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ABSTRACT
The betweenness centrality of a vertex in a graph is a mea-
sure for the participation of the vertex in the shortest paths
in the graph. The Betweenness centrality is widely used in
network analyses. Especially in a social network, the re-
cursive computation of the betweenness centralities of ver-
tices is performed for the community detection and finding
the influential user in the network. Since a social network
graph is frequently updated, it is necessary to update the be-
tweenness centrality efficiently. When a graph is changed,
the betweenness centralities of all the vertices should be re-
computed from scratch using all the vertices in the graph.
To the best of our knowledge, this is the first work that
proposes an efficient algorithm which handles the update
of the betweenness centralities of vertices in a graph. In
this paper, we propose a method that efficiently reduces the
search space by finding a candidate set of vertices whose be-
tweenness centralities can be updated and computes their
betweenness centeralities using candidate vertices only. As
the cost of calculating the betweenness centrality mainly de-
pends on the number of vertices to be considered, the pro-
posed algorithm significantly reduces the cost of calculation.
The proposed algorithm allows the transformation of an ex-
isting algorithm which does not consider the graph update.
Experimental results on large real datasets show that the
proposed algorithm speeds up the existing algorithm 2 to
2418 times depending on the dataset.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph
algorithms, Path and circuit problems; E.1 [Data]: Data
structures—Graphs and networks
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1. INTRODUCTION
The betweenness centrality is a measure that computes

the relative importance of a vertex in a graph, and it is
widely used in network analyses such as a social network
analysis, biological graph analysis, and road network anal-
ysis. For example, in the social network analysis, a vertex
with higher centrality can be viewed as a more important
vertex than a vertex with lower centrality. The betweenness
centrality of a vertex in a graph is a measure for the partic-
ipation of the vertex in the shortest paths in the graph.

There are many previous works on the betweenness cen-
trality problem. The concept of the betweenness central-
ity is proposed in [1], but the definition proposed in [10] is
more widely used. Recently, many variants of the definition
are proposed in [6]. [5] improves the computation time of
the betweenness centrality based on a modified breadth-first
search algorithm and the dependency of a vertex, and it is
the fastest known algorithm that computes the exact be-
tweenness centralities of all the vertices in a graph. As the
computation of shortest paths between all pairs of vertices
are time consuming, [22] proposes another definition of be-
tweenness centrality, which is based on a random walk. In
[22], each vertex has a probability of visiting its neighbor
vertices. Also, [7], [2] and [12] propose approximation algo-
rithms for computing the betweenness centrality. [23] and
[25] adopt the betweenness centrality for detecting commu-
nities in a social network.

Although many works on calculating the betweenness cen-
trality exist and the betweenness centrality is one of the
major measures used in analyzing social network graphs,
none of the works for computing the betweenness central-
ity address the problem of updating betweenness centrality.
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Applying the previous algorithms to find influential users or
detect communities over frequently updated graphs such as
a social network graph is inefficient. This is because, calcu-
lating the betweenness centralities of all users in the graph
involves computing the shortest paths between all pairs of
users in the graph. In all previous works, the recomputa-
tion for all the vertices is inevitable whenever a new edge is
inserted to the graph. This recomputation is clearly time-
consuming. As the number of edges in the social network
graph increases over time [19], the need for updating the
betweenness centrality is evident.

It is difficult to update the betweenness centrality, because
even a single edge insertion or a single edge deletion leads
to the changes in many shortest paths in the graph. This
change causes the updates of the betweenness centralities of
many vertices in the graph. It is trivial to see that when
an edge (vi, vj) is inserted to a graph, the shortest path
between vi and vj is changed. Also, the shortest paths that
include the original shortest path from vi to vj are changed.
For example, in Figure 1, let G1 be a graph and G′

1 be an
updated graph of G1. When an edge (v1, v5) is inserted, the
shortest path between v1 and v5 is changed. Also, there are
more shortest paths that are changed e.g., the shortest path
between v12 and v5 and the shortest path between v10 and
v11.

However, we observe that there exist vertices whose be-
tweenness centralities do not change even when the graph
is updated. In Figure 1(b), the betweenness centralities of
v1, v3, v4 and v5 change, while the betweenness centrali-
ties of the other vertices do not change. The betweenness
centralities of v2, v6, v7, v8, v9, v10, v11 and v12 do not
change, because the source-target pairs of original shortest
paths that go through v2, v6, v7, v8, v9, v10, v11 or v12 do
not change even when G1 is updated.

v1

v2 v3 v4 v6

v10

v7

v8

v11 v12

v9

v5

(a) G1

v1

v2 v3 v4 v6

v10

v7

v8

v11 v12

v9

v5

(b) G′
1

Figure 1: An example of a graph update

Based on the above observation, we proposed a Quick al-
gorithm for Updating BEtweenness centrality (QUBE). The
key idea of the proposed algorithm is to perform the be-
tweenness centrality computation on a reduced set of ver-
tices. We first find the set of vertices whose betweenness
centralities can be changed and the set(s) of vertices whose
betweenness centralities do not change. In Figure 1(b),
{v1,v2,v3,v4,v5} is the set of vertices whose betweenness cen-
tralities can be changed, and {v6,v7,v8,v9,v10}, {v11}, {v12}
are the sets of vertices whose betweenness centralities do
not change. The method of finding these sets is explained in
Section 4, and it is easy to see that the latter three sets cor-
respond to connected components after removing the first
set from G′

1.
We compute the betweenness centrality only on the first

set of vertices. In the previous works, all pair shortest paths

recomputation is necessary to compute the betweenness cen-
trality and the number of shortest paths that need to be
recomputed on G′

1 would be 12 · 11/2 = 66. On the other
hand, in our approach, only 5 ·4/2 = 10 shortest paths need
to be recomputed. Clearly, the smaller the cardinality of
the first set, the shorter the amount of time it would take in
computing the necessary shortest paths.

