

How Far Can Client-Only Solutions Go
for Mobile Browser Speed?

1Zhen Wang, 2Felix Xiaozhu Lin, 1,2Lin Zhong, and 3Mansoor Chishtie
1Dept. of ECE and 2Dept. of CS, Rice University, Houston, TX, and 3Texas Instruments, Dallas, TX

1,2{zhen.wang, xzl, lzhong}@rice.edu and 3m-chishtie@ti.com

ABSTRACT
Mobile browser is known to be slow because of the bottleneck in
resource loading. Client-only solutions to improve resource load-
ing are attractive because they are immediately deployable, scala-
ble, and secure. We present the first publicly known treatment of
client-only solutions to understand how much they can improve
mobile browser speed without infrastructure support. Leveraging
an unprecedented set of web usage data collected from 24 iPhone
users continuously over one year, we examine the three funda-
mental, orthogonal approaches a client-only solution can take:
caching, prefetching, and speculative loading. Speculative load-
ing, as is firstly proposed and studied in this work, predicts and
speculatively loads the subresources needed to open a webpage
once its URL is given. We show that while caching and prefetch-
ing are highly limited for mobile browsing, speculative loading
can be significantly more effective. Empirically, we show that
client-only solutions can improve the browser speed by about 1.4
second on average for websites visited by the 24 iPhone users. We
also report the design, realization, and evaluation of speculative
loading in a WebKit-based browser called Tempo. On average,
Tempo can reduce browser delay by 1 second (~20%).

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Information Browsers

General Terms: Human Factors, Performance

Keywords: Mobile Devices, Web, Browser

1. INTRODUCTION
Web browser is one of the most important applications on mobile
devices including smartphones and tablets. It is known to be slow,
taking many seconds to open a webpage. The long delay harms
mobile user experience and eventually discourages web-based
business. For example, Google will lose up to 20% traffic with
500 ms extra delay and Amazon will lose 1% sales with 100 ms
extra delay [10].
As shown by our previous work [28], the key to improve mobile
browser is to speed up resource loading, the process that fetches
the resources required to open a webpage. Many effective solu-
tions toward this end require infrastructure support, e.g., thin-
client approaches [9, 11, 18, 23], session-level techniques [21],
prefetching [2, 3, 5, 19] and SPDY, a new protocol [25]. They are
limited in one or more of the following ways. First, solutions re-
quiring web server support are difficult to deploy and may not
work for legacy websites. The adoption of a new protocol like
SPDY [25] will take a long time, if it ever happens. Second, infra-
structure support depends on server or proxy capabilities and do
not scale up very well with the number of clients. For example,

the failure of Amazon Web Services’ cloud-computing infrastruc-
ture [17] took many websites down. Finally, solutions based on
proxy support violate end-to-end security, which is crucial to se-
cure websites.
Not surprisingly, solutions that do not rely on infrastructure sup-
port, or client-only solutions, are particularly attractive because
they are immediately deployable, scalable, and secure. While
client-only solutions are likely to be less effective than those leve-
raging infrastructure supports, it has been an open question how
effective client-only solutions can be for mobile browsers. The
challenge to answering this question has been the lack of data
regarding the browsing behavior of mobile users.
The technical goal of this work is to answer the title question,
with the help of an unprecedented dataset of web browsing data
continuously collected from 24 iPhone users over one year, or
LiveLab traces [22]. In achieving our goal, we make four contri-
butions. Firstly, we study browsing behavior of mobile users and
the webpages visited by them. We find that subresources needed
for rendering a webpage can be much more predictable than
which webpage a user will visit because subresources have much
higher revisit rate and a lot of them are shared by webpages from
the same site.
Secondly, we quantitatively evaluate two popular client-only ap-
proaches: caching and prefetching. Caching seeks to store fre-
quently used web resources locally, but we find that it has very
limited effectiveness based on the LiveLab traces: 60% of the
requested resources are either expired or not in the cache. Web
prefetching [3, 5, 19], seeks to predict which webpage is likely to
be visited by the user, and then fetches all the resources needed to
render the page beforehand. While web prefetching with infra-
structure support [3, 5, 19], is known to be effective by aggregat-
ing many users’ behavior, we find that, on mobile devices, client-
only prefetching is ineffective or even harmful because webpages
visited by mobile users are less predictable: over 75% of the visits
in the LiveLab traces are to webpages visited for only once.
Thirdly, we propose and study a new, orthogonal client-only ap-
proach: speculative loading. Given a web URL, speculative load-
ing leverages concurrent connections available to modern brows-
ers and loads subresources that are likely to be needed, in parallel
with loading the main HTML file. To determine which subre-
sources to load, the browser maps out how a website organizes
resources based on the browsing history. We implement specula-
tive loading in a WebKit-based browser called Tempo and eva-
luate it on real smartphones with 3G network. Evaluation shows
that, on average, Tempo can improve browser speed by 1 second
(~20%) with low data usage overhead. This will not only make
web browsing noticeably faster but also may increase traffic to
Google by up to 40% and increase Amazon sales by up to 10%
according to [10].
Finally, because caching, prefetching, and speculative loading
represent the three fundamental approaches that a client can im-
prove resource loading in mobile browser, our findings enable us

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

31

to answer the title question empirically: the upper bound of
browser delay reduction from client-only solutions is about 1.4
second on average for the websites visited by the LiveLab iPhone
users. The client-only solutions are limited for four reasons: (i) a
large portion of web resources are either not in the cache or their
cached copies quickly expire; (ii) mobile browsing behaviors are
not very predictable; (iii) a client cannot completely predict what
resources are needed for a webpage based on the user’s browsing
history; (iv) the request-response model of HTTP [1] requires at
least one request for each resource needed, which magnifies the
impact of the relatively long RTT of cellular networks. While 1.4
second is nontrivial, to make mobile browser instantly fast, infra-
structure support is still necessary.
What Tempo achieves is very close to the upper bound. Tempo
can also be combined with infrastructure support in order to pro-
vide the client knowledge of the server resources. For example,
Tempo can help SPDY [25] to solve the race condition problem.
The rest of the paper is organized as follows. Section 2 introduces
background and related work. Section 3 provides results from our
characterization of mobile browsing and webpages. Section 4
investigates the three fundamental approaches available to client-
only solutions. It provides an empirical analysis of the upper
bound of improvement made possible by client-only solutions.
Section 5 presents the design and implementation of Tempo. Sec-
tion 6 offers the results from lab-based and field-based evalua-
tions of Tempo. Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK
We first provide an overview about how a mobile browser works
using WebKit-based browsers. As illustrated by Figure 1, the
procedure of opening a page involves six major operations that
can be dynamically scheduled and concurrently executed. Re-
source loading fetches a resource given its URL, either from the
remote web server or local cache. HTMLParsing (or Parsing),
StyleFormatting (or Style) and Scripting process HTML docu-
ments, style constraints, e.g., Cascading Style Sheets (CSS), and
JavaScript, respectively, and attach results to the internal repre-
sentation (IR). Layout computes and updates the screen locations
based on the recently updated IR. Painting employs the IR to
generate the final graphical representation of the webpage. It is
important to note that these six operations do not form a simple
pipeline in opening a page.
A browser usually needs multiple resources to open a webpage. A
resource is an individual unit of content or code, usually uniquely
identified by a web URL. The main resource is the first resource
requested by the browser, usually an HTML document. After
parsing the main resource, the browser may discover and load
more resources that format, manipulate or provide additional con-
tent to the webpage. These later discovered resources, called sub-
resources, usually correspond to CSS, JavaScript and picture files.

