
Partitioned Multi-Indexing: Bringing Order to Social Search

Bahman Bahmani ∗

Stanford University
Stanford, CA

bahman@stanford.edu

Ashish Goel†
Stanford University

Stanford, CA
ashishg@stanford.edu

ABSTRACT
To answer search queries on a social network rich with user-
generated content, it is desirable to give a higher ranking
to content that is closer to the individual issuing the query.
Queries occur at nodes in the network, documents are also
created by nodes in the same network, and the goal is to find
the document that matches the query and is closest in net-
work distance to the node issuing the query. In this paper,
we present the “Partitioned Multi-Indexing” scheme, which
provides an approximate solution to this problem. With m
links in the network, after an offline Õ(m) pre-processing
time, our scheme allows for social index operations (i.e., so-
cial search queries, as well as insertion and deletion of words
into and from a document at any node), all in time Õ(1).
Further, our scheme can be implemented on open source dis-
tributed streaming systems such as Yahoo! S4 or Twitter’s
Storm so that every social index operation takes Õ(1) pro-
cessing time and network queries in the worst case, and just
two network queries in the common case where the reverse
index corresponding to the query keyword is much smaller
than the memory available at any distributed compute node.

Building on Das Sarma et al.’s approximate distance or-
acle, the worst-case approximation ratio of our scheme is
Õ(1) for undirected networks. Our simulations on the social
network Twitter as well as synthetic networks show that
in practice, the approximation ratio is actually close to 1
for both directed and undirected networks. We believe that
this work is the first demonstration of the feasibility of social
search with real-time text updates at large scales.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; F.1.2 [Computation by Abstract
Devices]: Modes of Computation—Online computation

∗Research supported in part byWilliam R. Hewlett Stanford
Graduate Fellowship
†This research was supported in part by NSF awards
IIS-0904325 and DC-0915040. Part of the research was
also sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement Number
W911NF-09-2-0053. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Partitioned Multi-Indexing, Social Search, Scalable, Real
Time

1. INTRODUCTION
In contrast to traditional search where search ranking is

primarily based on document-based relevance and quality
measures such as tf-idf [17] or PageRank [21], “Social Search”
also takes into account the social graph of the person issuing
the query, normally by giving a higher rank to content gen-
erated or consumed by proximate users in the social graph.
This type of search not only has applications such as name,
entity, or content search on social networks [29], and so-
cial question and answering [13], it is also very effective for
personalization of web search [4, 2]. The rapid rise of user
generated content (on online social networks, blogs, forums,
and social bookmarking or tagging systems) has added to
the importance of social search. This is reflected not only
in the growing literature on the topic [4, 13, 29, 31, 1], but
also in the attempts made by both major and small Internet
companies, such as Google, Microsoft, Twitter, Aardvark,
etc. to develop social search technologies.

With the massive scale of today’s social data, e.g. on on-
line social networks, and noting the fact that social content
is being constantly generated, an ideal social search engine
needs to have the following properties:

• Very high efficiency and speed at query time

• Real-time updatability, to keep up with content being
generated or modified

• Capability to mix social-graph-based personalization
with more traditional (e.g. document-based) relevance
and quality measures

• High scalability

Given the number of users in a typical social network, and
the volume of updates, any solution to the above problem
must be amenable to a distributed computation. In this pa-
per, we will assume that the underlying computational sub-
strate is an Active DHT. A DHT (Distributed Hash Table)
is a distributed (Key, Value) store which allows Lookups, In-
serts, and Deletes on the basis of the“Key”. The term Active
refers to the fact that, in addition to these DHT operations,

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

399

we assume that an arbitrary User Defined Function (UDF)
can be executed on a (Key, Value) pair. The Active DHT
model is broad enough to act as a distributed stream pro-
cessing system and as a continuous version of Map-Reduce.
Yahoo’s S4 [20] and Twitter’s Storm are two examples of
Active DHTs which are now gaining widespread use. We
will implicitly assume that all the (Key, Value) pairs in a
node of the active DHT are stored in main memory; this
is equivalent to assuming that no one (Key, Value) pair is
too large and that the distributed deployment has sufficient
number of nodes.

In this paper, we present the“Partitioned Multi-Indexing”
scheme for indexing graph structured data which as we will
show, when applied to the problem of social search, satisfies
all the above-mentioned properties. At the core, the scheme
is an indexing method which, for any query, allows for very
quickly finding the closest nodes (to the node issuing the
query) in a social graph which answer the query. While our
scheme handles what we call social index operations (search,
content addition, and content deletion) in real-time, it does
not handle social graph updates in real-time; we assume
that the social graph is pre-processed (perhaps daily) in a
separate initialization step.

The paper is organized as follows. First, we present some
background, the formal statement of the problem, an overview
of our scheme, and a summary of our results in the rest of
this section. Section 2 presents the preliminaries necessary
for presenting our main algorithms. In section 3, we present
the basic partitioned multi-indexing scheme, including the
algorithms and space and time complexity analyses. In the
same section, we will also present the extension of the basic
scheme to directed graphs, its integration with document-
based relevance measures, and the distributed implementa-
tion of the scheme. In section 4, we present the results of
our experiments.

1.1 Background
With the rapid rise of social data in recent years, the social

search problem has gained increasingly more attention both
in the academic literature [29, 22, 30, 31, 4, 13, 11], and
in industry. Yahia et al. [30] study the problem of ranking
search results in collaborative tagging networks. Vieira et al.
[29] focus on ranking name search results on social networks.
Horowitz et al. [13] focus on social question and answering.
Carmel et al. [4] consider personalization of search results
based on the user’s social network, show its much higher
quality in comparison with topic-based personalization, and
provide heuristic methods to re-rank the search results based
on the social graph. Similarly, Yin et al. [31] show the
high effectiveness of social search for personalization of web
search.

Shortest path distances have been proposed as the main
proxy for social graph based personalization [29, 26, 30, 22].
Clearly, any social search system based on this proxy needs
a way to compute or approximate shortest path distances,
which has also been an active area of research [32, 28, 24,
10, 9, 5, 8]. Among these, the family of methods known as
“approximate distance oracles” [9, 28, 8, 32] are best suited
for the social search application. The methods in this fam-
ily preprocess the graph such that any subsequent distance
query can be answered very quickly.

To solve the social search problem, even given a fast dis-
tance oracle, one still needs to find the closest nodes to the

querying node which answer the query. The basic method
of using the oracle to find the distances to all the candidates
and then finding the closest ones does not scale to today’s
massive social networks where the number of search result
candidates itself can be very large. The previous works in
the social search literature (e.g., [29, 26, 30, 22]) provide no
additional efficiency compared to this basic scheme.

We introduce a method for indexing graph structured
data, called partitioned multi-indexing, based on the ora-
cle introduced by Das Sarma et al. [8] (that is similar to
Bourgain’s embeddings [3]), which allows for a very efficient
search scheme. Our scheme inherits two parameters k, r
from Das Sarma et al.’s oracle, which, to provide approxi-
mation guarantees, need to be set to r = log2 n, k = Õ(1).