In order to recompute the betweenness centrality of a ver-
tex in the reduced set, in addition to the betweenness cen-
trality in the reduced set, the number of shortest paths that
satisfy the following conditions needs to be considered.

1. The shortest path goes through the vertex in the re-
duced set.

2. The shortest path’s source or target or both are not in
the reduced set.

The number can be obtained based on the cardinality of
the set(s) of vertices whose betweenness centralities do not
change without actually computing the shortest paths. For
example, the shortest paths from v12 to v6 always go through
vertices in the reduced set. Similarly, the shortest paths
from vi ∈ {v12} to vj ∈ {v6, v7, v8, v9, v10} always go
through vertices in the reduced set. Therefore, the number
of shortest paths from vi to vj is a product of the cardinal-
ities of the two sets, which is 5.

The contributions of this paper are as follows.

1. We propose a method that identifies a set of vertices
whose betweenness centralities can be updated and
sets of vertices whose betweenness centralities do not
change, based on the comprehensive analysis of changes
in the betweenness centrality when a graph is updated.

2. We devise aBetweenness Centrality Update Theorem.
The theorem enables an efficient update of between-
ness centrality without traversing the entire graph.
Based on the proposed theorem, we propose an effi-
cient algorithm for updating betweenness centrality.

3. We conduct experiments on various synthetic datasets
as well as large real datasets. The experimental results
show that the incorporation of our algorithm outper-
forms an existing algorithm, in updating the between-
ness centrality. In cases where the size of the reduced
set of vertices is 1/10 of the number of vertices in the
synthetic graphs, the proposed algorithm speeds up
the existing algorithm 577 times on the average. For
real datasets, the proposed algorithm speeds up the ex-
ist algorithm 2 to 2418 times depending on the dataset.

The rest of the paper is organized as follows. In Section 2,
related works on betweenness centrality are reviewed. In
Section 3, we formally define betweenness centrality and
explain basic concepts. In Section 4, we devise a method
which finds the reduced set of vertices whose betweenness
centralities can be updated. Section 5 explains how to effi-
ciently update the betweenness centralities of vertices in the
reduced set. In Section 6, we show experimental results, and
we conclude the paper in Section 7.

2. RELATED WORK
Computation of betweenness centrality has been gaining

much importance in social network analyses, and is widely
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used in many applications. The earliest work to define the
measure which quantifies this idea of betweenness central-
ity is introduced by Anthonisse et al. [1] and Freeman [10].
Freeman’s original method of finding betweenness centrality
is based on counting geodesic paths for all pairs of vertices
on a graph. Following Freeman’s work, variations of cen-
trality measures are proposed. Everette et al. [17] propose
a group betweenness measure which can be applied to groups
and classes as well as individuals. Freeman et al. [11] extend
Freeman’s work [10] to introduce a new measure of centrality
based on the concept of network flows, which considers both
shortest and certain non-shortest paths. Newman [22] pro-
poses a measure of betweenness centrality based on random
walks of any length instead of shortest paths. Brandes [6]
reviews a number of variants of betweenness centrality based
on shortest paths including bounded-distance betweenness,
distance-scaled betweenness, edge betweenness, and group
betweenness, and discusses algorithms to compute each vari-
ant efficiently. As part of the discussion, Brandes points out
that the efficient recomputation of betweenness centrality in
dynamically changing networks on the algorithmic side is a
remaining challenge.

Currently, the fastest known algorithm to compute ex-
act betweenness centralities for all the vertices [5] requires
O(|V ||E|) and O(|V ||E|+ |V |2log|V |) time on weighted and
unweighted graphs, respectively. Traditionally, betweenness
centrality was determined by first computing the lengths and
number of shortest paths between all pairs, and then sum-
ming up pair-dependencies of all pairs [10]. Pair-dependency
of a pair s, t ∈ V on an intermediary vertex v ∈ V is defined
as the ratio of shortest paths between s and t that v lies on
to all shortest paths between s and t. Brandes [5] points out
the weakness in this approach arguing it is computing more
information than needed. The faster algorithm is presented
by Brandes [5], based on aggregating path counts from dif-
ferent source vertices in the network.

Although big improvement was made over the very ini-
tial betweenness centrality computation algorithm, many
researchers argued that the Brandes’ algorithm is still too
costly for large graphs. In order to overcome such limitation,
researchers propose approximation algorithms to compute
the estimated betweenness centrality, claiming that good
approximation would be an acceptable alternative to exact
score as long as fast computation is possible. Brandes et
al. [7] propose a heuristic estimation method for between-
ness centrality computation and conduct experiments with
various selection strategies of the source vertices to assess
the quality of the estimation. Bader et al. [3] present a
parallel algorithm for computing betweenness centrality, op-
timized for scale-free sparse graphs. They [2] also suggest
an algorithm to compute the betweenness centrality of a sin-
gle vertex in time faster than computing the betweenness of
all vertices. Geisberger et al. [12] suggest a bisection scal-
ing algorithm for approximating a variant of betweenness
centrality. Makarychev [21] suggests a linear time approx-
imation algorithm to find the ordering of the vertices that
maximizes the number of satisfied betweenness constraints.