2.1 Why are Mobile Browsers Slow?
Browsers are well-known to be slow on mobile devices, taking
many seconds to open a page, especially when using a cellular
network. While prior work [13, 24, 30] suggests that several com-
pute-intensive operations (Style, Layout and Scripting) should be
the focus of optimizations for browsers on PC, we recently
showed [28] that the bottleneck of mobile browser performance is
actually in resource loading due to long round trip time (RTT)
and the large number of round trips. The RTT of typical 3G net-
work is around 200 ms [8], much longer than that of Ethernet
network, and improves in a much slower pace than bandwidth.
Moreover, resource loading in existing browsers is not fully paral-
lel, resulting in a large number of round trips. Especially, subre-
sources can only be discovered and requested after the main re-
source is downloaded and parsed. If redirection occurs, the
process will be much longer. On mobile devices, loading the main
resource can contribute more than 50% of the browser delay. On
average, getting the first data packet of the main resource takes 2
seconds under 3G network. If the main resource contains Java-
Scripts, the parsing of the main resource file can be further de-
layed, resulting in even longer time to discover subresources.
Moreover, the dependencies between the resources will further
serialize the resource loading operations [12].
In this work, we calculate the browser delay as follows: the start-
ing point is when the user hits the “GO” button of the browser or
clicks a URL to open a webpage. The end point is when the
browser completely presents the requested webpage to the user,
i.e. the browser’s page loading progress bar indicates 100%. Such
latency covers the time spent in all operations involved in opening
a page, and can be unambiguously measured by keeping time-
stamps in the browser code. Though modern browsers utilize in-
cremental rendering to display partially downloaded webpage to
users, we do not consider partially opening time as the metric
because it is subjective how partial is enough to conclude that the
webpage is opened.

2.2 Related Work
Many have studied ways to improve browser speed, in particular
resource loading. While only very few have specifically targeted
mobile browsers, we discuss related work in terms of their ap-
proaches. Most proposals require infrastructure support, either
from the web server or a proxy, e.g., thin-client approaches [9, 11,
18, 23] and session-level techniques [21]. Web prefetching with
infrastructure support is also widely studied [2, 3, 5, 19], and is
shown to be effective in real world [6, 7, 16, 26]. In a spirit simi-
lar to prefetching, Crom [14] speculatively runs JavaScript event
handlers, prefetches the web data and pre-upload local files, also
with server help. A recent protocol proposal, SPDY [25], improves
the web performance by providing multiplexed streams, request
prioritization, HTTP header compression, server push and server
hint. It does so by adding a session layer atop of SSL and requires
changes on both client and server. Though the approaches dis-
cussed above are effective, they are hard to deploy, are subject to
the ability of the servers, cannot provide end-to-end security or
has limited client JavaScript support.
Client-only solutions are attractive because they can be imme-
diately deployed and work with existing web content. The authors
of [13, 24, 30] sought to improve the client speed of compute-
intensive operations in browser. As we showed in [28], their solu-
tions will lead to negligible improvement in mobile browser
speed. Existing client-solutions targeted at resource loading em-
ploy one or both of the following two approaches. Browser cach-
ing [20] is the most widely used client approach. As we will show

Figure 1: The procedure of opening a webpage

Scripting

Style
Formatting

HTML
ParsingLoaded

resources
Update
IR

Layout

Graphics

Painting

New resources to load

Resource
Loading

Internal Representation (IR)

......

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

32

in Section 4.1, caching is not effective for mobile browsers be-
cause of the long RTT and the large percentage of revalidations
[27]. Web prefetching can also be implemented without server
support. However, as we will show in Section 4.2, client-only
prefetching introduces considerable waste of data usage with li-
mited performance improvement because of the low prediction
accuracy, which confirms previous observations on PCs [15].

2.3 LiveLab: Web Usage by 24 iPhone Users
Our work leverages web usage data collected from LiveLab [22],
an unprecedented study of 24 iPhone 3GS users from February
2010 to February 2011. The 24 participants were recruited to have
balanced gender, major, socioeconomic status to represent the
Rice University undergraduate population. All participants had
unlimited data plans and were required to use the outfitted
iPhones as his or her primary device. Almost all aspects of iPhone
usage and context were collected by in-device, in situ programm-
able, logging software. The web usage data used in this work
contains user ids, timestamps and URLs of webpages visited. The
top 10 visited websites by each LiveLab user account for the ma-
jority (81%) of the user’s webpage visits. Out of the top 10 of all
24 users, there are 94 websites, which will be used as benchmark
websites in this study. The LiveLab web usage data provide us a
unique opportunity to understand mobile web browsing.
The 24 participants obviously cannot represent the general mobile
user population. However, they do provide us an important win-
dow into the latter. More importantly, most of our findings are not
tied to the special demography of the 24 participants and we be-
lieve most, if not all, conclusions drawn in this paper regarding
mobile browser performance should be applicable to a large frac-
tion of the general population.

3. MOBILE WEB BROWSING
CHARACTERISTICS
To study the effectiveness of client-only solutions for mobile
browsers, we characterize visited websites in the LiveLab traces
and study browsing behaviors of mobile users.

3.1 Characteristics of Websites
Since resource loading is the key to browser performance, it gains
insight for improvement to examine how a webpage needs many
resources and how webpages from a website may share resources.
Toward this end, we represent each website, its subdomains, web-
pages, and subresources with a graph, called resource graph. Fig-
ure 2 shows an example of the resource graph for the simplified

Rice University website. A resource graph has four types of
nodes: website node, subdomain node, webpage node and subre-
source node. Website node is represented by the top two level
domain names of the website. Subdomain node is a subdomain of
the website. Webpage and subresource nodes are the real re-
sources in the website and can be addressed by their URLs. The
webpages mainly correspond to HTML files and the subresources
mainly correspond to JavaScript, CSS, and image files.
The arrows between nodes in a resource graph denote the depen-
dency relationship between a webpage node and the correspond-
ing subresource node. That is, the subresources can only be dis-
covered after the main resource is parsed. Most of the dependen-
cies occur between the webpage node and its subresource nodes.
After executing some JavaScript and CSS files, the browser may
discover and request new subresources. With a complete resource
graph of a website, we know which subresources are needed to
open a webpage of the website.
While each website has its own complete resource graph, a user
usually can only see part of it, depending on which webpages the
user visited. We download the homepages of each LiveLab user’s
top 10 visited websites together with their linked webpages, and
then construct a partial resource graph for each website. Though a
constructed resource graph is partial, we manually verify that it
represents the resource structure of the corresponding website. We
have the following two observations.
First, webpages from the same website often share a large portion
of resources. In a resource graph, those shared resources are the
subresource nodes with multiple outgoing arrows pointing to mul-
tiple webpage nodes. Figure 3 shows the cumulative distribution
function for the average percentage of shared subresources in a
webpage, i.e. subresources that are also needed by other webpages
in the same website, for top 10 visited websites. On average, 76%
of the resources in one webpage are shared by at least one other
webpage from the same website. This observation provides a key
opportunity to improve the speed of opening a new webpage.
After a user visits a website for enough times and the resource
graph is constructed, the browser can potentially predict the ma-
jority of the subresources needed for a new webpage visit, and
thus speculatively load them (Section 5.2).
Second, the structure of a resource graph can change over time.
New nodes can be added into the resource graph. A typical exam-
ple is a news website, which has changing content all the time. In
addition, resource graphs of different websites change in different
frequencies. For each LiveLab user’s top 10 visited websites (in

Figure 2: Resource graph of the simplified Rice University
website. The arrows correspond to the dependency relation-
ship between the webpage node and subresource node, i.e. the
subresources can only be discovered after the main resource
of the webpage is parsed

Figure 3: Cumulative distribution function for the aver-
age percentage of shared subresources in a webpage, i.e.
subresources that are also needed by other webpages in
the same website, for 94 websites from each LiveLab us-
er’s top 10 visited websites.

