
Unsupervised Extraction of Template Structure in Web
Search Queries

Sandeep Pandey
Yahoo! Research

Sunnyvale, CA 94089
spandey@yahoo-inc.com

Kunal Punera
RelateIQ

Mountain View, CA 94041
kunal.punera@utexas.edu

ABSTRACT
Web search queries are an encoding of the user’s search intent and
extracting structured information from them can facilitate central
search engine operations like improving the ranking of search re-
sults and advertisements. Not surprisingly, this area has attracted
a lot of attention in the research community in the last few years.
The problem is, however, made challenging by the fact that search
queries tend to be extremely succinct; a condensation of user search
needs to the bare-minimum set of keywords. In this paper we con-
sider the problem of extracting, with no manual intervention, the
hidden structure behind the observed search queries in a domain:
the origins of the constituent keywords as well as the manner the in-
dividual keywords are assembled together. We formalize important
properties of the problem and then give a principled solution based
on generative models that satisfies these properties. Using manually
labeled data we show that the query templates extracted by our so-
lution are superior to those discovered by strong baseline methods.

The query templates extracted by our approach have potential
uses in many search engine tasks; query answering, advertisement
matching and targeting, to name a few. In this paper we study
one such task, estimating Query-Advertisability, and empirically
demonstrate that using extracted template information can improve
performance over and above the current state-of-the-art.

Categories and Subject Descriptors:
H.3.3[Information Search and Retrieval]: Search process

General Terms: Algorithms, Experimentation

Keywords: query templates, intent analysis, graphical models

1. INTRODUCTION
The World Wide Web has grown in size exponentially for many

years, and this has been accompanied by search engines becom-
ing the preferred way that users find and access information online.
Hundreds of millions of queries are issued to the major search en-
gines everyday, almost all of them in the form of “keywords”. Over
years of usage, the keyword-search functionality has become the
standard convention expected by users and supported by all ma-
jor search engines. This has resulted in users becoming adept at
reducing their search needs specification to the bare minimum set
of keywords needed to help the search engine find relevant results.
There have been some attempts amongst search engine practition-
ers to induce users to provide queries in natural text, most notably
by Powerset [2], but by and large all search engines expect users to
express their search need via a small set of keywords.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

Given these state of affairs, there has been a considerable amount
of work on extracting as much information as possible from user
queries in order to determine their intent [7, 9, 22, 29]. Once this
intent is extracted it can be used to provide relevant results improv-
ing the search experience [4], to detect whether a query has a com-
mercial intent [22], to select a useful set of advertisements [8], and
even to learn from the user’s interaction with the search engine [24].
Challenges in extracting the intent information from queries arise
from scalability issues since any potential solution must scale to
hundreds of millions of queries a day, as well as instrumentation
issues since the only user actions search engines observe are user
clicks [16, 24]. However, the main difficulty arises from the brevity,
and associated ambiguity, of the keywords in the query. Keywords
can sometimes be ambiguous when considered without the surround-
ing context; as in the oft-cited example of the word “jaguar”, which
can denote the car as well as the animal. On the other hand, consid-
ering all keywords in a query together to maintain the context can
result in sparsity issues; for example, determining the characteris-
tics (e.g., advertisement click-through-rate) for tail queries such as
“jaguar xj12 95 6.0l engine mount” is largely infeasible given the
rarity of the query [22].

In this paper we seek to solve these issues by enriching search
queries with information about the hidden structure underlying them.
In particular, our goal is to develop methods that can automatically
determine that the tail query “jaguar xj 12 95 6.0l engine mount”
can be described using the <Brand,Model,Year,Part> pattern. We
refer to such patterns as query templates and their constituents, such
as Brand and Model, as attributes. Such an enrichment can help in
inferring and catering to the user intent behind the query. For ex-
ample, we can provide custom search experiences for certain tem-
plates, such as returning, on the search results page, the availabil-
ity and prices for vehicles queried via the <Brand,Model,Year>
query template. Moreover, these enrichments can help us in dealing
with data-sparsity by learning query characteristics (such as click-
through-rates, search difficulty) at the template level instead of the
individual query level. In fact, in this paper we demonstrate that
using query templates can improve performance over the state-of-
the-art method for estimating Query-Advertisability.