Betweenness centrality is used in diverse applications across
many different disciplines. Betweenness centrality allows an
understanding of the extent to which a vertex contributes
in the flow of information. It is mainly used in finding the
most prominent vertices in complex networks, whether they
are individuals in social networks, elements in biological net-

works, intersections or junctions in transportation networks,
physical elements in computer networks, or documents in
World Wide Web. For example, Leydesdorff [20] demon-
strates in his research how betweenness centrality is shown
to be an indicator of the interdisciplinarity of scientific jour-
nals, and del Sol et al. [8] use the betweenness centrality in
identifying the most central residues in protein-protein com-
plex structures. Jin et al. [15] demonstrate an application of
parallel betweenness centrality to detect potentially harmful
nodes in an electrical grid. The electrical grid is an inter-
connected network for delivering electricity from suppliers to
consumers. Holme [13] studies the relationship between be-
tweenness centrality and the density of a traffic model, and
Lammer et al. [18] use betweenness centrality in approximat-
ing the importance of a road or a junction and investigated
the scaling laws associated with urban road networks in Ger-
many. In many applications, the network structures are typ-
ically not static. As the network evolves, the network graphs
constantly change over time, which implies that there is a
strong need for an efficient algorithm to update betweenness
centrality.

Betweenness centrality is also used in community detec-
tion. Newman et al. [23] propose a divisive community de-
tection technique which iteratively removes edges with the
highest betweenness centrality value from the network. Pin-
ney et al. [25] suggest an alternative community detection
algorithm in which the network decomposition is based on
vertex betweenness instead of edge betweenness. Newman et
al. [23] discuss a weakness in the existing algorithms which
is a high computation cost associated with iterative recalcu-
lation of all-pair shortest paths when the edges are removed.

As observed in many applications, dynamic nature of many
real-life networks is a clear evidence that efficiently updat-
ing betweenness centrality is an important issue. Yet no
literature dealing with the problem of efficiently updating
betweenness centrality in a dynamic network environment
exists at present.

3. PRELIMINARY
In this section, we introduce the formal definition of be-

tweenness centrality of a vertex, and explain the basic con-
cept of a minimum cycle basis. Also we briefly introduce the
overall process of the proposed algorithm.

3.1 Betweenness Centrality
Betweenness centrality is a measure that computes the

relative importance of a vertex in a graph. The formal defi-
nition is presented below.

A graph is represented by G = (V,E), where V is the set
of vertices, and E ⊆ V × V is the set of edges. A path in
a graph is represented by a sequence of vertices, (v1, ..., vn)
where vi, vj ∈ V for 1 ≤ i, j ≤ n, i �= j except possible
1 = n.

Definition 1 (Betweenness Centrality). The betweenness
centrality of a vertex vj ∈ G is:

c(vj) =
∑
i,k

σvi,vk (vj)

σvi,vk

(1)

where vi, vj , vk ∈ V , i �= j �= k, σvi,vk (vj) is the number of
shortest paths between vi and vk that include vj , and σvi,vk

is the number of shortest paths between vi and vk.
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The betweenness centrality can be computed as follows:

1. For each pair of vertices (vs and vt), compute the
shortest paths between the two vertices.

2. For each pair of vertices, compute the ratio of the par-
ticipation of each vertex in the shortest path(s). The
ratio is the number of shortest paths between vs and vt
that go through vj divided by the number of shortest
paths between vs and vt.

3. Accumulate the ratio for all pairs of vertices.

Let us consider updating the betweenness centrality caused
by a graph update. Even a simple update, for example in-
serting an edge to a graph, could change existing shortest
paths for many pairs of vertices in the graph. One of the
biggest drawbacks in updating the betweenness centrality
using the previous algorithms is that the shortest paths for
all pairs of vertices are recomputed whenever an update oc-
curs in a graph.

3.2 Minimum Cycle Basis

Definition 2 (Cycle Basis). Let a graph G = (V,E) be an
undirected graph. A cycle C is a subset of edges such that
every vertex of V is incident to an even number of edges in
C. Each cycle C can be represented by an edge incidence
vector in {0, 1}|E| where a component is equal to 1 precisely
when e ∈ C. A maximal set of linearly independent cycles
is called a cycle basis.

Definition 3 (Minimum Cycle Basis (MCB)). Let a graph
G = (V,E) be an undirected connected graph with a non-
negative weight we assigned to each edge e ∈ E. Minimum
Cycle Basis is a cycle basis C of minimum total weight,
i.e., which minimizes w(C) =

∑v
i=1 w(Ci), where w(Ci) =∑

e∈Ci
we.

v3

v4

v5

v1

v2

c1
c2

c3

Figure 2: An example of a cycle basis and the min-
imum cycle basis

The example depicted in Figure 2 has three cycle basis sets
{C1, C2}, {C1, C3}, and {C2, C3}. If every edge in the graph
has the same weight (i.e., 1 for all edges), MCB is {C1, C2}.
The detailed definitions of cycle basis and minimum cycle
basis can be found in [16].

3.3 Overall Process
The overall flow of the proposed betweenness centrality

update algorithm is as follows. First, we identify the set
of vertices whose betweenness centralities can be changed,
and the set(s) of vertices whose betweenness centralities do
not change. Through the analysis of possible changes in the
betweenness centrality that can occur as a result of graph
updates, we discovered the characteristics of the sets of ver-
tices in which the changes in the betweenness centralities

do and do not occur. Observed pattern is applicable for
any type of connected graphs. Theoretical evidence on the
generalization is presented in Section 5.1.

Next, we perform the betweenness centrality computation
on the identified sets of vertices whose betweenness central-
ities can be changed. We refer to the computed values as
the local betweenness centrality. On top of the local be-
tweenness centrality, we perform additional calculations on
the vertices whose shortest paths are not yet considered.
Details are presented in Section 5. Through simple addi-
tional calculations, the exact betweenness centrality can be
restored without performing an expensive computation on
all the vertices on a graph, such as the calculation of all pair
shortest paths.

4. MINIMUM UNION CYCLE
In this section we introduce the concept of the minimum

union cycle (MUC) upon which our update algorithm is
built. As explained in the previous section, a set of ver-
tices whose betweenness centralities can be changed is dis-
tinguished from the set(s) of vertices whose betweenness cen-
tralities do not change. Such sets are identified by using
MUCs obtained during the preprocessing time. The initial
set of MUCs is found and stored during the preprocessing
time. As changes occur in a graph, stored MUCs also need
to be changed. Changes in MUCs are managed during the
runtime. In Sections 4.2 and 4.3, we explain how to find
MUCs and how to update MUCs.