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%

Pe
rc

en
ta

ge
 o

f t
op

 1
0

vi
si

te
d

w
eb

si
te

s

Percentage of shared subresources in a webpage

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

33

total 94 websites), 24 websites add new webpage nodes every a
few hours or in even shorter periods (fast changing); 13 websites
add new webpage nodes daily; and 57 websites are stable and no
new webpage nodes are added over a long period of time. Among
the fast changing websites, 4% of the webpage nodes and 10% of
the subresource nodes are replaced by new ones every hour.
Among the unchanged webpage nodes in fast changing websites,
26% of them have new subresource nodes, in which 11% of those
subresource nodes are replaced with new ones. This observation
challenges solutions that leverage the resource graph, because
temporal changes of a website’s resource graph are hard to be
captured by the client timely. However, our speculative mobile
browser design, Tempo, can deal with the temporal changes well
and reduce the browser delay by 1 second (Section 6).

3.2 Mobile User Browsing Behavior
Understanding the browsing behaviors of mobile users helps us to
study the effectiveness of client-only solutions and better design
Tempo. We have four interesting findings. First, for a given mo-
bile user, the total number of frequently visited websites is usually
small. The user’s top 10 visited websites account for 81% of
his/her total webpage visits. Therefore, it is reasonable to focus on
the resource loading optimization for the webpages that belong to
the top 10 visited websites.
Second, across different users, the web usage is diverse. Approx-
imately three (both average and median) of the users’ top 10 web-
sites were shared by the all-users-combined top 10 list. Therefore,
resource loading optimization should target different sets of web-
sites for different users, which can be easily achieved by client-
only solutions.
Third, the majority of the webpage visits are new visits. On aver-
age, 75% of the webpages visited are new visits. The high new
webpage visit rate is one of the reasons that client-only web pre-
fetching has poor performance on mobile browsers (Section 4.2).
Fourth, though users tend to visit new webpages, the browser is
likely to request a similar set of subresources. On average, only
35% of the subresources requested are new subresources. The
reason is that webpages in the same website share subresources,
as discussed in Section 3.1. Therefore, subresources can be much
more predictable than webpages. This is the key reason that Tem-
po outperforms client-only web prefetching.

4. EFFECTIVENESS OF CLIENT ONLY
APPROACHES
Driven by findings presented above, we next examine three ortho-
gonal client-only approaches that speed up resource loading. With
caching, browser saves the subresources of previously visited
webpages locally and reduces the resource loading time if the
same subresources are requested again. Web Prefetching predicts
which webpage a user is likely to visit and downloads its re-
sources beforehand; it minimizes the resource loading time if the
user does visit a prefetched page. We show both caching and pre-
fetching are limited for mobile browsers, and show how a new,
orthogonal approach, called speculative loading, can be much
more effective. We reported the early results of our study on
browser caching in a workshop paper [27].

4.1 Caching
Caching is a well-known approach to fight I/O bottlenecks. A
browser stores frequently used web resources locally to save RTT
and bandwidth. But resources with “no-store” in the cache-control
header field cannot be stored in the browser cache.

A cached resource can have two states: fresh or expired. The
browser can return a fresh resource in response to the request
without contacting the server. The browser needs to revalidate an
expired resource with the origin server to see if the resource is still
usable. If it is usable, the server will not send back the entire re-
source file. Resources with “no-cache” in the cache-control head-
er field can be actually cached but they immediately expire. Both
HTTP and HTTPS resources can be cached but their expiration
time is indicated in their headers by the server.
A working browser cache is a mixture of fresh and expired re-
sources. Because a large portion of mobile web resources either
cannot be cached or have a short expiration time, caching brings
little benefit to mobile browsing. Usually, by revalidating expired
resources with the server, the browser avoids re-fetching re-
sources if local copies are still usable. However, revalidation can-
not hide the extra network RTT, and RTT is the most important
factor to mobile browser delay [28]. As a result, latencies in reva-
lidations make caching ineffective for mobile browsers.
We experimentally show how excessive revalidations outweigh
the benefit of caching, with the LiveLab traces [22]. Firstly, we
download all the resources of the webpages with header informa-
tion. We simulate the cache behavior of the mobile browser by
replaying each user’s browsing history using the file and HTTP
header information of each resource. We repeat the simulation
with four cache sizes: 6 MB, 32 MB, 64 MB and infinite. Note
that Android Gingerbread browser’s default cache size is 6 MB.
We have to exclude about 32% of the webpage visits, including
visits to pages that no longer exist (39%) and to HTTPS webpages
(61%) that require user login. Excluding HTTPS webpages does
not bias the results much because most of their resources’ expira-
tion time is not different from their HTTP counterparts.
As shown in Figure 4, our simulation results show that 60% of
resource requests incur network activities with a 6 MB cache.
Network activity is required when a requested resource is not in
the cache (cache miss). It may also be required even if the re-
source is in the cache: when a resource being requested is cached
but expired, the browser still has to contact the server to revalidate
it. For the top 10 websites of each user, the effectiveness of cach-
ing is even lower: 70% of resource requests incur network activi-
ties, and half of the activities are due to revalidations.
Note that increasing the cache size will not help much. Figure 4
shows that the small size (6 MB) of current browser cache incurs
only 10% more cache misses than an infinite cache. And 58% of
resource requests still incur network activities with an infinite size
cache, which is close to the percentage with 6 MB cache size (60%).
Therefore, a larger cache will not bring much benefit.
In summary, our results show that the benefit of caching is marginal
because it can do little in loading resources whose cached copies ex-

Figure 4: Cache simulation results for the webpages from
all websites in the LiveLab traces

0%

25%

50%

75%

100%

6MB 32MB 64MB Inifinite
Cache Size

Cache Hit with Revalidation
Cache Miss

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

34

pire quickly: revalidation saves bandwidth usage in this case, but
cannot hide network RTT, which is the most important factor to mo-
bile browsers’ performance [28].