Many past works have proposed methods to extract information
in web search queries. Some of these analyze queries to obtain seg-
mentations [5, 19], while others extract named entities from queries [15,
23, 20]. All these approaches require either direct supervision of
the tasks, such as manually labeled seed data, or use ancillary infor-
mation such web search click-through data, both of which might
be expensive or difficult to obtain. Some recent works, such as
Agarwal et al. [3] and Sarkas et al. [25] focus on detecting tem-
plates in queries, while Szpektor et al. [27] use detected templates
for improving query recommendations. However, these works as-

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

409

sume that the attribute-set as well as the associated vocabularies are
given as inputs in form of database relations or entity hierarchies.
Given that search engines field queries on a wide array of domains
(with user interests following a long-tail [11]) and the terminology
used in these queries is constantly in flux (eg., new movies are re-
leased every week), it would be prohibitively expensive to create
and maintain these attributes and their vocabularies. Hence, in this
work we consider the more realistic setting of extracting templates
while constructing attributes and their vocabularies at the same time,
without requiring any editorial/manual intervention.

At its very core this problem can be looked at as one of grouping
keywords into attributes, and hence text-mining algorithms such as
Spherical k-Means and LDA can be used [6, 10]. While these ap-
proaches are promising, they are not designed to take into account
constraints/properties specific to how users construct queries. For
example, for any given domain, users are known to employ only a
few configurations of attributes as query templates [3], whereas both
these methods allow queries to be generated from arbitrary combi-
nations of attributes. Our proposed approach uses this knowledge to
reduce the search space of attribute-word vocabularies and template-
attribute configurations. In Section 3 we discuss this and other im-
portant properties of the problem and how they are incorporated in
our model. While this adds significant complexity to the model-
ing process, we give a procedure to estimate the parameters of the
model. In Section 5 we empirically demonstrate that, without any
supervision, manual or external (eg. click-through data), our ap-
proach is able to extract meaningful templates and attributes from
short keyword queries.

OUR CONTRIBUTIONS.
1) We formulate the problem of simultaneously extracting the tem-
plates in queries as well as learning the attributes and their vocabu-
laries. As far as we know this is the first work to tackle this problem
without requiring any seed input, external data (eg. click-through
data), or manual supervision.
2) We describe various characteristics of the way that keyword search
queries are formulated by users. We then give a generative model
for queries that takes these properties into account.
3) We give a procedure based on Gibbs sampling to automatically
infer the query templates and attributes in our model from observed
search queries.
4) In our empirical analysis, we use labeled ground truth to show
that our approach finds better query templates and attributes than
two state-of-the-art approaches based on LDA and k-Means. To
ensure representative and robust results we repeat our experiments
on real-world queries from three different domains.
5) In order to showcase the usefulness of the query templates de-
tected by our approach we consider the problem of predicting the
Advertisability of tail queries. Our experiments demonstrate that
using automatically inferred query templates can significantly im-
prove upon the state-of-the-art [22].

ORGANIZATION. In the next section we present our formulation
of the problem of extracting templates and attributes from observed
web search query data. Our proposed solution for this problem is
presented in Section 3. We postpone a detailed discussion of re-
lated work to Section 4, where we can better contrast our proposed
approach to it. In that section we also describe two existing ap-
proaches that can be adapted to extract query templates; these serve
as strong baselines in the empirical evaluation of our approach us-
ing labeled ground truth in Section 5. In Section 5.5 we evaluate the
templates discovered by our model on the task of predicting query
advertisability. Finally, we summarize the paper in Section 6.

2. EXTRACTING QUERY TEMPLATES
In this section we formulate the problem of extracting query tem-

plates from web search queries.