4.1 Definition of MUC

Definition 4 (Minimum Union Cycle (MUC)). Given a
minimum cycle basis C and minimum cycles Ci ∈ C, let
VCi be the set of vertices in Ci. Recursively union two VCis
together if they share at least one common vertex. Then
each final set of vertices forms a MUC.

Each vertex appears in only one MUC since MUCs are
disjoint sets. We denote MUC(v) as MUC which contains
vertex v.

Definition 5 (Connection vertex). Vertex v ∈ MUC is a
connection vertex, if v is an articulation vertex1 and v has
an edge to a vertex w /∈ MUC(v).

In Figure 5, let us assume that an edge (v3, v4) is inserted.
MUC(v3) is {v1, v2, v3, v4}, and the connection vertices of
MUC(v3) are v1, v2 and v3.

The deletion of a connection vertex makes the graph dis-
connected since the connection vertex is also an articula-
tion vertex. We denote a graph that is disconnected from
MUC(vi) as a result of the deletion of a connection vertex
vi as a disconnected subgraph Gi. In Figure 5, G1, G2, and
G3 are disconnected subgraphs generated from the deletion
of connection vertex v1, v2, and v3, respectively.

4.2 Finding MUCs
In this subsection, we present how to generate MUCs, a

set of connection vertices for each MUC and disconnected
subgraphs derived from the deletion of connection vertices.

1A vertex a is called an articulation vertex if the deletion
of a with its incident edges from G makes the graph discon-
nected. Equivalently, there must exist two vertices v and w
such that every path from v to w goes through an articula-
tion vertex a.
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Algorithm 1: FindMUC(C)

input : C - minimum cycle basis
1 begin
2 MUCSet := A minimum cycle basis C;
3 while ∃ ci, cj ∈MUCSet, where ci and cj share at

least one common vertex do
4 ci := ci union cj ;
5 Remove cj from MUCSet ;

6 for each MUC ∈MUCSet do
7 Conn(MUC) := a set of connection vertices in MUC

;
8 for each connection vertex vi ∈ Conn(MUC) do
9 Gi := disconnected subgraphs originated from

the deletion of a connection vertex vi ;

Algorithm 1 uses a minimum cycle basis C as an input,
and it finds a set of MUCs (MUCSet), and a set of connec-
tion vertices with corresponding subgraphs.

The calculation of a minimum cycle basis is well studied in
the field of graph theory, and many efficient algorithms, such
as Horton’s algorithms [14] and Kavitha’s algorithm [16], ex-
ist. In line 2, we calculate a minimum cycle basis using an
existing algorithm. In line 3-line 5, the algorithm finds a set
of MUCs (MUCSet) by unioning the cycles in a minimum
cycle basis until the unioned cycles are disjoint from each
other. A set of connection vertices for each MUC and dis-
connected subgraphs derived from the deletion of connection
vertices are found in line 7-line 9.

Note that Algorithm 1 is performed during the prepro-
cessing time. However, the MUC updating algorithm (Al-
gorithm 2) needs to be processed during the runtime. MUC
updating algorithm for an insertion and deletion of an edge
is presented in the following subsection.

4.3 Updating MUCs

v1

v2

v3

v4 v7

v6

v5

v8

v9

v10

v11

a

b

c

v12

(a) Insertion

v1

v2

v3

v4 v7

v6

v5

v8

v9

v10

v11

a

bc

(b) Deletion

Figure 3: An example of updating MUC

We now present our technique on maintaining a set of
MUCs, a set of connection vertices for each MUC and dis-
connected subgraphs derived from the deletion of a connec-

Algorithm 2: UpdateMUC(vi, vj ,MUCSet,G)

input : vi - a vertex in inserted/deleted edge
vj - a vertex in inserted/deleted edge
MUCSet - a set of MUCs
G - an original graph

1 begin
// if vi is not contained any MUC, MUC(vi)

returns vi only
2 if Insertion Operation then
3 if MUC(vi) = MUC(vj) then
4 // Do Nothing

5 else
6 NewMUC := Let be an empty set;
7 for each vertices v in ςρ(vi, vj) in G do
8 NewMUC := NewMUC ∪MUC(v) ;
9 remove MUC(v) from MUCSet ;

10 add NewMUC to MUCSet ;

11 add edge (vi, vj) to graph G;

12 else
13 delete edge (vi, vj) from graph G;
14 if 1 = |Path(vi, vj)| in G then
15 remove MUC(vi) from MUCSet ;

16 else
17 if ∃v in all Path(vi, vj) then
18 split MUC(v) into MUCs;

19 else
20 // Do Nothing

tion vertex. We explain each case of updating MUCs accord-
ing to the insertion or deletion of an edge as follow (Initial
MUCs in Figure 3(a) are {v1, v2, v3, v4, v5} and {v8, v9, v10}.
Initial MUCs in Figure 3(b) are {v1, v2, v3, v4, v5 , v6, v7}
and {v8, v9, v10}.):

1. When an edge is inserted

(a) No change, if the new edge connects two ver-
tices in one MUC. In Figure 3(a), the insertion
of edge(a) does not affect any MUCs (Line 4 in
Algorithm 2).

(b) A new MUC is created, if vertices in an exist-
ing shortest path between two vertices in the new
edge are not included in any MUC. In Figure 3(a),
the insertion of edge(b) induces a creation of a
new MUC consisting of {v6, v7, v12} (Line 6-Line
10 in Algorithm 2. ςρ(vi, vj) is the set of vertices
in shortest paths between vi and vj).

