This system considerably
outperforms KW. Using pre-computed alignments with the
hybrid approach, ERM,, yields slightly better performance
than FRM on average (see Figure 7). Both, ERM and
ERM, outperform QR on average by 54%, respectively 59%
in terms of MAP. The performance of ERM, diverges from
ERM most notably in two cases: ERM, is worse if IMdb
and Amazon are involved. It is better in the retrieval setting
with IMdb and DBpedia. This is because in the latter, the
alignment problem that has to be solved as part of searching
is more difficult due to the higher ambiguity and complexity
introduced by DBpedia. Thus, applying the rewritten query
using precomputed mappings to produce candidate results
yields better performance. This effect can be observed in
Figure 8(e). The strategy of combining the advantages of
pre-computed mappings and computing alignments on the
fly implemented by ERM, outperforms the others across all
metrics (see Figure 7).

4.5 On The Fly Mappings

We assessed the mappings computed on the fly during
the previously discussed experiments. First, we collected all
mappings and manually determined the ground truth based
on the pooled mappings. Since we operate on heteroge-
neous datasets, multiple correct mappings for one attribute
are possible, e.g. title in one dataset might correctly corre-
sponds to title, name and label in another dataset. Given
this ground truth, we computed precision and recall of the
mappings created between the fields of an ERM and the at-
tributes of an entity. Table 3 shows the average size of an
ERM and Table 1 provides the average description size of
an entity. Precision and Recall are here defined as follows:

|[{correct mappings}|

P ) ) =
recision |{created mappings}|

(9)

|{correct mappings}|

Recall = (10)

|[{possible, correct mappings}|
where {possible, correct mappings} is the set of mappings,
which could be established between the ERM and an en-
tity as captured by the ground truth. We computed preci-
sion and recall for each individual entity considered during
search, averaged over the query and finally over the entire
query set. Overall, mappings obtained for 115k entities and
the ERMs are taken into account. Figure 9(a) shows preci-
sion and recall for the different retrieval settings. Averaging
over all entities, precision is 0.46 and recall is 0.12. However,
we are primarily interested in the entities, which are actu-
ally relevant. Therefore, we examine precision and recall
only for these relevant entities. Here, the average over all
scenarios is 0.70 for precision and 0.30 for recall, as shown in
Figure 9(a). Figure 9(b) gives the average number of actual
mappings created between the ERM and entities, and be-
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Figure 7: Retrieval performance between source dataset (S) and target dataset (T).

tween the ERM and relevant entities. Clearly, better results
can be achieved for relevant entities. This is important for
our search task, which is focused on finding these relevant
entities.

Intuitively, the search performance depends on the qual-
ity of the alignment. We verified this by computing the
Pearson correlation coefficient p between the search perfor-
mance of the different settings captured by MAP, as re-
ported in Figure 7(a), and the alignment quality in terms
of precision and recall for relevant entities, as reported in
Figure 9(a). This yields p(MAP, Precision-Rel) = 0.98 and
p(MAP, Recall-Rel) = 0.97, indicating strong dependency
between quality of the mappings and search performance.

4.6 Parameter Analysis

The hybrid approach relies on three parameters: b for
boosting fields (attributes) in the seed query (Equation 7),
the alignment threshold ¢ and the threshold ¢ for pruning
fields of the ERM (Section 3.3). We analyze the robustness
of search effectiveness in terms of MAP for the six retrieval
scenarios by varying one parameter while keeping the oth-
ers fixed at the levels we used for the experiments. The
results are shown in Figure 10. We observed that boosting
helps to improve the performance when dealing with simi-
lar datasets (i.e. Amazon and IMDB) but has a negative
effect when a different and diverse dataset like DBpedia is
involved. However, performance is rather insensitive to this
parameter when b > 10 (thus we chose b = 10). Regarding
the alignment threshold ¢, we observed that performance is
fairly stable when ¢ is within the range [0.2,0.8]. Pruning
fields has almost no effect on effectiveness.

4.7 Runtime Performance

To analyze the performance of the hybrid approach, we
measured query execution time for FRM across all six re-
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trieval scenarios, i.e. for a total of 138 queries. Figure 11(a)
shows the min, max and average time in seconds for each
retrieval scenario. The times reported cover all steps of the
retrieval process, i.e. executing gs to obtain results for the
source dataset, computing FRM , retrieving results for tar-
get datasets, computing models for each candidate entity,
establishing mappings and ranking. Such a retrieval process
takes less than 13 secs on average for the above configura-
tion. The performance can be improved by increasing the
pruning parameter ¢ as shown in Figure 11(b), which shows
the min, max, and average query execution time over all six
scenarios for different values of ¢. For these runtime exper-
iments, we use a standard laptop with Intel Core 2 Duo
2.4 GHz CPU, 4 GB RAM, Serial-ATA HDD@5400rpm,
MacOS 10.6, and implemented our approach using Java 6
and Lucene 3.0 for indexing and retrieval. Computing the
language models from the term-frequency vectors was per-
formed at runtime. These tasks can also be performed at
indexing time. Still, these preliminary results suggest that
the hybrid approach is promising, given that not only search
results but also on the fly mappings are obtained during the
process.