4.2 Web Prefetching
We believe that client-only web prefetching [3, 5, 19] is harmful to
mobile web browsing, because it results in significant additional data
usage with very little improvement. Web prefetching predicts the
webpages that will be visited by the user and downloads their re-
sources beforehand. When the user actually visits a predicted web-
page, its resources are already available locally. Most solutions of web
prefetching are intended for PC browsers and involve infrastructure
support to aggregate behaviors of many users. We showed that on
mobile devices, client-only web prefetching is ineffective because
web prefetching cannot predict URLs that have never been visited
before; on average, 75% of the webpages visited are new visits, as
shown in Section 3.2.
To quantitatively demonstrate this ineffectiveness, we evaluate client-
only web prefetching using the LiveLab traces. We simulate the web
prefetching algorithm presented in [3], called most-popular. It uses
the popularity ranking of user’s past requests to predict future re-
quests. We also borrow the metrics, hit ratio and usefulness, from [3].
The hit ratio is defined as the number of webpages that are predicted
and also actually requested to the number of predicted webpages. It
represents the accuracy of the prediction. High hit ratio means low
unnecessary data usage. The usefulness is defined as the number of
webpages that are predicted and also actually requested to the number
of actually requested webpages. It represents the coverage of the pre-
diction. High usefulness means high average speedup.
With one month training period, the hit ratio is 16% and the useful-
ness is 1% on average among 24 iPhone users. Such low hit ratio and
usefulness lead to considerable unnecessary data usage yet very li-
mited speed improvement. With a very generous assumption that the
prefetched content is cached and will not expire before actual visit, the
upper bound of the browser delay reduction from the most-popular
web prefetching algorithm is 1%. And the unnecessary data usage
accounts for 84% of the total prefetched data.
One may think that prefetched subresources for one webpage may
help in loading other webpages from the same website because subre-
sources are shared by webpages from the same website as shown in
Section 3.1. Unfortunately, this is usually not the case because many
resources are either not in the cache or their cached copies expire
quickly, as shown in Section 4.1. In contrast, speculative loading
solves this problem by loading the resources only after the user re-
quests a webpage’s URL.

4.3 Speculative Loading
Seeing the failures of caching and prefetching, we propose a third,
orthogonal approach called speculative loading that loads subre-

sources for a webpage along with the main resource file after a user
provides the web URL.
Essentially, speculative loading predicts which subresources to load
based on a resource graph of the website constructed using knowledge
of the website collected from the past. It leverages the multiple con-
current connections available to modern browsers, e.g. 4 for Android
Gingerbread, to concurrently load subresources along with the main
resource. Speculative loading will be more beneficial with more con-
current connections because it can then load more subresources spe-
culatively. Unlike caching, speculative loading will revalidate expired
resources and load evicted resources concurrently while loading the
main resource, thus keeping most subresources fresh in the cache
when the browser actually requests them. Unlike web prefetching,
speculative loading predicts which resources a webpage may need,
instead of which webpage the user may visit.

4.3.1 Upper Bound of Improvement
The key to the effectiveness of speculative loading is subresource
prediction. By assuming 100% hit ratio and 100% usefulness for
subresource prediction, we are able to derive the upper bound of the
browser delay reduction from speculative loading. We will show in
Section 6 that the performance of speculative loading is close to this
upper bound in practice. Here we examine the browser delays for the
homepages of top visited websites from LiveLab traces under three
different cache states: fresh, expire, and empty. With a fresh cache, if
a requested resource is cached, the browser will use the cached copy
without any network activity. With an expired cache, if a requested
cache is cached, the browser still needs to revalidate it with the server.
With an empty cache, the browser needs to load every resource file
from the server.
Table 1 shows the upper bound of the browser delay reduction. We
measure the browser delays of legacy loading with an empty cache on
Samsung Galaxy S II in 3G network provided by U.S. wireless carrier
AT&T. Then we simulate the browser delays in other columns by
applying what-if analysis as described in [28]. In summary, what-if
analysis tries to derive the overall performance gain if a browser oper-
ation is accelerated. To accurately predict the impact of accelerating
all instances of any operation, we scale the execution time of each
instance of such an operation. All operation instances depending on
it will thus be executed earlier, resulting shorter browser delay.
We have four observations. (i) The average browser delay reduc-
tions are 33% (~2 seconds) for an expired or an empty cache. The
reduction comes from the time waiting for the main resource to
discover the subresources. (ii) There is nearly no reduction for a
fresh cache because all the subresources are available locally al-
ready. There is no advantage of discovering and loading subre-
sources speculatively. (iii) The average browser delay of Tempo
under an expired and an empty cache is close to that of Legacy

Table 1: Upper bound of the browser delay reduction from speculative loading under different cache states (in ms)

Sites Fresh Cache Expired Cache Empty Cache
Legacy Speculate Reduction Legacy Speculate Reduction Legacy Speculate Reduction

ESPN 4557 4557 0 0% 6702 4622 2080 31% 7143 4622 2521 35%
CNN 2382 2382 0 0% 4869 2884 1985 41% 6300 4315 1985 32%

Google 2162 2131 31 1% 3363 2131 1232 37% 3661 2223 1438 39%
Yahoo! Mail 3199 3199 0 0% 4333 3199 1134 26% 4341 3199 1142 26%

Weather 3645 3608 37 1% 6294 3608 2686 43% 6349 3608 2741 43%
Craigslist 1926 1920 6 0% 3034 1920 1114 37% 3103 1920 1183 38%

Neopets Games 3605 3605 0 0% 11505 9002 2503 22% 11843 9340 2503 21%
Varsity Tutors 3313 3313 0 0% 8410 6596 1814 22% 9219 7405 1814 20%
Ride METRO 3826 3826 0 0% 8266 5560 2706 33% 8774 6068 2706 31%
Rice Registrar 3351 3351 0 0% 5865 3541 2324 40% 6427 3541 2886 45%

Average 3197 3189 7 0% 6264 4306 1958 33% 6716 4624 2092 33%

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

35

under a fresh cache. This is because speculative loading essential-
ly keeps most subresources fresh in the cache when the browser
requests them, which solves the limitation of caching discussed in
Section 4.1. (iv) The upper bound of browser delay reduction by
speculative loading for a realistic cache can be estimated to be
around 1.4 seconds (22%), because when a webpage from top10
visited websites is visited, 70% of its subresources needed by a
webpage are either expired or not in the cache, as shown in Sec-
tion 4.1.

4.3.2 Predicting Server vs. Predicting User
Speculative loading shows more promise than web prefetching.
The upper bound of the browser delay reduction from speculative
loading (22%) is one order of magnitude larger than the upper
bound of reduction from web prefetching (1%). Moreover, by
applying the design discussed in Section 5, speculative loading
will incur a much lower overhead of wireless data usage with 65%
hit ratio as will be evaluated in Section 6, comparing to 16% hit
ratio for web prefetching.
There is a fundamental reason that speculative loading can be
much more effective than web prefetching: predicting server be-
havior is much easier than predicting user behavior. Speculative
loading predicts the subresources needed by a webpage, which is
server behavior prediction. Web prefetching predicts the next
visited webpage by the user, which is user behavior prediction.
Server behavior prediction can achieve high accuracy because
webpages in the same website share subresources, as discussed in
Section 3.1. On the contrary, user behavior prediction is limited
because 75% of the visited webpages are new visits, as presented
in Section 3.2. To predict server structure, the browser needs to
map the resource graph of each website on the mobile device and
we will discuss the detailed design in Section 5.