(c) MUC is merged with the vertices and other MUCs
to create a new MUC, if vertices in existing short-
est paths between two vertices of the new edge
are included in some MUCs. In Figure 3(a), the
insertion of edge(c) induces MUC(v10) to merge
with v11 (Line 6-Line 10 in Algorithm 2).

2. When an edge is deleted

(a) MUC is destroyed, if there exists only one path
between two vertices in the deleted edge as a re-
sult of the deletion. In Figure 3(b), the deletion
of edge(a) causes the destruction of MUC(v10)
(Line 14-Line 15 in Algorithm 2. Path(vi, vj) is
the set of paths between vi and vj .).
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(b) No change, after the deletion, if there still exists
more than one path between the two vertices and
does not exist a vertex appearing in all the paths
between the two vertices. In Figure 3(b), the dele-
tion of edge(b) does not affect any MUCs (Line
20 in Algorithm 2).

(c) An existing MUC is split into MUC(s) and ver-
tex(s), after the deletion, if there still exists more
than one path between two vertices and exists
a vertex appearing in all paths between the two
vertices. In Figure 3(b), the deletion of edge(c)
induces the separation of MUC into two MUCs
(Line 18 in Algorithm 2).

5. UPDATING BETWEENNESS
CENTRALITY

In this section, we describe how to compute the between-
ness centrality values. As mentioned in Section 4, after an
insertion or deletion of the edge e(vi, vj), we guarantee that
the betweenness centralities of vertices in MUC(vi) can be
changed. Therefore, after we find the reduced set of vertices,
which we refer to as MUC, we need to efficiently calculate
and update the betweenness centralities of the vertices in
the MUC to which the updated vertices belong. From now
on, we simply denote such MUC as MUCU .

v1

v3

v2

v4 v5

G
G’ G G’

c(v1) 1 0.5

c(v2) 1 0.5

c(v3) 0.5 0.5

c(v4) 3.5 0.5

c(v5) 0

Figure 4: An example of the dependency of the be-
tweenness centrality

Recomputing betweenness centralities of the vertices in a
graph every time an update occurs is expensive, because in
general, the recomputation involves computation of all pair
shortest paths in the graph. In the previous section, we
proposed a way to find a set of vertices whose betweenness
centralities can be changed. This set of vertices is referred
to as MUCU . Yet, calculating the betweenness centrality
using only the vertices in MUCU is insufficient. In fact, the
betweenness centralities calculated using only the vertices
in MUCU are always smaller than the betweenness central-
ities calculated using all the vertices in a graph. This is
because, (1) the shortest paths whose source or target is
not in MUCU , and (2) the shortest paths that pass though
MUCU and both the source and the target of the shortest
paths are not in MUCU , are not yet considered. For ex-
ample, Figure 4 shows the betweenness centralities of the
vertices in G, and a subgraph of G, G′. The betweenness
centralities of vertices calculated using only the vertices in
G′ are smaller than the values calculated using the vertices
in G. This is because, the paths from v5 to each vertex in
G′ are missing.

Based on this idea, we now explain how to restore the
exact betweenness centrality by considering the vertices in
MUCU only. Let us refer to the betweenness centrality cal-
culated using only the vertices in MUCU as the local be-
tweenness centrality and the betweenness centrality calcu-

lated using the entire vertices in the graph as the global
betweenness centrality.

5.1 Betweenness Centrality Update Theorem
Before we introduce our technique, we define some ter-

minologies for a better understanding. cMUC (vi) denotes
the local betweenness centrality of a vertex vi calculated us-
ing the vertices in MUCU only. ci represents a connection
vertex. ςρ(vi, vj) is the set of vertices in the shortest paths
between vi and vj , and SP (vi, vj) is the set of shortest paths
between vi and vj . Therefore, |SP (vi, vj)| is the number of
the shortest paths between vi and vj . For example, in Fig-
ure 4, |SP (v1, v5)| = 1, |SP (v1, v2)| = 2, and ςρ(v1, v2) is
{v1, v2, v3, v4}.

Gj represents a disconnected subgraph originated from a
deletion of the connection vertex, cj . Gl

j represents the lth
connected component of Gj . VGj is the set of vertices of
Gj . In Figure 5, G1, G2 and G3 represent disconnected sub-
graphs originated from the deletions of connection vertices,
v1, v2, and v3, respectively. G1

2 and G2
2 are connected com-

ponents of G2. If the dotted edge is inserted, MUCU is
{v1, v2, v3, v4} and connection vertices of MUCU to G1, G2,
and G3 are v1, v2, and v3, respectively.

v1

v3

v2

v4

MUCU

v5

v6

v7v8

|VG1
|=5

|VG3
|=6

|VG2
|=4

G1

G2

G3

G2
1 G2

2|VG2
|=31 |VG2

|=12

Figure 5: An example of updating the betweenness
centrality (vertices in G1 and G3 are omitted.)

Lemma 1. Let vs ∈ VGj , vt ∈ MUCU and cj be a con-
nection vertex which connects MUCU with Gj . Then each
vertex in ςρ(cj , vt) must be included in a ςρ(vs, vt).

Proof: Since a connection vertex in MUCU is also an ar-
ticulation vertex, all paths from vs ∈ VGj to vt ∈ MUCU go
through a connection vertex cj . Therefore ςρ(vs, vt) always
includes ςρ(cj , vt).�

Lemma 1 allows us to calculate the increase of the be-
tweenness centrality due to the shortest paths whose source
or target is not in MUCU (the shortest paths between the
vertices in MUCU and the vertices not in MUCU ). Such
increase of the betweenness centrality for vi is denoted as
cbj (vi).

cbj (vi) =

⎧⎪⎨
⎪⎩

|VGj
|

|SP (vs,vt)| if vi in ςρ(cj , vt)− {vt}

0 otherwise

(2)

where vs in VGj , vt ∈ MUCU , cj is a connection vertex to
Gj .
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Lemma 2. Let vs ∈ VGj , vt ∈ VGk , and cj and ck be con-
nection vertices which connect MUCU with Gj , and MUCU

with Gk, respectively. Then each vertex in ςρ(cj , ck) must
be included in a ςρ(vs, vt).