—=—avg

IMdb IMdb  DBpedia DBpedia 0
Dbpedia Amazon Amazon IMdb

¢H

S=Amazon Amazon

T=Dbpedia  IMdb 0.1 0.4 0.7 1

(a) Runtime performance ERM (b) Prunning ¢

Figure 11: Runtime performance analysis
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Figure 8: Precision-recall curves for source dataset (S) and target dataset (T).
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Figure 9: Evaluation of the mappings created on the fly.

5. RELATED WORK

We have discussed related work throughout the paper.
Basically, there are two existing lines of approaches, one
that is based on keyword search [2, 5, 20] and the other one
is structured query rewriting [3, 23, 10]. The latter type
of approaches uses precomputed mappings, finds duplicates
[23] or uses precomputed relaxations of the query constraints
[10] to bridge differences in syntactical representation. The
keyword search approaches rely on matches on the level of
terms. Beside the pure ‘bag-of-word’ approaches [5, 20],
a recent study showed that using a minimal structure by
classifying attributes into important and unimportant fields
improves keyword search for entities [2].

Our approach represents a novel combination which com-
bines the flexibility of keyword search with the power of
structured querying. Just like keyword search, it does not
rely on precomputed mappings. However, it is able to ex-
ploit the fine-grained structure of query and results, which
is the primary advantage of structured query rewriting. In
addition, it can leverage existing mappings created by align-
ment tools like [13, 7]. We presented the general idea of our
approach and preliminary results in [12].

Our work leverages several ideas that are have been pro-
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posed for IR tasks. In fact, the model underlying our ap-
proach originates from the concept of language models [17],
which have been proposed for modeling resources and queries
as multinomial distributions over the vocabulary terms, and
for ranking based on the distance between the two models,
e.g. using KL-divergence [22] or cross entropy [14] as mea-
sures. More precisely, the foundation of our work is estab-
lished by Lavrenko et al.[14], who propose relevance-based
language models to directly capture the relevance behind
document and queries. Also, structure information has been
exploited for constructing structured relevance models [15]
(SRM). This is the one mostly related to ERM. The dif-
ference is that while the goal of SRM is to predict values
of empty fields in a single dataset scenario, ERM targets
searching in a completely different setting involving multiple
heterogeneous datasets. Thus, we build on well studied con-
cepts and investigate them in a scenario different from the
traditional IR settings. Instead of searching documents us-
ing keyword queries, we show how to use structured language
models to process structured queries against structured data
residing in external Web datasets. In this scenario, we also
need to take structure mismatches (i.e. differences at the
schema level) into account and thus, propose on the fly in-
tegration to deal with this problem.
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The proposed technique is in principle similar to existing
work on schema matching, e.g. [9], to the extent that it relies
on the same features, i.e. values of attributes. However, the
use of language models for representing these features as well
as the similarity calculation based on entropy is common
for retrieval tasks, but we have not seen them applied to
the schema mapping problem before. We consider this as a
promising approach for embedding the pay-as-you-go data
integration paradigm [16] into the search process.

6. CONCLUSION

We have proposed a novel approach for searching hetero-
geneous Web datasets using one single structured seed query
that adheres to the vocabulary of just one of the datasets.
We have introduced the entity relevance model which cap-
tures the structure and content of relevant results obtained
for a seed query. The entity relevance model is used for
matching and ranking results from external datasets, as well
as for performing data integration on the fly. Our approach
combines the flexibility of keyword search in the sense that
no upfront integration is required, with the power of struc-
tured querying that comes from the use of the fine-grained
structure of query and results. Extensive experiments con-
ducted with real-world datasets show the effectiveness and
feasibility of our approach.

Using our approach allows to take advantage of the struc-
tured data available numerously as Linked Data on the Web

by incorporating these datasources into existing vertical search

capabilities.

As future work, we will extend this approach to allow for
more general queries representing graph patterns. The main
idea will remain the same: building a relevance model from
the seed query, querying external structured data using the
seed query as keywords, and finally, mapping the structure of
the results to the relevance model to rank them. However,
results here are more complex, involving entities of differ-
ent types that are possibly connected over long paths. We
will employ existing techniques for keyword search on struc-
tured data (e.g. [19]) to retrieve these results, i.e., subgraphs
in the data, which connect entities matching the query key-
words. Also, we will extend our ideas for on-the-fly mapping
and ranking to deal with the more complex structure of the
queries and results.
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