2.1 Motivation for Extracting Query Templates
In this paper our goal is to extract, with a completely unsuper-

vised process, a set of domain-specific query patterns that most
search queries in a domain conform to. For example, we would
like our approach to discover that many search queries in the Auto-
mobiles domain can be described using the <Brand, Model, Year>
pattern. We refer to such patterns as query templates and their con-
stituents as attributes. Here the attribute Brand denotes a place-
holder for brand/manufacturer of the vehicle and can stand-in for
words such as Honda, Toyota, Ford, etc. Similarly, attribute Model
can stand-in for words such as Accord, Civic, etc., and, Year denotes
the year when the car was manufactured. Extracting attributes from
query-logs and enriching queries with the templates they conform
to can facilitate many search engine operations. For example, due
to sparsity issues search engines struggle with obtaining robust es-
timates of various properties, such as advertisement click-through
rates, of tail queries. With the ability to discover that the query
“jaguar xj12 95 6.0l engine mount” corresponds to query template
<Brand, Model, Year, Parts>, we can smooth the ad-click-through
estimates of tail queries with the aggregated estimates of the cor-
responding templates. Other applications include building custom
search solutions for some query templates and using the extracted
templates for improved query recommendations [18, 27].

Here we note that some past works [3, 5, 15, 19, 23, 20, 25,
27] have proposed methods to extract similar information from web
search queries. However, these approaches require either direct su-
pervision of the tasks, such as manually labeled seed data, or use
ancillary information such web search click-through data (more de-
tails in Section 4). The manually labeled seed data takes the form
of attributes and their vocabularies in [3, 25] and entity classes or
hierarchies in [5, 27], all of which are expensive to create and main-
tain in a dynamically changing environment like web search. While
the ancillary information needed in the form of entities [23] and text
of documents [19] clicked in response to queries, can be difficult to
obtain. Therefore, in this work we restrict ourselves to the setting
of extracting templates while constructing attributes and their vo-
cabularies at the same time, without requiring any editorial/manual
intervention.

2.2 Desiderata for Template Model for Queries
From our inspection of search query logs we observed that differ-

ent users with the same search intent issue variations of a query
to the search engine. However, at a fundamental level they fol-
low a common process for generating these queries from a com-
mon underlying schema, as shown in Figure 1. For example, for
the search intent “find information about the 6.0l engine mount of a
1995 jaguar xj12” some users might formulate the query “jaguar xj
12 95 6.0l engine mount” while others might use “jaguar xj 95 en-
gine mount”. Both these queries can be thought of as being gener-
ated from the query template<Brand, Model, Year, Parts> with the
latter query containing fewer terms from the attributes Model and
Parts. Similar observations hold for other domains of web search
such as Entertainment, Travel, etc. In each case while we do not
know the underlying schema – the templates, attributes, and vo-
cabularies are hidden – and do not observe the underlying gener-
ative process, we do see the generated query load. Our approach in
this paper is to mathematically construct a realistic generative pro-
cess for the queries so that we can reconstruct (infer) the hidden
template-structure used to generate them (as shown in Figure 1).

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

410

Figure 1: Search queries are assumed to be generated from a common
hidden underlying structure. Our goal in this paper is to devise an algo-
rithm to use the observed queries to reconstruct the parameters of the
generative process as well as the underlying template structure

The simplest generative process would be single-attribute tem-
plate model whereby each template has a single unique attribute,
and each attribute is associated with a set of words (a word distribu-
tion). When constructing a query a user picks a template, and then
picks words from the associated attribute. This, however, is an un-
realistic process since we have seen in the examples above that most
queries have words from different attributes of a domain, such as
Brand, Year etc. Hence, we consider multi-attribute template mod-
els whereby each template is associated with multiple attributes.
Here, each attribute has its own word distribution from which the
words are chosen to instantiate the query.

Besides having multi-attribute templates we list some additional
properties that we desire in our model. These properties bring the
generative model closer to reality. Moreover, they are also critical
for the model performance since queries are short and sparse, and
so searching a more constrained/restrictive but realistic model space
is likely to be more robust and perform better.

PROPERTY I: While most queries are different, we believe that a
large number of queries in a given domain can be captured by only
a few templates. In other words, our model must not allow arbi-
trary distributions of attributes as templates; instead we constrain
the number of distinct templates that can be formed in the model.

PROPERTY II: Once a template for generating a query is picked, we
force each attribute in the template to generate at least one word.
The intuition behind this is that since queries are short, with 2-3
words on average, if an attribute is not contributing any words to-
wards a query, it is not required in the template.