With r = 0, this oracle reduces to the landmark-based
distance approximation [22, 7], and our indexing method re-
duces to an efficient way of finding the search results based
on landmark-based approximate distances. In this case,
there is no theoretical guarantee on the approximation qual-
ity, and our experiments also show that landmark-based ap-
proximate distances perform poorly in social search. Potamias
et al. [22] study a number of heuristics for landmark selec-
tion, and report a centrality-based heuristic to work best
across their experiments. We also implemented this scheme
but did not observe any improvement in search quality, com-
pared to the random landmark selection scheme. With r >
0, the partitioning property that we prove for our scheme
allows for maintaining space and time efficiency while using
whole seed sets instead of single node landmarks to approxi-
mate the distances. This leads to significantly higher quality
search results.

Our method can be also compared to the family of Ap-
proximating and Eliminating Search Algorithms (AESA) for
metric space near neighbor search [23, 18, 25]. The algo-
rithm proposed by Vidal [23] requires quadratic space and
preprocessing time which is clearly infeasible. The meth-
ods proposed by Shapiro [25] and Micó et al. [18] address
this issue; however, in a graph with n nodes, they may need
to compute, at query time, the distance from the querying
node to up toΩ(n) nodes, which is clearly infeasible. Even
without distance computations, they can not provide any
efficiency guarantees. Also, without exact distance compu-
tations, they can not provide any guarantees on the qual-
ity (i.e., approximation factor) of the results they find. Fi-
nally, our scheme can also be considered as a member of
the “distance-based indexing”methods for metric space sim-
ilarity searching. Chávez et al. [6] and Hjaltason et al.
[12] provide great surveys of these methods. To the best of
our knowledge, ours is the only scheme to provide theoreti-
cal guarantees on approximation factor, preprocessing space
and time complexity, and query time complexity, and also
scale up to today’s social networks.

Before presenting an overview of our scheme, we first
present, in the next section, the formal statement of the
problem we study.

1.2 Notations and Problem Statement
We have a (social) graph G = (V,E) with |V | = n, |E| =

m. The nodes of this graph may represent people, docu-
ments, entities, etc., and the edges may represent friend-
ships, page visits, or any other social interactions. For now,
we assume G to be undirected. In section 3.1, we will also
study the case of directed graphs. Also, our scheme works

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

400

in exactly the same way and with exactly the same guar-
antees for graphs with weighted edges. So, for simplicity of
presentation, we will assume in the rest of the paper that
the edges are not weighted.

We also have a corpus C =< Cv >v∈V , where for each
v ∈ V , Cv is the document(s) (e.g. tags, bookmarks, tweets,
etc.) associated with node v. In this paper, we will assume
that Cv is a set of words. Also, even though we start with an
initial corpus, we will allow words to be added to or deleted
from any document over time. This corresponds to, e.g.,
receiving new tweets, bookmarks, or wall posts.

For each word ω, we will denote:

I(ω) = {v ∈ V |ω ∈ Cv}

and let l(ω) = |I(ω)|. Furthermore, we denote:

|C| :=
∑

v∈V

|Cv| =
∑

ω∈∪vCv

l(ω)

We also have an approximate distance oracle, which for
any two nodes u, v ∈ V , outputs d̃(u, v), an approximation of
the shortest path distance d(u, v) between u and v. For now,
we do not restrict the choice of this oracle, but later in the
paper, we will base our algorithms on the oracle introduced
by Das Sarma et al. [8].

We will need to answer search queries of the form (u, ω, J),
where u ∈ V is the node issuing the query, ω is the word
being queried, and J ≥ 0, an integer, is the desired number
of search results for the query. Each search result is a node
v ∈ I(ω), and we would like to find, among all such nodes,
the J nodes having the smallest approximate distances to
u (as measured by d̃(u, ·)), and return them in a ranked
list sorted in the increasing order of approximate distance
to u. We will assume that J ≤ l(ω), as l(ω) is clearly the
maximum possible number of search results for the query.

Having set all the necessary notation, the problem state-
ment is then as follows:
Real-Time Social Search Problem: Preprocess the so-
cial graph G and the corpus C in a space and time efficient
way to construct a data structure that allows for:

1. Answering any social search query very quickly

2. Distributed storage and processing in an Active DHT

3. Very fast incremental updates as soon as words are
added to or deleted from any document

Having presented the formal statement of the basic prob-
lem, we will next present an overview of our solution scheme;
we will consider extensions of our scheme later in the paper.

1.3 Overview of Our Scheme
In this section, we give a high level overview of our scheme,

called partitioned multi-indexing. Our scheme has an offline
phase and a query phase. In the offline phase:

1. We first pick a number of random seed sets S0, . . . , Sh−1

⊆ V . The number of these sets, h, and the cardinality
of each set will be specified later in the paper.

2. ∀u ∈ V, 0 ≤ i < h, we find Li[u], the closest node to
u among all the nodes in Si, and Di[u] = d(u, Li[u]).
This can be accomplished using O(h) calls to a breadth
first search subroutine.

3. ∀ 0 ≤ i < h, x ∈ Si, we construct an inverted index,
Ii,x, over all documents stored at nodes v ∈ V which
are closer to x than to any other node in Si. For
each indexed word ω, the corresponding list of nodes,
Ii,x(ω), will be kept in the increasing order of distances
to x, and these distances will also be stored in this list.

Then, at query time, when a node u issues a query, we use
the indexes Ii,Li[u] (0 ≤ i ≤ h−1), i.e., intuitively speaking,
the closest indices to u, to find the search results. We will see
that since u is closer to Li[u] than to any other node in Si,
and also the nodes in each entry of Ii,Li[u] are sorted in terms
of their distance to Li[u], then at query time, we can find the
search results by sweeping through the beginning nodes in
the index entries being looked up. This will result in a very
fast search algorithm at query time. We will, furthermore,
show that our index allows for very fast incremental updates
upon addition or deletion of words.

Note that, for each 0 ≤ i < h, any node x ∈ Si indexes a
different part of the graph (i.e., the part closer to x than to
any other node in Si), and also, every node u in the graph is
indexed at one (and only one) node of Si, i.e., the one closest
to u. This means that the union of the indexes constructed
at the nodes in each Si (0 ≤ i < h) constitutes a full inverted
index of the graph, partitioned across different nodes of Si.
Thus, in the offline phase, we construct h inverted indexes,
each partitioned across the nodes of one seed set. Hence,
the name partitioned multi-indexing for our scheme.

Quite interestingly, this schemes maps naturally to an Ac-
tive DHT. Consider (for illustration) the common scenario
where the reverse index corresponding to any word has size
much smaller than the amount of main memory of each indi-
vidual node in the Active DHT. Then we can use the query
word w as the key used to store the part of each index Ii,v
which pertains to w. This allows us to perform social in-
dex operations using just two network calls, without any
corresponding increase in the total processing time. This
is important, because small network data transfers such as
the one needed here are often much more expensive than
large network transfers in terms of data rate. This care-
ful mapping of the social search problem onto a practically
feasible distributed computing platform is one of our main
contributions.