4.4 Upper Bound for Client-Only Solutions
Existing two client-only approaches are limited because of two
reasons. First, a large portion of mobile web resources are either
not in the cache or their cached copies quickly expire, which
makes caching ineffective. Second, mobile browsing behaviors
are not very predictable, which makes client-only web prefetching
harmful. Our proposed approach, speculative loading, addresses
those two limitations by speculatively revalidating expired re-
sources and loading evicted resources, and by predicting server
behavior instead of predicting user behavior.
Speculative loading has reached the upper bound of improvement
for client-only solutions, i.e. 1.4 seconds as shown by us empiri-
cally. The reason is that the request-response model of HTTP
protocol [1] requires at least one request for each resource needed
and the loading procedure is already fully parallel with specula-
tive loading. In practice, it is difficult to completely predict what
resources are needed for a webpage based on its user’s browsing
history. Our speculative mobile browser design, Tempo, can re-
duce the browser delay by 1 second, as will be evaluated in Sec-
tion 6.2, a result close to the upper bound.
According to our previous work [28], better hardware can also
speed up resource loading by providing faster OS services and
network stack. The browser speedup from hardware improvement
is orthogonal to the upper bound of improvement achieved by the
client-only approaches discussed above.

5. TEMPO: A SPECULATIVE MOBILE
BROWSER
We now describe Tempo, our mobile browser design that seeks to
realize the potential of speculative loading. As illustrated in Fig-

ure 5, Tempo is realized by adding a module under the middle
layer in Android Gingerbread browser. The middle layer connects
the WebKit browser engine [29] and the network service provided
by the mobile device. It also bridges the browser user interface
and WebKit, and manages caches, cookies and plug-ins.
Tempo has four components. Metadata repository stores each
website’s resource graph, in particular the dependency informa-
tion, to make speculative loading possible. Speculative loader
predicts the needed subresources based on the information pro-
vided by metadata repository and loads the predicted subresources
speculatively for every webpage visit. Update service updates
metadata repository with the new resource information after a
webpage is open and trims the stale nodes in metadata repository.
The last component is temporary cache, which stores the re-
sources that cannot be stored in the cache temporarily (those with
“no-store” in cache-control header). We will discuss the details of
each component as follows.

5.1 Metadata Repository
Metadata repository is a key-value store, as shown in Figure 6.
The key is the website and the value is the website’s resource
graph, which is discussed in Section 3.1. Each node in the re-
source graph has several fields, e.g. type, URL, last visit time,
children, parents, and number of visits. The actual content is not
stored in the resource graph.
Our design of metadata repository has two advantages. Firstly, it
relates the resources in each website in the corresponding resource
graph. When visits occur, the browser knows which subresources
are needed even before downloading the main resource file. This
makes speculative loading possible. In contrast, caching provides
no relation information among the cached resources. Secondly,
metadata repository only takes several hundred KB of storage on
the mobile device because each node in the resource graph is
represented by the URL instead of the actual content.
Metadata repository is stored in the flash storage of mobile devic-
es. It will be loaded into the memory when the browser is started
and will be saved to the flash storage after each webpage is open.
So accessing the repository will not affect the browser delay.

5.2 Speculative Loader
Speculative loader takes the webpage’s URL as the input right
after the user enters or clicks the URL of that webpage, retrieves
the corresponding resource graph from the metadata repository,
predicts the subresources needed for that webpage based on the
resource graph, and loads those subresources speculatively if they
are not in the cache or expired. It not only handles webpage revi-

Figure 5: Tempo, a speculative mobile browser. Black
components are new additions to the existing mobile
browser.

Temporary
Cache

Web Server

Middle Layer

WebKit

Mobile Browser

Update
Service

Speculative
Loader

Metadata
Repository

User Interface

Cache Others Tempo
Enhancement

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

36

sits but also handles new webpage visits. Note that speculative
loading for new webpage visits is very important and cannot be
ignored for mobile browsers, because a large portion of webpage
visits are new visits as discussed in Section 3.1. In contrast, web
prefetching relies on past history and cannot benefit new visits.
That’s one of the reasons that web prefetching has poor perfor-
mance on mobile devices.
The detailed subresource prediction algorithm is illustrated in
Figure 7. If the webpage visit is a revisit, speculative loader can
find the corresponding webpage node in the resource graph and
thus all its child subresource nodes are the subresources the web-
page needs. If the webpage visit is a new visit, no corresponding
webpage node is stored in the resource graph yet. Speculative
loader predicts the subresources’ URLs according to the shared
subresource nodes because subresources are heavily shared across
multiple pages of the same website, as discussed in Section 3.1.
To maximize the prediction accuracy and coverage, speculative
loader judiciously prioritizes the candidate subresources by sort-
ing them according to their number of parents (large to small), file
types (JS to CSS to image), number of visits (large to small) and
URL length (short to long), as indicated by the function Sort()
in Figure 7. If it is webpage new visit, speculative loader only
chooses the ones with high priority as the predicted subresources,
i.e. the subresource nodes that are shared by more webpage
nodes). JavaScript and CSS files have higher priority than images
because they may further request subresources and scripting may
block later executions. Long URLs have higher chance to contain
session dependent string, which make the URLs useless next time.
So long URLs have low priority.
To reduce the unnecessary data usage, speculative loader loads the
predicted subresources adaptively. When the number of predicted
resources is more than the number of allowed concurrent connec-
tions, the resources with higher priority will be requested imme-
diately and other resources will be put into a waiting queue. If
main resource file is downloaded and parsed before the waiting
resources are actually requested, the waiting queue will be up-
dated with the actually needed resources, reducing unnecessary
data usage from prediction misses.

5.3 Update Service
Update service constructs and modifies resource graphs in the
metadata repository. There are two major operations performed on
the nodes in the resource graph: update and trim. Update opera-
tion adds a node if the node does not exist in the resource graph or
updates the information stored in the node if the node exists in the

resource graph already. Trim operation removes the nodes that are
not visited for more than one month from the resource graph.
After a webpage is open, update service updates the webpage
nodes, its subresource nodes, the corresponding subdomain node
and the website node in the resource graph. Some webpages dy-
namically request subresources after a webpage is open, e.g. by
using AJAX. Update service can also capture those requests and
update the subresource nodes accordingly. Every day, update
service trims resource graph and remove the stale nodes, whose
last visit time is older than a month. Trimming resource graph
keeps the user viewed website resource graph structure up-to-date
and limits the storage overhead of a metadata repository.

5.4 Temporary Cache
The purpose of the temporary cache is to store the resources that
have “no-store” in their cache-control header field temporarily.
Those files should not be stored in the cache. When speculative
loader loads predicted resources, resources with “no-store” in
their cache-control header field will be saved to the temporary
cache and other resources will be saved to the normal cache. Later
when the browser engine actually requests the speculatively
loaded resources, it will get them either from the normal cache or
the temporary cache. After the webpage is open, all the resources
in the temporary cache will be deleted. The resources saved in the
temporary cache can be encrypted to avoid any possible security
vulnerability.

Figure 6: Metadata repository, a key-value store where keys are websites and values are websites’ resource graphs

Website Resource graph

cnn.com CNN resource graph

… …

google.com Google resource graph

Website node
Metadata Repository

Subdomain
nodes

Webpage
nodes

Sub-resource nodes (JavaScript, CCS, Image)

Type: Website

URL: cnn.com

Last visit time

Children: …

Type: Subdomain

URL: m.cnn.com

Last visit time

Children: …

Type: Webpage

URL: http://m.cnn.com/...