PROPERTY III: Each attribute has a specific word distribution as
well as a distinct tendency for the number of words it contributes in
a query. For example, the Year attribute in the Automobiles domain
is likely to contribute 1 word (e.g., 1995), while the Parts attribute
typically generates more words (e.g., 6.0l engine mount).

Following this discussion we can formulate our problem as follows:

PROBLEM DEFINITION: Given a set of queries, extract the
underlying schema (templates, attribute, and their vocabular-
ies) and learn the parameters of the generative process in a
completely unsupervised manner while respecting the proper-
ties mentioned above.

Accounting for these properties significantly increases the techni-
cal complexity of our model over the state-of-the-art baseline meth-
ods such as LDA [6] and Spherical k-Means [10] that are not de-
signed to enforce these properties. However, in Section 3.2 we show
that it is still feasible, mathematically and computationally, to per-
form inference in our model. Moreover, we empirically show in
Section 5 that these properties help our approach significantly im-
prove performance over the baselines.

3. PROPOSED APPROACH
In this section we formally describe our proposed generative model

and give an algorithm to perform inference on it. We also describe
how our modeling process satisfies the properties mentioned in Sec-
tion 2.2.

3.1 Generative Model
Our generative model works as follows. We start with a pool of

template configurations,1 called candidate pool, whereby each con-
figuration consists of a set of attributes. For example, say we have 3
attributes, Model, Year and Brand. Then the candidate pool of tem-
plate configurations can be any subset of {<Model>, <Brand>,
<Year>,<Model, Brand>,<Model, Year>,<Brand, Year>,<Model,
Brand, Year>}. Note that the empty template configuration is not
allowed in the pool. In a real-world setting, the candidate pool can
also be constructed by a domain expert.

Given the candidate pool we let the model choose T template
configurations to construct vector ~θ where θt denotes the template
configuration at index t.2 Then each query q picks a template in-
dex tq which leads to its template configuration θtq . This way the
queries can pick from only those template configurations which are
present in ~θ (while the candidate pool has many more configura-
tions), helping our model enforce PROPERTY I mentioned above.
One way to think of this is that the candidate pool denotes the set
of template configurations which are appropriate for the domain.
Then the model chooses T template configurations from the candi-
date pool, ~θ, to best explain the generation of queries. By varying
the value of T we can control the trade-off between data likelihood
and over-fitting.

Lastly, given a template configuration for a query, from each at-
tribute in the configuration we generate a few words and then ar-
range them to create the query. More specifically, each attribute has
an associated Poisson distribution to determine the number of words
it contributes (PROPERTY III), and a Multinomial distribution over
the vocabulary to decide which words it contributes. In our run-
ning example, in our learnt model we expect the Poisson parameter
for the attribute Year to be smaller than that for the attribute Parts.
Moreover, we expect that the Multinomial distribution associated
with attribute Brand has a much larger probability of generating the
word “honda” than, say, the attribute Year. The priors for all distri-
butions are chosen to be their conjugates; Dirichlet for Multinomial
and Gamma for Poisson. We enforce PROPERTY II within the infer-
ence process described in Section 3.2.

Formally, the parameters of the model are:

µ ∼ Dirichlet(α) {multinomial distribution over all the template
configurations in the candidate pool}

θt ∼ Multinomial(µ) {configuration for template index t}
γ ∼ Dirichlet(δ) {vector of size equal to the number of template

indices, say T , that queries are allowed to chose from
tq ∼ Multinomial(γ) {template index for query q}
φa ∼ Dirichlet(β) {multinomial word distribution for attribute a}
ηa ∼ Gamma(g1, g2) {Poisson parameter for the number of

words that attribute a contributes towards a query when
the attribute is present in the template for the query}

1We use the phrases template configurations, attribute configura-
tions, and query templates interchangeably
2For simplicity we construct ~θ by choosing configurations with re-
placement, i.e., a configuration can make into ~θ at two different in-
dices. In other words, for t 6= t′, θt may be equal to θt′ .