1.4 Our Results
We present the partitioned multi-indexing scheme for in-

dexing graph structured data, which not only has strong
theoretical guarantees, but also when applied to the social
search problem, satisfies all the properties mentioned in sec-
tion 1 for an ideal social search engine. Our scheme con-
sists of an offline preprocessing phase and an online query
phase. We show that given a (social) graph G and a cor-
pus C as in section 1.2, the preprocessing phase requires
Õ(m + |C|)1 time and Õ(n + |C|) space. After preprocess-
ing, whenever any node u queries for any word ω, the top J
personalized results can be found in Õ(J) time. Also, in the
distributed setting, the number of network accesses and the
total amount of communication needed to answer the query
are, respectively, 2 and Õ(J).

Also, our index can be very quickly updated whenever a
word is added to or deleted from a document in the corpus.

1The Õ(·) notation hides factors that are poly-logarithmic
in m.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

401

More exactly, updating the index upon each word addition
or deletion can be done in Õ(1) time, and in the distributed
setting, the total number of network accesses and the total
amount of communication required per update are, respec-
tively, 2 and Õ(1).

Superficially, it might seem that this work is incremental
over that of Das Sarma et al. [8]. However, as we mentioned
before, there are many shortest path oracles, and it was not
clear up front which of these, if any, could be extended to so-
cial search, specially with the constraints of distributed im-
plementation, real-time index updates, and mixing in other
relevance features; the novelty of this work lies in identifying
the right oracle and carefully adapting it to obtain each of
the desired properties, with strong theoretical guarantees.

In addition to theoretical bounds, we also perform an em-
pirical study of our scheme, to evaluate both its efficiency
and its quality. We use synthetic data as well as data from
the social network Twitter. On both sets of networks, and
for both evaluation criteria, our scheme performs much bet-
ter than the (already strong) theoretical bounds would sug-
gest. Hence, we believe that our scheme can indeed facilitate
large scale, real-time social search.

2. PRELIMINARIES
As explained in section 1.2, one of the ingredients of the

social search problem is an approximate distance oracle d̃(·, ·).
Given such an oracle, to solve the social search problem, we
still need to very quickly find the nodes answering the query
which have the smallest approximate distances to the query-
ing node. To do so, one can define a basic personalized social
search scheme as follows.
Baseline Social Search Scheme: The scheme is com-
posed of an offline phase and a query phase. At the offline
phase, a single inverted index I is constructed, which maps
each word ω to the list I(ω) of all the nodes v having ω
in their associated document Cv. At query time, receiv-
ing a query (u, ω, J) issued by the node u for the word ω,
one goes through the list at the entry I(ω) of the precom-
puted index, for each node v ∈ I(ω) uses the oracle to com-
pute d̃(u, v), and keeps the top results in a priority queue of
size J . This baseline scheme is clearly inefficient for query
processing; however, it is a useful benchmark to compare
the pre-processing efficiency and the quality of our scheme
against.
Das Sarma et al.’s Distance Oracle: This oracle has
two integer parameters k ≥ 1, 0 ≤ r ≤ log2 n. It first pre-
processes the graph offline. The preprocessing, presented in
Algorithm 1, picks a number, h = k(r + 1), of random sub-
sets Si (0 ≤ i < h) of the graph, and by performing a BFS
from each one, computes, for each node u ∈ V , the closest
node to u in Si, Li[u], as well as Di[u] = d(u, Li[u]). Note
that, since each BFS takes O(m) time (assuming m = Ω (n),
which is the case in all networks of our interest), the time and
space complexity of Algorithm 1 are, respectively, O(hm)
and O(hn).
Afterwards, for any two nodes u, v ∈ V , their approximate

distance is computed as follows:

d̃(u, v) = min{Di[u]+Di[v]| 0 ≤ i < h, Li[u] = Li[v]} (2.1)

In the rest of the paper, we will always denote h = k(r+1).
For this oracle, independent of the choice of parameters k, r,
we clearly have ∀u, v ∈ V : d̃(u, v) ≥ d(u, v). If r = 0, this

Algorithm 1 Distance Sketching Algorithm.

1: Input: Undirected graph G, k ≥ 1, 0 ≤ r ≤ log2 n
2: Let h = k(r + 1)
3: for i = 0 to h− 1 do
4: Sample, uniformly at random, a subset Si ⊆ V of size

|Si| = 2i mod (r+1).
5: Do a BFS from Si, and compute, for all u ∈ V , Li[u] =

argminx∈Si
{d(u, x)}, and Di[u] = d(u, Li[u]).

6: end for
7: ∀u ∈ V , let

E[u] =< (L0[u], D0[u]), . . . , (Lh−1[u], Dh−1[u]) >.

oracle reduces to the landmark-based distance approxima-
tion [22, 14, 29, 27]. Kleinberg et al. [14] prove approxima-
tion guarantees for this case (even with small values of k),
but their result, which assumes the graph to have a bounded
doubling dimension, does not apply to social graphs which
exhibit expander properties. However, increasing the value
of r clearly makes the approximation tighter, and Das Sarma
et al. [8] prove the following theorem:

Theorem 1. For d̃(·, ·) defined in equation 2.1, with r =
'log2 n(and k = Õ(n1/c) (with any c > 1), with high proba-
bility (i.e., probability at least 1− 1/nO(1)), we have for any
two nodes u, v:

d(u, v) ≤ d̃(u, v) ≤ (2c− 1)d(u, v)

Letting c = O(log n), this gives:

Corollary 2. To guarantee an O(log n) approximation
factor for the oracle defined by Algorithm 1 and formula 2.1,
one can choose r = 'log2 n(, and k = Õ(1).

Das Sarma et al. [8] observe that in practice this scheme
(with r, k chosen as in corollary 2) provides much better
approximation factors than is guaranteed in theory. This
means one can expect that ranking the search results based
on this oracle will also result in high quality search results.
Our experiments presented in section 4 verify this.

3. PARTITIONED MULTI-INDEXING
We already presented an overview of our scheme in section

1.3. In this section, we present our scheme, called Parti-
tioned Multi-Indexing, in detail and analyze its algorithms.
Before presenting the scheme, we need a definition:

Definition 3. For any 0 ≤ i < h, node z ∈ Si, and word
ω, define:

Ii,z(ω) := {v ∈ V |ω ∈ Cv, Li[v] = z}

and let li,z(ω) = |Ii,z(ω)|. We will denote

Ii,z(ω) = {xr
i,z(ω)}1≤r≤li,z(ω)

where d(z, x1
i,z(ω)) ≤ d(z, x2

i,z(ω)) ≤ . . . ≤ d(z, x
li,z(ω)
i,z (ω)).