Proof: Since cj and ck are articulation vertices, all paths
from vs ∈ VGj to vt ∈ VGk go through connection vertices
cj and ck. Therefore ςρ(vs, vt) always includes ςρ(cj , ck).�

Lemma 2 allows us to calculate the increase of the be-
tweenness centrality due to the shortest paths that pass
through MUCU and whose source and target are both not
in MUCU . Such increase of the betweenness centrality for
vi is denoted as ctkj

(vi).

ctk
j
(vi) =

⎧⎪⎨
⎪⎩

|VGj
|·|VGk

|
|SP (vs,vt)| if vi in ςρ(cj , ck)

0 otherwise

(3)

where vs ∈ VGj , vt ∈ VGk , cj and ck are connection vertices
to Gj and Gk, respectively.

In the case where Gi is disconnected, all shortest paths be-
tween the two vertices from different connected components
of Gi always pass through vi. For example, in Figure 5, a
shortest path from vs ∈ G1

2 to vt ∈ G2
2 must pass through

v2. Such an increase of the betweenness centrality for vi is
denoted as cti(vi) and calculated as follows:

cti(vi) =

⎧⎨
⎩
|VGi |2 −

∑n
l=1(|VGl

i
|2) if Gi is disconnected

0 otherwise
(4)

where Gl
j is the lth connected component of Gi, n is the

number of connected components in Gi, and vi is the con-
nection vertex to Gi.

Theorem 1. (Betweenness Centrality Update Theorem) By
Lemma 1 and Lemma 2, we can compute the betweenness
centrality of a vertex vi, c(vi).

c(vi)=cMUC (vi)+
∑

Gj⊂G

cbj (vi)+
∑

Gj,Gk⊂G,j �=k

ctkj
(vi)+

∑
Gi⊂G

cti(vi)

(5)
where cbi(vi) is from Equation 2 (Lemma 1) and ctk

j
(vi), cti(vi)

are from Equation 3 and 4 (Lemma 2).

By Theorem 1, we can compute the global betweenness
centrality using the local betweenness centrality and the
number of vertices in each disconnected subgraph Gi with-
out performing all pair shortest paths computation on the
all the vertices in a graph.

5.2 Betweenness Centrality Update Algorithm
(QUBE)

Algorithm 3 shows how to update betweenness centrality
only using vertices in MUCU that updated vertices belong
to. Algorithm 3 uses MUCU as an input and calculates the
updated betweenness centrality (C[vi]) as an output. The
set of all pair shortest paths in MUCU and the local be-
tweenness centralities of vertices in MUCU are calculated
using the existing betweenness centrality algorithms (Line

Algorithm 3: QUBE(MUCU )

input : MUCU - Minimum Union Cycle that updated
vertices belong to

output : C[vi] - Updated Betweenness Centrality Array
1 begin
2 Let SP be the set of all pair shortest paths in MUCU ;
3 Let C[vi] be an empty array, vi ∈MUCU ;
4 SP , C[vi] ← Betweenness() ;
5 for each shortest path <va, . . . , vb> in SP do
6 if va is a connecting vertex then
7 Ga := Subgraph connected by a connection

vertex va ;
8 for each vi ∈ <va, . . . , vb> - {vb} do
9 C[vi] := C[vi] +

|VGa |
|SP (va,vb)| ;

10 if vb is also a connecting vertex then
11 Gb := Subgraph connected by a

connection vertex vb ;
12 for each vi ∈ < va, . . . , vb > do

13 C[vi] := C[vi] +
|VGa |·|VGb

|
|SP (va,vb)| ;

14 if Ga is disconnected then
15 C[va] := C[va] + |VGa |2 −

∑n
l=1(|VGl

a
|2)

4)2. Then for each shortest path between the vertices in
MUCU (Line 5), add the increase of betweenness central-
ity values due to the shortest paths between the vertices
in MUCU and the vertices in other subgraphs (Line 9), as
well as the shortest paths between the vertices in two other
subgraphs, which pass through MUCU (Line 13) and the
shortest paths between the two vertices from different con-
nected components of a subgraph (Line 15). Note that it
does not require additional costs to obtain SP , the set of all
pair shortest paths in MUCU , since all pair shortest paths
are already calculated when we compute the local between-
ness centrality and can be easily obtained.

Example 1. Table 5.2 shows the values computed using
Equation 2, Equation 3, and Equation 4 for the vertices in
MUCU depicted in Figure 5. Due to the space limitation,
we do not differentiate a path from vs to vt and a path from
vt to vs in this example. Therefore, the actual between-
ness centralities are twice as big as the values shown in this
example. For vertex v2, the local betweenness centrality,
cMUC (v2), is 0. And there are four shortest paths (v2-v3-
v1, v2-v4-v1, v2-v3, v2-v4) which start from v2. Therefore,
we add ‘|VG1 | = 4’ 2 times for the paths v2-v3 and v2-v4.
Since |SP (v2, v1)| = 2, we add ‘|VG1 |/2 = 2’ 2 times to v2’s
betweenness centrality for the paths v2-v3-v1 and v2-v4-v1.