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

411

Given these parameters search queries are generated by the fol-
lowing process:

1. Sample the prior over template indices: γ ∼ Dirichlet(δ).

2. Sample the prior over allowed template configurations: µ ∼
Dirichlet(α).

3. Sample template configurations for each template index from 1
to T: θt ∼ Multinomial(µ).

4. For each attribute a:

(a) Sample the word distribution prior: φa ∼ Dirichlet(β).

(b) Sample the Poisson parameter: ηa ∼ Gamma(g1, g2).

5. To generate words for query q:

(a) Sample template index tq ∼ Multinomial(γ), which
leads to template configuration θtq

(b) For each attribute a ∈ θtq :

i. Sample ni,a ∼ Poisson(ηa).
ii. Place attribute a at ni,a number of positions in vector
~zq .

(c) For each position j in query q, sample word wq,j from
attribute zq,j ,
i.e., wq,j |zq,j , φzq,j ∼ Multinomial(φzq,j).

Other probabilistic models could be modified to extract templates
(such as LDA [6]). In Section 4.1.1 we describe these alternative
models in detail and show how our model differs from them. In
Section 5 we empirically compare them against each other.

3.2 Model Learning
Here we describe how we perform inference on our model. Due

to paucity of space we skip many intermediate steps of algebra; see
the longer version [21] for detailed derivation of the expressions.

Recall that ~θ denotes the set of T template configurations (i.e.,
~θ = {θt}Tt=1) and ~η denotes the Poisson parameters for all attributes
A, i.e., η = {ηa}|A|a=1. Also, let ~w, ~z,~t denote the sequence of
words, attributes and templates over all queries. Given the hyper-
parameters, we first derive the collapsed representation of the joint
distribution over the known and latent variables. The joint distribu-
tion is then used for inference in Section 3.2.1.

P (~w, ~z,~t, ~η, ~θ, φ, γ, µ | α, β, δ, g1, g2)

=
(
P (~w|~z, φ) P (φ|β)

)
·
(
P (~t|γ) P (γ|δ)

)
·
(
P (~z|~θ,~t, ~η) P (~η|g1, g2)

)
·
(
P (~θ|µ) P (µ|α)

)
Integration over the latent variables ~η, φ, γ, µ gives:

P (~w, ~z,~t, ~θ | α, β, δ, g1, g2)

=

∫ (
P (~w|~z, φ) P (φ|β)

)
dφ ·

∫ (
P (~t|γ) P (γ|δ)

)
dγ

·
∫ (

P (~z|~θ,~t, ~η) P (~η|g1, g2)
)
d~η ·

∫ (
P (~θ|µ) P (µ|α)

)
dµ

= TERM I · TERM II · TERM III · TERM IV

We compute each of these terms in turn.
TERM I∫ (

P (~w|~z, φ) P (φ|β)
)
dφ =

|A|∏
a=1

∆(~na + ~β)

∆(~β)

where na(w) denotes the number of times word w is assigned to

attribute a, ~na = {n(w)
a }Vw=1, and ∆(~β) =

∏dim ~β
k=1

Γ(βk)

Γ(
∑dim ~β
k=1

βk)
.

TERM II∫ (
P (~t|γ) P (γ|δ)

)
dγ =

∆(~nt + ~δ)

∆(~δ)

where ~nt = {nt}Tt=1 denotes the vector of counts of queries as-
signed to each template index, and T denotes the total number of
template indices that queries are allowed to choose from.

TERM III∫ (
P (~z|~θ,~t, ~η) P (~η|g1, g2)

)
d~η

=

∫ |Q|∏
q

(
1

nq!

∏
a∈θ(tq)

(
Poisson(nq,a|ηa) nq,a!

))
Gamma(ηa|g1, g2) d~η

where nq denotes the length of query q and nq,a denotes the number
of words from attribute a in the query. Since Gamma is conjugate
prior for Poisson , the above integration can be simplified to:

=

(|Q|∏
q

1

nq!

) ∏
a∈A

(
g2
g1(g1 +

∑
Q nq,a − 1)!

(g2 +Na)(g1+
∑
Q nq,a)(g1 − 1)!

)
where Na denotes the number of queries with attribute a in their
templates.

TERM IV∫ (
P (~θ|µ) P (µ|α)

)
dµ =

∆(~nθ + ~α)

∆(~α)

where the ith element of nθ is the number of template indices, from
1 to T , pointing to the template configuration θi.