The scheme is composed of an offline phase and a query
phase. The offline phase of our scheme constructs a map
(i.e., an index) PMI which, for any 0 ≤ i < h, node z ∈ Si,
and word ω, such that Ii,z(ω))= ∅, maps (i, z,ω) to the list
of nodes in Ii,z(ω), sorted in the increasing order of distance
to z. This is presented in Algorithm 2. Later in this section,

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

402

we will show that the constructed index will allow for a very
fast query answering algorithm. But, before that, we analyze
the space and time complexities of the offline phase.
Offline Phase Analysis: We analyze the space and time
complexity of Algorithm 2. We start by a small lemma:

Lemma 4. For any 0 ≤ i < h, and word ω, {Ii,z(ω)}z∈Si

partitions I(ω), that is

• ∪z∈SiIi,z(ω) = I(ω)

• ∀ z, z′ ∈ Si, z)= z′ : Ii,z(ω) ∩ Ii,z′(ω) = ∅
Proof. The result follows from the observation that any

node v ∈ I(ω), appears in Ii,Li[v](ω), and in no other Ii,z(ω)
(z ∈ Si).

Using this lemma, we have the following result:

Proposition 5. For Algorithm 2:

• The space complexity is O(h|C|)

• The time complexity is O(h
∑

ω∈∪vCv
l(ω) log l(ω))

Proof. Fix an 0 ≤ i < h. For any node z ∈ Si and word
ω ∈ ∪vCv, the space and time used to construct PMI[i, z,ω]
are, respectively, equal toO(li,z(ω)) andO(li,z(ω) log li,z(ω)).
Hence, by the previous lemma, the total space and time used
to construct all queues PMI[i, z,ω] (∀z ∈ Si, ω ∈ ∪vCv),
are, respectively,

O(
∑

ω∈∪vCv

∑

z∈Si

li,z(ω)) = O(
∑

ω∈∪vCv

l(ω)) = O(|C|)

and

O(
∑

ω∈∪vCv

∑

z∈Si

li,z(ω) log li,z(ω)) = O(
∑

ω∈∪vCv

l(ω) log l(ω))

Then, considering all 0 ≤ i < h proves the proposition.

Choosing the values of r, k as in corollary 2, we get that
both space and time complexities of our indexing scheme are
within Õ(1) factor of the baseline indexing method. Fur-
thermore, we will next show that our index leads to a sig-
nificantly faster search algorithm at query time.

The search algorithm is presented in Algorithm 3. Briefly
speaking, upon receiving a query (u, ω, J), we sweep through
the queues PMI[i, Li[u], ω] (0 ≤ i < h) until we find the
top J results. More elaborately, upon receiving the query,
we initiate a priority queue H, that will keep track of the
(next) top result candidates, as well as h pointers pi (0 ≤
i < h), where pi points to the beginning of the sorted list
PMI[i, Li[u], ω], i.e., the node x1

i,Li[u]
(ω), which we add,

with priority Di[u] + Di[x
1
i,Li[u]

(ω)], to H. Then, we pop

the node with the lowest priority, say x1
i1,Li1

[u](ω), from

H, report it as the top search result, forward pi1 , and add
the node it is now pointing to, i.e., x2

i1,Li1
[u](ω) to H, with

priority Di1 [u] + Di1 [x
2
i1,Li1

[u](ω)]. We then pop the node

with the lowest priority from H, report it as the second top
result (unless it happens to be the same as the first result),
forward the corresponding pointer, and so on. We continue
in this way till we find J results. Next, we analyze this
algorithm.
Query Phase Analysis: We first prove that the search
algorithm 3 actually works correctly. We start with a defi-
nition.

Algorithm 2 Partitioned Multi-Indexing Algorithm.

1: Input: Social graph G, corpus C, and the distance
sketches {E[u]}u∈V

2: Initialize the map PMI: ∀0 ≤ i < h, node z ∈ Si, and
word ω, PMI[i, z,ω] is an empty priority queue.

3: for v ∈ V do
4: for 0 ≤ i < h, ω ∈ Cv do
5: Insert v into PMI[i, Li[v], ω] with priority Di[v].
6: end for
7: end for

Algorithm 3 Partitioned Multi-Index Query Algorithm.

1: Input: Distance sketches {E[u]}u∈V , Partitioned multi-
index PMI, and a query (u, ω, J)

2: Let ∀ 0 ≤ i < h : pi = 1
3: Initialize H to be an empty priority queue.
4: for 0 ≤ i < h do
5: Insert xpi

i,Li[u]
(ω) into H with priority Di[u] +

Di[x
pi
i,Li[u]

(ω)]
6: end for
7: Let j = 1.
8: while (j ≤ J) do
9: Pop the node with the smallest priority from H, and

let s := argmin0≤i<h{Di[u] +Di[x
pi
i,Li[u]

(ω)]}
10: if (∀j′ < j : xps

s,Ls[u]
(ω))= vj′) then

11: vj := xps
s,Ls[u]

(ω)
12: j = j + 1
13: end if
14: ps = ps + 1
15: Insert xps

s,Ls[u]
(ω) into H with priority Ds[u] +

Ds[x
ps
s,Ls[u]

(ω)].
16: end while
17: return {vj}1≤j≤J as the ranked list of search results

Definition 6. For a query (u, ω, J), we say two sets of
ranked results {vj}1≤j≤J and {v′j}1≤j≤J , are equivalent, and

we write {vj}1≤j≤J ∼ {v′j}1≤j≤J , if ∀ 1 ≤ j ≤ J : d̃(u, vj) =

d̃(u, v′j).

Essentially, an equivalent pair of search result sets are
equally good and can not be distinguished, as far as (ap-
proximate) distances to the querying node are concerned.
Now, we prove the correctness of Algorithm 3.

Theorem 7. For a query (u, ω, J), assume {ṽj}1≤j≤J , is
the true ranked list of search results according to d̃(u, ·), and
{vj}1≤j≤J is defined as in Algorithm 3. Then, {vj}1≤j≤J

∼ {ṽj}1≤j≤J .

Proof. We need to prove that ∀ 1 ≤ j ≤ J : d̃(u, vj) =
d̃(u, ṽj). We first prove this for j = 1. Let:

i1 = argmin{Di[u] +Di[ṽ1]| 0 ≤ i < h, Li[u] = Li[ṽ1]}

Then, we have:

d̃(u, ṽ1) = Di1 [u] +Di1 [ṽ1]

≥ Di1 [u] +Di1 [x
1
i1,Li1

[u](ω)]

≥ d̃(u, x1
i1,Li1

[u](ω))

≥ d̃(u, v1) ≥ d̃(u, ṽ1)

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

403

where the first line is by definition of d̃(u, ṽ1), the second
is by definition of x1

i1,Li1
[u](ω), the third is by definition of

d̃(u, x1
i1,Li1

[u](ω)), the fourth is by definition of v1, and the

last is by definition of ṽ1.
Therefore, d̃(u, v1) = d̃(u, ṽ1), that is, v1 indeed has the

smallest approximate distance to u among all the nodes in
I(ω). Now, notice that to find v2, the algorithm is essentially
removing v1 from I(ω), and finding the node having the
smallest distance to u among the rest of the nodes in I(ω),
in exactly the same way as it found v1. A simple induction
then proves the result for general 1 ≤ j ≤ J .