Also, v1-v3-v2, v1-v4-v2 are shortest paths which include
v2 and connect G1 and G2 via v1 and v2. Therefore, we add
a half of the product of the numbers of vertices in G1 and
G2, which is ‘|VG1 | · |VG2 |/2 = 5 · 4/2’ for each path. The
path v2-v3 connects G2 and G3 via v2 and v3. Similar to the
above case, we add ‘|VG2 | · |VG3 | = 4 · 6’ to v2’s betweenness
centrality. G2 is a disconnected graph and v2 is a connection
vertex to G2. Therefore, we add the product of the numbers
of vertices in G1

2 and G2
2, which is 3 · 1. Finally, we get 59

2Algorithm 3 can use any existing betweenness centrality
algorithm. For the implementation of Algorithm 3, we use
the Brandes’ algorithm which is the fastest known algorithm
so far. Our implementation is explained in Section 6.1
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Table 1: An example of updating the betweenness
centrality

SP (cj, •) Paths v1 v2 v3 v4
cMUC (vi) 0 0 0.5 0.5

SP (c1, v2) v1-v3-v2 5/2 5/2
cb1 (vi) v1-v4-v2 5/2 5/2

SP (c1, v3) v1-v3 5
SP (c1, v4) v1-v4 5
SP (c2, v1) v2-v3-v1 4/2 4/2

cb2 (vi) v2-v4-v1 4/2 4/2
SP (c2, v3) v2-v3 4
SP (c2, v4) v2-v4 4
SP (c3, v1) v3-v1 6

cb3 (vi) SP (c3, v2) v3-v2 6
SP (c3, v4) v3-v4 6

ct21
(vi) SP (c1, c2) v1-v3-v2 5·4/2 5·4/2 5·4/2

v1-v4-v2 5·4/2 5·4/2 5·4/2
ct31

(vi) SP (c1, c3) v1-v3 5·6 5·6
ct32

(vi) SP (c2, c3) v2-v3 4·6 4·6
ct2(vi) v2 3·1
c(vi) 65 59 87 15
Actual
value

130 118 174 30

as the global betweenness centrality which is the same value
resulting from the calculation of the betweenness centrality
of v2 using all the vertices in the original graph. The be-
tweenness centrality values for the other vertices v1, v3 and
v4 can also be calculated in the same way as the case of v2.

6. EXPERIMENTS
We explain how we implement an updatable version of the

Brandes’ algorithm using QUBE based on the Brandes’ al-
gorithm in Section 6.1. We compare this updatable version
of the Brandes’ algorithm with the original Brandes’ algo-
rithm and we show how much improvement is achieved with
the help of QUBE in Section 6.2. Recall that all previous
betweenness centrality calculation algorithms which do not
consider the graph update, such as the Brandes’ algorithm,
inevitably require the computation of the betweenness cen-
trality from scratch whenever a graph changes. We conduct
experiments on Intel Xeon CPU with 2.53GHz and 20GB
main memory.

6.1 Implementation
As we explained in Algorithm 3, QUBE can be applied to

any betweenness centrality calculation algorithm since it re-
duces the search space by identifying the candidate vertices
and restores the global betweenness centrality using the local
betweenness centrality. Since the Brandes’ algorithm known
to be the fastest algorithm so far for computing the exact
betweenness centrality, we implement QUBE based on the
Brandes’ algorithm. The Brandes’ algorithm computes one-
sided pair dependencies of all the vertices in a graph for a
given source vertex by solving a single source shortest path
problem. The one-sided pair dependency of a vertex vt is the
number of all shortest paths that go through vt, where the
start vertex of the paths is fixed to a specific vertex vs. A
detailed description of the Brandes’ algorithm can be found
in [5].

As we mentioned in Section 5, in addition to the local be-
tweenness centrality, we need to calculate (1) the increase
of the betweenness centrality (Equation 2) due to the short-
est paths whose source or target is a connection vertex, and
(2) the increase of the betweenness centrality (Equation 3
and Equation 4) due to the shortest paths whose source and
target are both connection vertices. Since the Brandes’ al-
gorithm does not explicitly calculate the all pair shortest
paths, the necessary values for the calculation of (1) and (2)
are obtained during the computation of the one-sided pair
dependencies on the Brandes’ algorithm. The detailed im-
plementation of the updatable version of the Brandes’ algo-
rithm using QUBE is shown in Algorithm 4. The additional
increases in the betweenness centrality explained through
Equation 2, Equation 3, and Equation 4 are computed in
(Line 34), (Line 23-Line 26 and Line 29-Line 31), and (Line
38), respectively. The additional lines apart from the origi-
nal Brandes’ algorithm are underlined.

6.2 Experiment Results
To evaluate the proposed algorithm, we measure the be-

tweenness centrality update time using synthetic datasets
and real datasets. We synthetically generate connected,
undirected, and unweighted graphs of varying numbers of
vertices and edges in order to observe the performance with
respect to the graph size and proportions. The proportion
is computed as (|MUCU |/|V |) ·100, and it indicates the per-
centage of vertices whose betweenness centralities should be
recalculated due to the update of the graph. Therefore, it
mainly affects the performance of QUBE. The Erdös-Rényi
model [9], the most widely used random graph model, is
used to generate synthetic graphs. Each edge in the graph
is generated independently of existing edges, with an equal
probability of being generated.

Figure 6 shows the running time for updating the between-
ness centrality on synthetic graphs of size 1000, 3000, and
5000, respectively. For each graph, we randomly insert 100
edges and take the average value. QUBE significantly re-
duces the betweenness centrality update time as the pro-
portion decreases. In Figure 6(c), when the proportions are
80, 40, and 10, QUBE enables the original Brandes’ algo-
rithm to perform about 2, 13, and 623 times faster, respec-
tively. These results provide a clear evidence that finding
MUCU dramatically improves the performance of updating
the betweenness centrality. Regardless of the size of a graph,
QUBE makes the original Brandes’ algorithm perform much
faster.

Besides the update time of the betweenness centrality, we
measure the update time of MUCs. Since it is negligible
compared to the overall processing time, we do not explicitly
present the update time of MUCs.