Last visit time

Children: …

Type: Subresource

URL: …

Last visit time

Parents: …

Number of visits

Input: webpage URL
Output: predicted subresources’ URLs
SubresourcePrediction(url):
 candidates = [] // subresources
 webpage_node = get_webpage_node(url)
 if webpage_node != NULL: // webpage revisit
 candidates = children_of_webpage_node
 sorted_candidates = Sort(candidates)

return sorted_candidates
 else: // webpage new visit

subdomain_node = get_subdomain_node(url)
if subdomain_node != NULL:

 candidates = subres_nodes_of_the_subdomain
else:

 candidates = subres_nodes_of_the_website
sorted_candidates = Sort(candidates)
num_predicted = avg_num_of_webpage_children
return sorted_candidates[0:num_predicted]

Figure 7: Pseudo Code of Subresource Prediction

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

37

6. EVALUATION
We evaluate the Tempo design through a trace-based simulation,
lab experiments and a field trial. The evaluation shows that the sub-
resource prediction has both high accuracy and high coverage, re-
sulting in 1 second (~20%) of browser delay reduction with low
overhead.

6.1 Subresource Prediction Performance
We firstly evaluate how good the subresource prediction is and how
long Tempo needs to learn to make good predictions, based on the
LiveLab traces. We employ two metrics: hit ratio and usefulness.
As mentioned in Section 4.2, hit ratio represents the accuracy of the
prediction and usefulness represents the coverage of the prediction.
Figure 8 shows the weekly and monthly hit ratio and usefulness of
subresource prediction, respectively. We can see that the first
week’s hit ratio (50%) and usefulness (56%) are already much
higher than web prefetching shown in Section 4.2. The highest hit
ratio (65%) and usefulness (73%) are reached in the 3rd month.
Interestingly, they drop slightly at week 4, 5, 12 and month 4, 5,
largely when the LiveLab users visited a different set of websites
around holidays and school breaks. Tempo takes time to construct
the resource graph for the new websites.

6.2 Lab Experiments
We now evaluate how the subresource prediction performance is
translated into browser delay reduction through lab-based experi-
ments. For the experiments, we port Tempo to Samsung Galaxy S II
smartphone that runs Android Gingerbread [4]. Though the benefit
of Tempo is demonstrated by Samsung Galaxy S II, Tempo can
work on any other mobile devices that support concurrent connec-
tions. The code of Tempo is instrumented to record webpage delay
efficiently. All experiments use 3G network provided by AT&T, a
major U.S. carrier, in our lab on Rice campus, where 3G signal
strength is strong.

6.2.1 Revisits
Firstly, we show that Tempo can reduce browser delays of webpage
revisits to very close to the upper bound presented in Section 4.3.
We use the homepages of the websites from Table 1 in the experi-
ment. We firstly open the URLs in the browser once to warm up the
cache and construct the resource graph. Then we open the URLs
one by one for five times and calculate the average browser delay.
Even though all the webpage visits are revisits in the experiment
and we have minimized the time interval between revisits, there can
still be cache misses due to the dynamic and/or session dependent
content in the web. Subresource prediction cannot predict all the
subresources needed, either. On average, the hit ratio is 65% and the
usefulness is 72%, which are close to the prediction accuracy and
coverage evaluated in Section 6.1.
We compare the browser delays between legacy loading and Tempo
with three different cache states, similar to what used in Section 4.3,
i.e. fresh, expired, and empty. The browser is modified to always
revalidate the resources stored in the cache under an expired cache
and clears the cache before each webpage visit under an empty
cache.
Table 2 shows the browser delays of webpage revisits under differ-
ent cache states with the WebKit browser without speculative load-
ing (Legacy) and Tempo. With a fresh cache, the browser delays of
Legacy and Tempo are close because most of the subresources are
available locally. With an expired cache, Tempo reduces 25% (1445
ms) of browser delay on average. Tempo also reduces 24% (1464
ms) of browser delay under an empty cache. Since 70% of the re-

quested resources of a webpage from top 10 visited websites are
either expired or not in the cache, as mentioned in Section 4.1, we
estimate tempo can reduce the browser delay by around 1 second or
20% with a realistic cache. This 1 second browser delay reduction is
also confirmed by our field trial, which will be discussed in the next
section.
The browser delay reduction for each website mainly comes from
the time waiting for the main resource to discover the subresources.
Thus the content richness of the webpage, measured by the number
of subresources, and the webpage type, i.e. mobile or non-mobile,
do not affect browser delay reduction: most of the reductions in
Table 2 are close, i.e. ~1.4 second. The time spent to download and
parse the main resource affects the discovery time of subresources
and there are two main factors: (i) main resource redirection delays
the download of main resource, e.g. the case for Weather website;
(ii) JavaScript execution can delay main resource parsing, e.g. Var-
sity Tutors website. Since Tempo eliminates the resource dependen-
cies, it can provide more browser delay reduction for websites that
have previous two limiting factors.
The browser delay reduction of Tempo is very close to the upper
bound presented in Section 4.3. Under an expired or an empty
cache, Tempo can reduce around 1.4 second, which is 70% of the
upper bound (reduce 2 seconds) we can get. For a realistic cache,
Tempo can reduce around 1 second, which is 71% of the upper
bound with a realistic cache (around 1.4 second). By achieving its
design goal, Tempo essentially keeps most subresources fresh in the
cache when the browser requests them. Table 2 shows that the aver-
age browser delay of Tempo under an expired and an empty cache
(4597 ms and 5222 ms) is only 3% and 17% larger than that of
Legacy under a fresh cache (4446 ms), which is the ideal case.
Tempo does overcome the limitation of caching.

6.2.2 New Visits
Tempo can also greatly reduce the browser delay for new webpage
visits, which account for 75% of the total webpage visits in LiveLab
traces. In the experiment, we use the websites in Table 1. We firstly
open the homepage of the website in the browser once to warm up
the cache and construct the resource graph. Then we navigate to five
other webpages in the same website and then calculate the average
browser delay. The browser delay for the homepage is not counted.
Even though new webpages are used, and thus the subresources
needed by the webpage will be different, subresource prediction can
still predict some of the subresources needed from the shared subre-
source nodes. On average, the hit ratio is 50% and the usefulness is
67%, which is only slightly lower than the prediction accuracy and
coverage evaluated in the previous section.

Figure 8: Hit ratio and usefulness of subresource pre-
diction for the first 12 weeks (Left) and the entire year
(Right). Each data point is the average value across 24
LiveLab users

0%

20%

40%

60%

80%

1 3 5 7 9 11

Week

usefulness
hit ratio

0%

20%

40%

60%

80%

1 3 5 7 9 11
Month

usefulness
hit ratio

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

38

With similar cache states, we compare the browser delays be-
tween Legacy and Tempo. Table 3 shows the browser delays of
new visits to webpages of different websites. Under a fresh cache,
Legacy and Tempo exhibit similar browser delay. Under an ex-
pired and an empty cache, on average, Tempo incurs 20% (960
ms) and 17% (1119 ms) less browser delay than the Legacy, re-
spectively. Notice that the browser delay of Tempo under an ex-
pired cache (3616 ms) is even 19% smaller than that of Legacy
under a fresh cache (4465 ms). The reasons are that Tempo can
effectively revalidate the expired subresources, warm up the TCP
connection and thus download new subresources much faster.