Hence, Algorithm 3 outputs a correct ranking. Next, we
analyze the time complexity of this algorithm.

Proposition 8. The worst case running time of Algo-
rithm 3 is O(Jh(log l(ω) + log h)).

Proof. Reading each node from PMI takes O(log l(ω))
time. Also, adding a node to or popping a node fromH takes
O(log h) time. During the run of algorithm, each search
result is read from PMI, and added to or popped from H
at most h times. Also, the total number of nodes that get
read from PMI and added to H but do not show up in
the search results is at most h. Hence, the total running
time of the algorithm is at most O(Jh(log l(ω) + log h)) +
O(h(log l(ω) + log h)) = O(Jh(log l(ω) + log h)).

Remark 9. Choosing r, k as in corollary 2, we get that
the total query time is just Õ(J). Using the baseline scheme,
presented in section 2, with the same oracle, the query time,
as analyzed in section 2, would be Õ(l(ω)). In today’s huge
social networks, one can easily expect l(ω), i.e. the number
of nodes the word ω appears on, to be much (even orders of
magnitude) larger than J . For instance, in a name search
application on a huge social network, there may be tens or
hundreds of thousands of people sharing a same name, but
the querying node may be interested only in at most the top
10 − 20 results. Hence, our scheme is expected to be signif-
icantly faster at query time in practice. Our experimental
results, presented later in the paper, verify this as well.

Remark 10. The same analysis as in proposition 8 shows
that if we have already found the first J results, then by keep-
ing the values of the pointers in the algorithm, finding the
next J ′ results will take only O(J ′h(log l(ω) + log h)). This
feature can be useful in practice. For instance, the search
engine can first generate the results to be presented on the
first results page, and then only if the user decides to proceed
to the next page, it can, at that time, quickly compute the
results to be presented in the next page, and so on.

Having analyzed the query phase of our scheme, we will
next show that our indexing scheme also allows for very fast
incremental updates upon addition or deletion of words to
the documents.
Incremental Updates: So far we focused on the case
where the documents were static, that is, the sets Cv did
not change over time. Here, we show that any changes to
these sets can be efficiently reflected in our index. This is
more formally stated in the following proposition:

Proposition 11. If a word ω is added to (or removed
from) Cv, for some v ∈ V , the index can be updated in
O(h log l(ω)) time to incorporate this insertion (or deletion).

Proof. To update the index, we only need to update the
queues PMI[i, Li[v], ω] (0 ≤ i < h), by adding (or remov-
ing) v with priorityDi[v]. Updating the queue PMI[i, Li[v],
ω] takes O(log li,Li[v](ω)) = O(log l(ω)) time. Hence, the to-
tal update time is O(h log l(ω)).

Choosing the parameters r, k as in corollary 2, we see that
the update time is just Õ(1). Hence, our index can be up-
dated very quickly as soon as any of the documents in the
network gets modified. This wraps up the analysis of our
scheme. We will now discuss several interesting extensions.

3.1 Extensions
Directed Graphs: So far, we assumed the social graph G
to be undirected. However, our scheme can be extended to
directed graphs, though with no theoretical approximation
factor guarantees. Our experiments show our scheme also
works very well for directed graphs.

The sketching algorithm, presented in Algorithm 1, gets
modified such that instead of computing Li[u], Di[u] using
a single BFS, at line 5, we compute Loi [u], D

o
i [u] via a BFS

along incoming edges, and Lii[u], D
i
i[u] via a BFS along out-

going edges. We can then use the quantities Lii[u], D
i
i[u] at

indexing time and the quantities Loi [u], D
o
i [u] at query time

to obtain a heuristic solution for directed graphs. We omit
the details of the implementation from this version; simula-
tion results show that this heuristic works well in practice.

Combining Personalization with Other Relevance
Measures: So far, we focused on ranking the search results
only based on their distance to the querying node. However,
in practice a combination of distance and other relevance
measures is used to rank the results. These relevance mea-
sures can be text-based scores such as tf-idf [17], link-based
authority scores such as PageRank [21], or, in a real-time
setting (where more recent results are of more interest) the
recency of the document. Here, we show how our scheme
can be extended to allow for elegantly combining all such
measures with the distance-based personalization, without
any change in space or time efficiency.

Assume that associated with each v ∈ V and ω ∈ Cv

is a score αv(ω) (a real number), and hence the following
combined score is used to rank search results:

su,ω(v) = λd(u, v) + (1− λ)αv(ω)

For a query (u, ω, J), we need to find the J nodes v ∈ I(ω)
with the smallest values of su,ω(v). Here, λ ∈ [0, 1] is a
weight trading off between distance-based personalization
and document-based scores, and in practice is learned from
the data to optimize the search quality. Replacing the exact
distance with its approximation, the following approximate
scores can be used:

s̃u,ω(v) = λd̃(u, v) + (1− λ)αv(ω)

However, from equation 2.1 we have:

s̃u,ω(v) = min{λDi[u] + (λDi[v] + (1− λ)αv(ω))}

Where, as before, min is over {0 ≤ i < h|Li[u] = Li[v]}.
To rank based on this score, we modify the indexing Algo-
rithm 2 such that at line 5, v is inserted into PMI[i, Li[v], ω]
with priority

πv(ω) = λDi[v] + (1− λ)αv(ω)

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

404

Also, we modify the search Algorithm 3 such that the
priority of each xpi

i,Li[u]
(ω) in H is

λDi[u] + πv(ω) = λDi[u] + λDi[v] + (1− λ)αv(ω)

Then, a similar analysis as in theorem 7 shows that these
modified algorithms, rank the results based on s̃u,ω(v). The
space and time complexities of these algorithms are also ex-
actly the same as Algorithms 2, 3.

Example 12. The scores αv(ω) can represent a whole
range of document-based scores. Here, we consider the real-
time search scenario, where associated with each node v ∈ V
and word ω ∈ Cv is a timestamp tv(ω) representing the time
instance at which the word ω was added to Cv, and upon re-
ceiving a query (u, ω, J) at time t, we would like to not only
personalize the results but also bias the results towards the
more recent documents.

At the time of query, the recency of ω on v ∈ I(ω), is
t−tv(ω) (note that tv(ω) ≤ t, as ω is already in Cv when the
query arrives). Hence, we would like to rank the results based
on λd(u, v) + (1 − λ)(t − tv(ω)). Since t is independent of
v, ranking based on this score is exactly the same as ranking
based on λd(u, v)+ (1−λ)(−tv(ω)). Hence, letting αv(ω) =
−tv(ω), we can use the framework explained above to do
the search and ranking. This together with the possibility
of quick incremental index updates explained earlier in the
paper (which lets each new word ω ∈ Cv to be indexed as
soon as it arrives, i.e., at time tv(ω)), allows for a real-time
personalized social search system.