In order to estimate how QUBE performs in real world
graphs, we select various real datasets which are prone to
frequent changes. For each real graph, we extract the maxi-
mally connected subgraph. In cases of directed real graphs,
we convert directed edges into undirected edges. We com-
pare the betweenness centrality update time over 8 different
real datasets. The results are shown in Table 2 and Fig-
ure 7. Table 2 shows the speed-up achieved by QUBE and
the overall statistics of each real dataset. Recall that the
proportion is the percentage of vertices in MUC. The low
proportion means that there exists a small number of ver-
tices whose betweenness centralities can be changed. Speed-
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Figure 6: The betweenness centrality update time on the synthetic data

Algorithm 4: QUBE-BRANDES(MUCU)

input : MUCU - Minimum Union Cycle that an updated
vertices belong to
SGs - A set of disconnected subgraphs connected

by each connection vertices in MUCU

output : C[vi] - Updated Betweenness Centrality Array
1 begin
2 for vs ∈MUCU do
3 S ← empty stack ;
4 P [vi] ← empty list, for all vi ∈MUCU ;
5 σ[vi] := 0, for all vi ∈MUCU ; σ[vs] := 1 ;
6 σt[vi] := 0 for all vi ∈MUCU ; d[vs] := 0 ;

7 d[vi] := -1, for all vi ∈MUCU ; d[vs] := 0 ;
8 Q ← empty queue ;
9 enqueue vs → Q ;

10 while Q not empty do
11 dequeue vi ← Q ;
12 push vi → S ;
13 for each neighbor vn of vi do
14 if d[vn] < 0 then
15 enqueue vn → Q ;
16 d[vn] := d[vi] + 1 ;

17 if d[vn] = d[vi] + 1 then
18 σ[vn] := σ[vn] + σ[vi] ;
19 append vi → P [vn] ;

20 δ[vi] := 0, for all vi ∈MUCU ;
21 while S not empty do
22 pop vn ← S ;
23 if vs, vn are connection vertices and vn �= vs

then
24 ct := |VGs | · |VGn | ;
25 σt[vn] := σt[vn] + ct ;

26 C[vn] := C[vn] + ct ;

27 for vp in P [vn] do

28 δ[vp] := δ[vp] +
σ[vp]

σ[vn]
· (1 + δ[vn]) ;

29 if vs is connection vertex then

30 σt[vp] := σt[vp] + σt[vn] · σ[vp]

σ[vn]
;

31 C[vp] := C[vp] + σt[vn] · σ[vp]

σ[vn]
;

32 if vn �= vs then
33 C[vn] := C[vn] + δ[vn] ;

34 if vs is connection vertex then
35 C[vn] := C[vn] + δ[vn] · |VGs | · 2;

36 for Gi ∈ SGs do
37 if Gi is disconnected then
38 C[vi] := C[vi] + |VGi

|2 −∑n
l=1(|VGl

i
|2) ;

Table 2: The speed-up on real data
Name Type |V| |E| Avg.

Prop.
Speed-
up

Eva[24] Ownership 4457 4562 6.41 2418.17
Erdos02a Collaboration 5534 8472 28.66 39.57
Erdos972a Collaboration 4680 7030 30.00 34.39
Pgp[4] Social 4680 24316 42.14 13.09

Epab Web link 4253 8897 52.25 6.67
Contact c Social 11604 65441 62.60 4.00
Wikivote[19] Trust 7066 100736 67.73 3.00
CAGrQc[19] Collaboration 4158 13422 77.92 2.06

ahttp://vlado.fmf.uni-lj.si/pub/networks/data
bhttp://www.cs.cornell.edu/courses/cs685/2002fa/
chttp://stuff.metafilter.com/infodump/

Eva Erdos02 Erdos972 Pgp Epa Contact Wikivote CAGrQc

QUBE+Brandes 106 12289 8640 270419 34056 1150801 361362 101895

Brandes 256326 486267 297100 3538417 227158 4600805 1082843 210831
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Figure 7: The betweenness centrality update time
on real data

up in Table 2 shows how fast the updatable version of the
Brandes’ algorithm is compared to the original Brandes’ al-
gorithm. Table 2 clearly shows that the performance of the
updatable version of the Brandes’ algorithm increases as the
proportion decreases. Figure 7 shows the average between-
ness centrality update times measured on real graphs. Note
that we use a log scale for the y-axis in Figure 7. To rep-
resent the precise update time, a table is included in Figure
7. QUBE makes the original Brandes’ algorithm perform
about 2 times faster on ‘CAGrQc’ dataset whose proportion
is about 77 and perform about 2418 times faster on ‘Eva’
dataset whose proportion is about 6. When the proportion
is about 30, QUBE makes the original Brandes’ algorithm
perform about 37 times faster and when the proportion is
about 70, QUBE makes the original Brandes’ algorithm per-
form about 3 times faster.
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7. CONCLUSIONS
In this paper, we devise a betweenness centrality update

theorem and propose an efficient algorithm (QUBE) based
on this theorem. QUBE identifies a set of vertices whose
betweenness centralities can be changed. QUBE efficiently
updates the betweenness centralities based on the between-
ness centrality calculated using the vertices in the set only
and the number of vertices not in the set. Any existing be-
tweenness centrality algorithm which does not consider the
graph update can be changed to an efficient updatable be-
tweenness centrality algorithm with an adoption of QUBE.
We implement an updatable version of the Brandes’ algo-
rithm by adopting QUBE. For the synthetic graphs whose
proportions are 10, the Brandes’ algorithm with QUBE is
about 557 times faster compared to the original Brandes’
algorithm. For the real graphs whose proportions are about
30, the Brandes’ algorithm with QUBE performs about 37
times faster than the original Brandes’ algorithm. The per-
formance improvement becomes even larger when the pro-
portion decreases.
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