6.3 Field Trial
We also conduct a field trial to study the performance of Tempo
browser. In the field trail, two Samsung Galaxy S II smartphones
are used by two participants. Both smartphones are running An-
droid Gingerbread [4] with Tempo browser and using the 3G net-
work provided by U.S. wireless carrier AT&T. The field trial
lasted for two weeks for each participant. The cache was cleared
before the field trial and was never cleared during the field trial.
Speculative loading was enabled in the first week starting with a
cold cache, but disabled in the second week. So the benefit we
attribute to speculative loading is unlikely from the caching effect.
The results are shown in Figure 9. The average browser delay of
the 2nd week is 433 ms longer than that of the 1st week and 1424
ms longer than that of day 6 & 7, the last two days in the 1st week.
The results show that once Tempo has warmed up the cache and
constructed resource graphs, it outperforms Legacy by over one
second. This is consistent with our findings from the lab experi-
ments described in Section 6.2. The results also indicate that
Tempo is effective with just several days’ training.

6.4 Overhead
Tempo incurs very low overhead of three types: performance,
wireless data usage, and storage usage. Tempo incurs performance

overhead when a predicted subresource is not actually needed. In
this case, loading the predicted subresource will occupy a TCP
connection, making actually needed subresources wait for availa-
ble connections. We have minimized this overhead by prioritizing
the predicted subresources and loading them adaptively, as dis-
cussed in Section 5.2. From the experiments presented above, it is
also clear that the benefit from Tempo outweighs the overhead.
Tempo incurs data usage overhead when a predicted subresource
is not actually needed. A higher hit ratio leads to lower data usage
overhead, as discussed in Section 4.2. Resource prediction in
Tempo achieves a hit ratio as high as 65%, as presented in Section
6.1, which is four times as much as that of web prefetching (16%).
Though 35% of the predicted subresources are not actually needed
by the current webpage, the resulting data usage overhead is
usually even lower because of three reasons: (i) the predicted
subresources are loaded adaptively, which minimizes the data
usage overhead; (ii) the predicted subresources are widely shared
by different webpages of the same website, effectively amortizing
the overhead over multiple webpages; (iii) the predicted subre-

Table 2: Browser delay reduction from speculative loading for webpage revisits under different cache states (in ms)

Sites
Fresh Cache Expired Cache Empty Cache

Legacy Tempo Reduction Legacy Tempo Reduction Legacy Tempo Reduction
ESPN 3491 3602 -111 -3% 6748 5372 1376 20% 7031 5322 1709 24%
CNN 4873 4507 366 8% 5992 4274 1718 29% 6346 5307 1039 16%

Google 2407 2842 -435 -18% 3411 3073 338 10% 3932 3257 675 17%
Yahoo! Mail 3239 3472 -233 -7% 5083 3265 1818 36% 5083 3442 1641 32%

Weather 5055 4559 496 10% 6109 3835 2274 37% 7167 4716 2451 34%
Craigslist 3123 2400 723 23% 3648 2089 1559 43% 3677 2470 1207 33%

Neopets Games 9041 9076 -35 0% 10639 9280 1359 13% 10660 10220 440 4%
Varsity Tutors 5969 5384 585 10% 8516 6677 1839 22% 9987 7914 2073 21%
Ride METRO 4220 3801 419 10% 6109 4620 1489 24% 6945 5488 1457 21%
Rice Registrar 3046 3609 -563 -18% 4169 3489 680 16% 6027 4084 1943 32%

Average 4446 4325 121 1% 6042 4597 1445 25% 6686 5222 1464 24%

Table 3: Browser delay reduction from speculative loading for new webpage visits under different cache states (in ms)

Sites
Fresh Cache Expired Cache Empty Cache

Legacy Tempo Reduction Legacy Tempo Reduction Legacy Tempo Reduction
ESPN 3152 2587 565 18% 3163 2788 375 12% 6162 4205 1957 32%
CNN 2994 3328 -334 -11% 3519 2438 1081 31% 7091 6054 1037 15%

Google 2982 2295 687 23% 2376 2492 -116 -5% 4638 2945 1693 37%
Yahoo! Mail 5222 5282 -60 -1% 4472 3162 1310 29% 5572 5047 525 9%

Weather 5180 3763 1417 27% 3757 2682 1075 29% 5357 5244 113 2%
Craigslist 1203 1210 -7 -1% 2624 1848 776 30% 5163 3463 1700 33%
Neopets 10105 9795 310 3% 7326 7038 288 4% 6914 6623 291 4%

Varsity Tutors 7126 8013 -887 -12% 10598 7437 3161 30% 14921 12674 2247 15%
Ride METRO 2759 3460 -701 -25% 3352 2602 750 22% 6829 6171 658 10%
Rice Registrar 3929 3708 221 6% 4570 3672 898 20% 6506 5534 972 15%

Average 4465 4344 121 3% 4576 3616 960 20% 6915 5796 1119 17%

Figure 9: Average browser delays (ms) in different pe-
riods of the field trial. Speculative loading is enabled in
the 1st week and disabled in the 2nd week

2nd week

1st week

day 6 & 7

User 1

0 1000 2000 3000 4000 5000

2nd week

1st week

day 6 & 7 User 2

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

39

sources are visited before and they are likely to be still in the
cache, resulting in little network traffic for expired resource or
even none for fresh resource. We find the data usage overhead in
the field trial to be as low as 0.7 MB per week.
Tempo incurs storage usage overhead by constructing and storing
metadata repository on the mobile device, which requires addi-
tional flash storage space. However, the additional storage is
small because metadata repository does not contain actual re-
source content, as discussed in Section 5.1. For each of the 24
LiveLab users, one year’s metadata repository takes only 165 KB
on average and 576 KB at most, which is negligible in view of
what is available to mobile devices.

7. CONCLUSIONS
Of solutions for browser speed improvement, client-only ones are
immediately deployable, scalable, and secure. It has been well
known that client-only solutions are not as effective in improving
speed as ones with infrastructure support. Leveraging an unprece-
dented mobile web usage data set, our work provides the first
comprehensive treatment regarding the effectiveness of client-
only solutions.
We demonstrate the ineffectiveness of browser caching and client-
only web prefetching on mobile browsers. Caching is not effective
because of the large portion of the resources that are either not in
the cache or their cached copies quickly expire. Client-only web
prefetching is harmful because it results in significant additional
wireless data usage with little performance improvement.
In order to address the limitations of the previous two approaches,
we propose speculative loading, a client-only approach that pre-
dicts the subresources of a webpage given its URL and then spe-
culatively loads the predicted subresources. Our implementation
of speculative loading, Tempo, can reduce browser delay by 1
second (~20%) under 3G network.
Finally, we empirically show that the upper bound of browser
delay reduction for client-only solutions is 1.4 second with to-
day’s typical 3G network. Our result suggests that it is imperative
to involve the infrastructure in further improving mobile browser
performance.

Acknowledgements
This work is supported in part by the Texas Instruments Leader-
ship University program and by NSF Awards #0751173 and
#0923479. The authors are grateful to the anonymous reviewers
for their suggestions that helped improve the final version.