Distributed Implementation: In order to scale up our
scheme to today’s huge social networks, one would want
to implement it in a distributed fashion. Since finding the
sketches, using Algorithm 1, only requires a number of BFS’s,
it can easily adopt a distributed implementation, e.g., using
MapReduce [16]. Hence, we focus on implementing the rest
of the scheme in a distributed fashion, on an Active DHT.
Note that the offline index construction can be regarded as a
sequence of word additions. So, if real-time updates can be
done efficiently, the offline phase can be done efficiently as
well. Hence, we will first focus on efficient distributed imple-
mentation of query and update algorithms. Later, we will
show that the offline phase can be done even more efficiently
than through a sequence of real-time updates.

For a distributed implementation of our scheme, we need
to shard both the distance sketches and the index entries
across a number of machines in an Active DHT, using appro-
priate (Key, Value) pairs. As pointed out above, we would
like to shard in a way that not only the loads (in terms of
space) on different machines are balanced, but also answer-
ing queries or updating the index can be done with little
network usage, i.e., both few network accesses and small
amount of communications. We will show that sharding the
distance sketch using the id of the querying social graph node
as the Key, and the inverted index using the word ω as the
Key, satisfies all these properties, and results in surprising
efficiency bounds.

To formalize this, we consider the following architecture:
we have one master machine, which interfaces the outside
world, and a set of M machines, labeled 0, 1, . . . ,M − 1,
which can be used to distribute the data structures. We will

use two hash functions f : V → [M], g : ∪vCv → [M] (where
[M] = {0, 1, . . . ,M − 1}) to distribute our data structures
as follows:

• The entry E[u] of the distance sketch is kept on ma-
chine f(u)

• For any ω ∈ ∪vCv, all the entries PMI[i, x,ω] of the
index, where 0 ≤ i < h, x ∈ Si, are kept on machine
g(ω)

We assume f, g to be random hash functions. We will
further assume that the reverse index corresponding to any
word ω is much smaller than the amount of memory at any
compute node2. Then, a simple Chernoff bound [19] shows
that, with high probability, the load (i.e., space used) on

each machine isΘ(h(n+|C|)
M). Hence, the load is very well

balanced across different machines. Also, note that choosing
r, k as in corollary 2, this is just Θ̃((n + |C|)/M), which is
close to what would be needed to only distribute the corpus
across the machines. Next, we show that answering queries
and updating the index can be done with little network us-
age.

At query time, when the master machine receives a query
(u, ω, J), it will first retrieve E[u] by accessing the machine
f(u) once. Note that, by Algorithm 3, the top J results for
the query are definitely in the set

{xj
i,Li[u]

(ω)| 0 ≤ i ≤ h− 1, 1 ≤ j ≤ J}

Hence, after retrieving E[u], the master machine can re-
trieve the above set by sending the query along with {Li[u]|
0 ≤ i ≤ h − 1} to machine g(ω). Having retrieved this
set, the master machine can then just run Algorithm 3 to
find and rank the search results. Hence, the total number
of network accesses and the total amount of communication
needed to answer the query are, respectively, 2 and O(Jh).
Note that choosing r, k as in corollary 2 bounds the total
amount of communication at Õ(J), which is only slightly
more than what would be needed to just communicate the
search results (i.e. Ω(J))! This implementation can be done
on top of a Distributed Hash Table such as memcached.
Further improvements can be obtained by assuming that
the DHT is Active; in this case, the set E[u] can be directly
communicated to the compute node g(ω) which will perform
the search operation, resulting in a total network transfer of
O(J + h).

Next, we consider the required network usage to update
the index. If a word ω is added to or deleted from the
document at node u ∈ V , i.e. Cu, then to update the index,
first E[u] is retrieved from machine f(u), and then u and ω
are sent along with E[u] to machine g(ω), which can then
insert or delete u into or from all the queues PMI[i, Li[u], ω]
(0 ≤ i < h). Hence, the total number of network accesses
and the total amount of communication required to update
the index are, respectively, 2 and O(h). Choosing r, k as in
corollary 2 then bounds the total amount of communication
at Õ(1).

As mentioned above, offline index construction can be re-
garded as a sequence of index updates. Hence, directly using
the above update scheme, the offline phase can be done with

2This assumption is only for a clean illustrative statement
of the results; we can fan out the index for ω into multiple
nodes at the expense of an extra network call if needed.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

405

a total of 2|C| network accesses, and O(h|C|) communica-
tions. However, by accessing the sketch of each node only
once, the offline phase can be done even more efficiently: for
each node u, we retrieve E[u] by communicating with ma-
chine f(u) once, and then for each word ω ∈ Cu, we send
u,ω , and E[u] to machine g(ω) to be indexed. Hence, the
offline phase can be done with only n+ |C| network accesses
and O(h|C|) total communications, which reduces to Õ(|C|)
communications, by choosing r, k as in corollary 2.

4. EXPERIMENTS
We experimented with our scheme to study its quality

and efficiency in practice, specially in comparison with the
benchmarks from the related literature. In this section, we
present the algorithms, datasets, and the methodology used
in our experiments, as well as their results.

4.1 Algorithms
As explained in section 2, landmark-based distance ap-

proximation, together with the baseline search scheme, has
been proposed as a solution to the social search problem,
in multiple previous works in the literature [22, 29]. Thus,
in our experiments, we compared the quality of our scheme
with the landmark-based scheme. The simplest way of se-
lecting landmarks is by picking them randomly from the
graph. However, Potamias et al. [22] study different land-
mark selection methods, show that they influence the qual-
ity of the approximations, and state that a centrality-based
method, in which the nodes with the highest values of close-
ness centrality (i.e., smallest average distance to all nodes)
are selected as landmarks, works best across all their ex-
periments. Therefore, in addition to the random landmark
selection method, we also implemented this centrality-based
method, and used both as benchmarks to compare the qual-
ity of our scheme against.

For efficiency, we compared our scheme with that of the
baseline scheme (explained in section 2) using the same or-
acle as our scheme. This comparison will show the effect
of our partitioned multi-index structure on the efficiency of
finding and ranking the search results (as compared to us-
ing a simple inverted index). We used r = 'log2 n(for our
scheme in all the experiments.

4.2 Datasets
We experimented with four networks, two undirected and

two directed, two synthetic and two from real-world data.
Table 1 summarizes the networks that we used.

Undirected Directed
Synthetic Grid ForestFire
Real-world Undirected Twitter Directed Twitter

Table 1: Networks used in the experiments.

We now explain each of these networks. The grid network
we constructed was an 11-dimensional grid with side length
3. Associated with each node was a single word chosen uni-
formly at random from a dictionary of 1000 words. This
network had 411 > 4M nodes and around 70M edges.
The ForestFire network, which had more than 1M nodes

and around 2.5M edges, was generated using the ForestFire
model [15], known to model many of the features of real
world networks. Similar to the grid network, we associated

each node with a single word chosen uniformly at random
from a dictionary of 1000 words.

The undirected Twitter network was a sample of more
than 4M nodes from the social network Twitter, and all the
reciprocated edges between them. The resulting sampled
network had more than 100M edges. We associated with
each node the words in the bio and the screen name of the
corresponding user.

The directed Twitter network was the giant connected
component of a sample of the social network Twitter. The
resulting graph had over 4M nodes and more than 380M
edges. Similar to the undirected case, we associated with
each node the words in the bio and the screen name of the
corresponding user.

The samples of the twitter graph were not chosen uni-
formly at random, and the two samples are not the same,
since a random sample would allow inference about the den-
sity of the Twitter network which Twitter considers confi-
dential. Also, as explained below, our experiments method-
ology has the interesting feature that the evaluations are
completely automated and do not require any human in-
spection of the search results, adding an additional layer of
privacy and confidentiality.

4.3 Experiments Methodology and Results

We performed experiments studying the quality and the
efficiency of our scheme. Here, we present the methodology
used in these experiments as well as their results. Before
performing the experiments with each of our networks, we
preprocessed the network, and constructed, for each node v,
a subset C′

v ⊆ Cv of its associated words. For our synthetic
networks (having only a single word associated with each
node), we simply let C′

v = Cv. For the real-world networks
(from Twitter), after computing, for each word ω, the fre-
quency (i.e., the fraction) of the nodes v having ω ∈ Cv,
we removed the 100 words with the largest frequencies, as
stop words. Then, for each node v, we let C′

v to be the
set composed of the following three words: the lowest fre-
quency non-stop word on v, the highest frequency non-stop
word on v, and a random non-stop word on v. The sets
C′

v were going to later get used for constructing queries (as
we will explain below), so we wanted to make sure, by in-
cluding representatives from low-frequency, high-frequency,
and randomly selected non-stop words, that our constructed
queries would cover a wide range of possibilities.

After this preprocessing, for each experiment, we gener-
ated a number of queries. Each of these queries, q, was
constructed as follows: We first picked a length lq ∈ {2, 3},
and a random node uq from the graph. Then, we performed
a random walk starting at uq for lq steps, to arrive at a node
vq, and then we picked a random word ωq from C′

vq . Then,
a query for word ωq was issued by node uq. In each experi-
ment, for half the queries, we used lq = 2, and for the other
half, we used lq = 3. Each of these queries, in accordance
with the random walk based intuition behind PageRank [21],
simulates the behavior of a random social network user start-
ing at his own page, browsing through random links for a
few steps, finding an interesting document, and then later
searching for it in the hopes of finding the same page or even
closer pages (in terms of social graph proximity) related to
that document.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

406

Having explained the query generation method used in all
our experiments, we now explain, in further detail, each of
our experiments as well as their results.
Quality Experiments: For each network, we generated a
set Q of 1000 queries, as explained above, and found the top
J results, with J = 1, 5, 10, using our scheme, random land-
mark scheme, and central landmark scheme. For our scheme,
we chose, as mentioned earlier in this section, r = 'log2 n(,
and let k to take all the values from 1 to 10. For each
k, when comparing with the landmark-based schemes, we
selected k(r + 1) landmarks, so they had the same prepro-
cessing time and space as our scheme (ignoring the load of
centrality computations for the central landmarks scheme).

For each scheme, finding the top J search results {vqj }1≤j≤J

for each query q, we considered the set of failed queries to
be:

F = {q ∈ Q| d(uq, vqj) > d(uq, vq) ∀ 1 ≤ j ≤ J}

Then, denoting, for each q ∈ Q−F , the depth of the first
good result as:

jq = min{1 ≤ j ≤ J | d(uq, vqj) ≤ d(uq, vq)}

we computed the fraction of failed queries (FFQ) and the
average depth of the first good result (ADFGR) as our qual-
ity measures:

FFQ =
|F |
|Q| , ADFGR =

∑
q∈Q−F jq

|Q− F |

Clearly, one would ideally like to have:

FFQ = 0, ADFGR = 1

in which case, hundred percent of the queries get a good
answer in the very first search result. Our experiments show
that our scheme actually gets very close to these ideals.
The fraction of failed queries in our experiments with our
scheme and the landmark-based schemes, for J ∈ {1, 5, 10},
is presented in Figures 4.1, 4.2. These figures show that
our scheme consistently outperforms both landmark-based
schemes across all the networks, and for all the values of
J . Also, we note that selecting the landmarks using central-
ities did not help the landmark-based scheme, and often even
lowered its quality (as measured by FFQ). Furthermore, we
note that increasing the number of seed sets (by increasing
k) consistently improved the quality of our scheme, while in-
creasing the number of landmarks usually did not help much
with the quality of the landmark-based schemes.

The results for ADFGR are also similar for different values
of J , and hence we present them only for J = 10 in Figure
4.3. We see that across all networks, our scheme performs
better than the landmark-based schemes. This, together
with the results for FFQ, shows that not only our scheme
finds good answers to queries much more frequently, but
also it does a much better job in ranking those good results
higher in the list of results.
Efficiency Experiments: We compared the efficiency of
our scheme against the benchmark provided by the baseline
scheme explained in section 2. To do so, we generated a set
of 20000 queries as explained earlier in this section. Let-
ting r = 'log2 n(, we generated the seed sets defining the
approximate distance oracle. Since the efficiencies of both
our scheme and the baseline scheme are nearly linear in k,
we used k = 1 in our efficiency experiments. Then, for our

0 5 10
0

0.2

0.4

0.6

0.8

1

k

F
ra

ct
io

n
 o

f
F

a
ile

d
 Q

u
e
ri
e
s

Grid Network,J=1

0 5 10
0

0.2

0.4

0.6

0.8

1

k

F
ra

ct
io

n
 o

f
F

a
ile

d
 Q

u
e
ri
e
s

Grid Network,J=5

0 5 10
0

0.2

0.4

0.6

0.8

1

k

F
ra

ct
io

n
 o

f
F

a
ile

d
 Q

u
e
ri
e
s

Grid Network,J=10

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

F
ra

ct
io

n
 o

f
F

a
ile

d
 Q

u
e
ri
e
s

Twitter Network,J=1

0 5 10
0

0.05

0.1

0.15

0.2

0.25

k

F
ra

ct
io

n
 o

f
F

a
ile

d
 Q

u
e
ri
e
s

Twitter Network,J=5

0 5 10
0

0.05

0.1

0.15

0.2

k

F
ra

ct
io

n
 o

f
F

a
ile

d
 Q

u
e
ri
e
s

Twitter Network,J=10

Our scheme
Random landmarks
Central landmarks

Figure 4.1: Fraction of failed queries for undirected
networks

scheme, we constructed the corresponding partitioned multi-
index, and for the baseline scheme we constructed a simple
inverted index of the whole network. Finally, using the con-
structed indices, we found the top 10 results for each query
by each scheme.