REFERENCES
[1] "Hypertext Transfer Protocol -- HTTP/1.1,"

http://www.ietf.org/rfc/rfc2616.txt.
[2] Amazon Silk: http://amazonsilk.wordpress.com/.
[3] C. Bouras, A. Konidaris, and D. Kostoulas, "Predictive Prefetching

on the Web and Its Potential Impact in the Wide Area," World Wide
Web, vol. 7, pp. 143-179, 2004.

[4] CyanogenMod Wiki, "Samsung Galaxy S II,"
http://wiki.cyanogenmod.com/wiki/Samsung_Galaxy_S_II.

[5] L. Fan, P. Cao, W. Lin, and Q. Jacobson, "Web prefetching between
low-bandwidth clients and proxies: potential and performance," in
Proceedings of the ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, 1999.

[6] Google, "Announcing Instant Pages,"
http://googlewebmastercentral.blogspot.com/2011/06/announcing-
instant-pages.html.

[7] Google, "Web Developer's Guide to Prerendering in Chrome ":
http://code.google.com/chrome/whitepapers/prerender.html.

[8] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,
"Anatomizing application performance differences on smartphones,"
in Proc. ACM/USENIX Int. Conf. Mobile Systems, Applications, and
Services (MobiSys) San Francisco, California, USA: ACM, 2010.

[9] J. Kim, R. A. Baratto, and J. Nieh, "pTHINC: a thin-client architec-
ture for mobile wireless web," in Proceedings of the 15th interna-
tional conference on World Wide Web, 2006.

[10] R. Kohavi, R. M. Henne, and D. Sommerfield, "Practical guide to
controlled experiments on the web: listen to your customers not to
the hippo," in Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2007.

[11] A. M. Lai, J. Nieh, B. Bohra, V. Nandikonda, A. P. Surana, and S.
Varshneya, "Improving web browsing performance on wireless pdas
using thin-client computing," in Proceedings of the 13th internation-
al conference on World Wide Web, 2004.

[12] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang,
"WebProphet: automating performance prediction for web services,"
in Proceedings of the 7th USENIX conference on Networked systems
design and implementation.

[13] L. A. Meyerovich and R. Bodik, "Fast and parallel webpage layout,"
in Proc. Int. Conf. World Wide Web (WWW) Raleigh, North Caroli-
na, USA: ACM, 2010.

[14] J. Mickens, J. Elson, J. Howell, and J. Lorch, "Crom: Faster web
browsing using speculative execution," in Proceedings of the 7th
USENIX conference on Networked systems design and implementa-
tion, 2010.

[15] J. C. Mogul, "Hinted caching in the web," in Proceedings of the 7th
workshop on ACM SIGOPS European workshop: Systems support
for worldwide applications, 1996.

[16] Mozilla, "Link prefetching FAQ,"
https://developer.mozilla.org/en/Link_prefetching_FAQ.

[17] NYTimes, "Amazon Cloud Failure Takes Down Web Sites,"
http://bits.blogs.nytimes.com/2011/04/21/amazon-cloud-failure-
takes-down-web-sites/.

[18] Opera Mini: http://www.operamini.com/.
[19] V. N. Padmanabhan and J. C. Mogul, "Using predictive prefetching

to improve World Wide Web latency," SIGCOMM Comput. Com-
mun. Rev., vol. 26, pp. 22-36, 1996.

[20] M. Rabinovich and O. Spatscheck, Web Caching and Replication,
2003.

[21] P. Rodriguez, S. Mukherjee, and S. Ramgarajan, "Session level
techniques for improving web browsing performance on wireless
links," in Proceedings of the 13th international conference on World
Wide Web, 2004.

[22] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, "Li-
veLab: Measuring Wireless Networks and Smartphone Users in the
Field," in Proc. Workshop on Hot Topics in Measurement & Model-
ing of Computer Systems, June 2010.

[23] Skyfire: http://www.skyfire.com/.
[24] C. Stockwell, "IE8 Performance,"

http://blogs.msdn.com/b/ie/archive/2008/08/26/ie8-
performance.aspx, 2008.

[25] The Chromium Projects, "SPDY: An experimental protocol for a
faster web," http://www.chromium.org/spdy.

[26] W3C, "HTML5 Link type prefetch,"
http://www.w3.org/TR/html5/links.html#link-type-prefetch.

[27] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, "How effective is
mobile browser cache?," in Proceedings of the 3rd ACM workshop
on Wireless of the students, by the students, for the students (S3),
2011.

[28] Z. Wang, X. Lin, L. Zhong, and M. Chishtie, "Why are web brows-
ers slow on smartphones?," in Proceedings ACM Int. Workshop on
Mobile Computing Systems and Applications (HotMobile), 2011.

[29] WebKit, "The WebKit Open Source Project," http://webkit.org/.
[30] K. Zhang, L. Wang, A. Pan, and B. B. Zhu, "Smart caching for web

browsers," in Proc. Int. Conf. World Wide Web (WWW) Raleigh,
North Carolina, USA: ACM, 2010.

WWW 2012 – Session: Mobile Web Performance April 16–20, 2012, Lyon, France

40

http://www.ietf.org/rfc/rfc2616.txt�
http://amazonsilk.wordpress.com/�
http://wiki.cyanogenmod.com/wiki/Samsung_Galaxy_S_II�
http://googlewebmastercentral.blogspot.com/2011/06/announcing-instant-pages.html�
http://googlewebmastercentral.blogspot.com/2011/06/announcing-instant-pages.html�
http://code.google.com/chrome/whitepapers/prerender.html�
http://bits.blogs.nytimes.com/2011/04/21/amazon-cloud-failure-takes-down-web-sites/�
http://bits.blogs.nytimes.com/2011/04/21/amazon-cloud-failure-takes-down-web-sites/�
http://www.operamini.com/�
http://www.skyfire.com/�
http://blogs.msdn.com/b/ie/archive/2008/08/26/ie8-performance.aspx�
http://blogs.msdn.com/b/ie/archive/2008/08/26/ie8-performance.aspx�
http://www.chromium.org/spdy�
http://www.w3.org/TR/html5/links.html#link-type-prefetch�
http://webkit.org/�

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	2.1 Why are Mobile Browsers Slow?
	2.2 Related Work
	2.3 LiveLab: Web Usage by 24 iPhone Users

	3. MOBILE WEB BROWSING CHARACTERISTICS
	3.1 Characteristics of Websites
	3.2 Mobile User Browsing Behavior

	4. EFFECTIVENESS OF CLIENT ONLY APPROACHES
	4.1 Caching
	4.2 Web Prefetching
	4.3 Speculative Loading
	4.3.1 Upper Bound of Improvement
	4.3.2 Predicting Server vs. Predicting User

	4.4 Upper Bound for Client-Only Solutions

	5. TEMPO: A SPECULATIVE MOBILE BROWSER
	5.1 Metadata Repository
	5.2 Speculative Loader
	5.3 Update Service
	5.4 Temporary Cache

	EVALUATION
	6.1 Subresource Prediction Performance
	6.2 Lab Experiments
	6.2.1 Revisits
	6.2.2 New Visits

	6.3 Field Trial
	6.4 Overhead

	7. CONCLUSIONS
	Acknowledgements
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