As efficiency measures, we measured the total preprocess-
ing (sketching plus indexing) time, as well as the total query
time (over 20000 queries) for each scheme. The results are
presented in Tables 2, 3. As can be observed from these
tables, even though the baseline scheme takes, of course,
less preprocessing time, our scheme is still very efficient at
preprocessing time. Note that unlike query time which, in
practice, has a harsh deadline of few milliseconds, offline
preprocessing time is much more flexible.

The real strength of our scheme is then evident from the
query time results (Table 3), where our scheme is signifi-
cantly (i.e., depending on the network, 20 to 60 times) more
efficient than the baseline scheme, and is insensitive to the
size of the network, as predicted by our theoretical analyses.

Our schme Baseline
Grid Network 58 18

Undirected Twitter Network 930 71
ForestFire Network 74 5

Directed Twitter Network 1384 163

Table 2: Total preprocessing time (sec).

5. REFERENCES
[1] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing

web search using social annotations. In WWW ’07, pages
501–510.

[2] C. Böhm, E. Kny, B. Emde, Z. Abedjan, and F. Naumann.
Sprint: ranking search results by paths. In EDBT/ICDT ’11,
pages 546–549.

[3] J. Bourgain. The metrical interpretation of superreflexivity in
banach spaces. Israel J. of Mathematics, 56(2):222–230, 1986.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

407

0 5 10
0

0.2

0.4

0.6

0.8

1

k

F
ra

ct
io

n
of

 F
ai

le
d

Q
ue

rie
s

ForestFire Network,J=1

0 5 10
0

0.2

0.4

0.6

0.8

1

k

F
ra

ct
io

n
of

 F
ai

le
d

Q
ue

rie
s

ForestFire Network,J=5

0 5 10
0

0.2

0.4

0.6

0.8

1

k

F
ra

ct
io

n
of

 F
ai

le
d

Q
ue

rie
s

ForestFire Network,J=10

0 5 10
0

0.05

0.1

0.15

0.2

0.25

k

F
ra

ct
io

n
of

 F
ai

le
d

Q
ue

rie
s

Twitter Network,J=1

0 5 10
0.02

0.04

0.06

0.08

0.1

0.12

k

F
ra

ct
io

n
of

 F
ai

le
d

Q
ue

rie
s

Twitter Network,J=5

0 5 10
0

0.02

0.04

0.06

0.08

0.1

k

F
ra

ct
io

n
of

 F
ai

le
d

Q
ue

rie
s

Twitter Network,J=10

Our scheme
Random landmarks
Central landmarks

Figure 4.2: Fraction of failed queries for directed
networks

Our schme Baseline
Grid Network 2 39

Undirected Twitter Network 1 61
ForestFire Network 2 44

Directed Twitter Network 2 63

Table 3: Total query time (sec) over 20000 queries.

[4] D. Carmel, N. Zwerdling, I. Guy, S. Ofek-Koifman, N. Har’el,
I. Ronen, E. Uziel, S. Yogev, and S. Chernov. Personalized
social search based on the user’s social network. In CIKM ’09,
pages 1227–1236.

[5] T. M. Chan. All-pairs shortest paths for unweighted undirected
graphs in o(mn) time. In SODA ’06, pages 514–523.

[6] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúın.
Searching in metric spaces. ACM Comput. Surv., 33:273–321,
September 2001.

[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability
and distance queries via 2-hop labels. In SODA ’02, pages
937–946.

[8] A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A
sketch-based distance oracle for web-scale graphs. In WSDM
’10, pages 401–410.

[9] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest
paths. SIAM J. Comput., 29:1740–1759, March 2000.

[10] A. V. Goldberg and C. Harrelson. Computing the shortest
path: A search meets graph theory. In SODA ’05, pages
156–165.

[11] L. Gou, X. L. Zhang, H.-H. Chen, J.-H. Kim, and C. L. Giles.
Social network document ranking. JCDL ’10, pages 313–322.

[12] G. R. Hjaltason and H. Samet. Index-driven similarity search
in metric spaces (survey article). ACM Trans. Database Syst.,
28:517–580.

[13] D. Horowitz and S. D. Kamvar. The anatomy of a large-scale
social search engine. In WWW ’10, pages 431–440.

[14] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and
embedding using small sets of beacons. J. ACM, 56:32:1–32:37,
September 2009.

[15] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible
explanations. In KDD ’05, pages 177–187.

0 2 4 6 8 10
1

2

3

4

5

6

k

A
ve

ra
ge

 D
ep

th

Grid Network

0 2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

k

A
ve

ra
ge

 D
ep

th

Undirected Twitter Network

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

k

A
ve

ra
ge

 D
ep

th

ForestFire Network

0 2 4 6 8 10
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

k

A
ve

ra
ge

 D
ep

th

Directed Twitter Network

Our scheme
Random landmarks
Central landmarks

Figure 4.3: Average depth of the first good result

[16] J. Lin and C. Dyer. Data-intensive text processing with
mapreduce, Morgan and Claypool, 2010.

[17] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[18] M. L. Micó, J. Oncina, and E. Vidal. A new version of the
nearest-neighbour approximating and eliminating search
algorithm (aesa) with linear preprocessing time and memory
requirements. Pattern Recogn. Lett., 15:9–17, January.

[19] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge University Press, 1995.

[20] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. Proceedings of the
International Conference on Data Mining Workshops, pages
170–177, 2010.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[22] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast
shortest path distance estimation in large networks. In CIKM
’09, pages 867–876.

[23] E. V. Ruiz. An algorithm for finding nearest neighbours in
(approximately) constant average time. Pattern Recogn. Lett.,
4:145–157, July 1986.

[24] R. Seidel. On the all-pairs-shortest-path problem. In STOC
’92, pages 745–749.

[25] M. Shapiro. The choice of reference points in best-match file
searching. Commun. ACM, 20:339–343, May 1977.

[26] P. Singla and M. Richardson. Yes, there is a correlation: - from
social networks to personal behavior on the web. In WWW
’08, pages 655–664.

[27] L. Tang and M. Crovella. Virtual landmarks for the internet.
In IMC ’03, pages 143–152.

[28] M. Thorup and U. Zwick. Approximate distance oracles. In
STOC ’01, pages 183–192.

[29] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher,
D. d. C. Reis, and B. Ribeiro-Neto. Efficient search ranking in
social networks. In CIKM ’07, pages 563–572.

[30] S. A. Yahia, M. Benedikt, L. V. S. Lakshmanan, and
J. Stoyanovich. Efficient network aware search in collaborative
tagging sites. Proc. VLDB Endow., 1:710–721.

[31] P. Yin, W.-C. Lee, and K. C. Lee. On top-k social web search.
In CIKM ’10, pages 1313–1316.

[32] U. Zwick. Exact and approximate distances in graphs - a
survey. In ESA ’01, pages 33–48.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

408