3.2.1 Inference
Our goal is to infer the attribute assignment of words and tem-

plates assignment for the queries. Mathematically speaking, we
want to infer the distribution P (~z, ~θ,~t|~w), which can be written as:

P (~z, ~θ,~t|~w) =
P (~z, ~θ,~t, ~w)

P (~w)
=

P (~z, ~θ,~t, ~w)∑
~z,~t,~θ P (~z, ~θ,~t, ~w)

where we omit the hyper-parameters for convenience. Clearly, the
denominator in the above expression is a summation over a large
number of combinations and is difficult to compute. Hence, we use
Gibbs sampling to perform this inference [13, 14].3 Under the Gibbs
sampling procedure, the full conditional distributions (P (zi|~z¬i, ~θ,~t, ~w),
P (θi|~z, ~θ¬i,~t, ~w), P (ti|~z, ~θ,~t¬i, ~w)) are used to simulateP (~z, ~θ,~t|~w).
To derive these conditionals, we use the joint distributionP (~z, ~θ,~t, ~w)
(computed earlier):

P (~z, ~θ,~t, ~w|α, β, δ, g1, g2) = P (~w|~z, β) p(~θ|α) p(~t|δ) p(~z|~θ,~t, g1, g2)

Next we give derivation of the conditional distributions for differ-
ent latent variables, i.e., zi, θi, ti. As mentioned above, these con-
ditionals are then used to perform the Gibbs sampling for inferring
the query templates and attributes. The overview of our complete
approach is given in Section 3.3.

3In the general formulation of a Gibbs sampler, the latent variables,
say ~x, are estimated by computing: P (~x|~w) = P (xi|~x¬i, ~w) =
P (~x,~w)
P (~x¬i, ~w)

= P (~x,~w)∫
X P (~x,~w)dxi

.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

412

3.2.2 Computing the Conditional Distributions
Here we simply give the expressions for the conditional distribu-

tions and give the intuition behind them; please refer to the longer
version [21] for complete derivations.

CONDITIONAL FOR z.
Ideally, we would like to compute (P (zi|~z¬i, ~θ,~t, ~w) where zi is
the ith element of attribute sequence z. But in our case zi’s are
not sampled independently as this can result in one of the attributes
contributing zero words to the query (we do not allow this under
PROPERTY II mentioned above). Hence, the sampling is done on
per-query basis, say ~zq , which consists of the attributes for every
word in the query. Hence, it is convenient to compute the condi-
tional in terms of (P (~zq|~z¬q, ~θ,~t, ~w). One can show that (derivation
in the long version [21]):

P (~zq = ~vq|~z¬q, ~θ,~t, w) = 1
nq

∏
a∈~vq

(g2+Na−1)
(g1+

∑
Q ni,a−nq,a)

(g2+Na)
(g1+

∑
Q ni,a−nq,a+vq,a)

(g1+
∑
Q ni,a−1−nq,a+vq,a)!

(g1+
∑
Q ni,a−1−nq,a)!

where ~vq denotes a new attribute sequence for query q, Na denotes
the number of queries with attribute a in their templates, ni is the
length of query i, ni,a is the number of terms in query i from at-
tribute a, and nq,a and vq,a denote the number of terms from at-
tribute a in the old query configuration q and the new configuration
v, respectively.

CONDITIONAL FOR t.
Recall that ~t denotes the vector consisting of the template indices of
all queries. We compute the conditional by deriving the probability
of updating the template index of query j.

P (tj = k|~t¬j , ~z, ~w, ~θ) ∝ P (~z|~θ,~t)
P (~z¬j |~θ,~t¬j)

P (~t)

P (~t¬j)

We computed P (~z|~θ,~t)
P (~z¬j |~θ,~t¬j)

earlier. Next we look at P (~t)

P (~t¬j)
.

P (tj = k,~t¬j)

P (~t¬j)
=

n
(k)
t,¬j + δk∑
k n

(k)
t,¬j + δk

where n(k)
t and n(k)

t,¬j denote the number of queries assigned tem-

plate index k, with and without query j. Hence, n(k)
t = n

(k)
t,¬j + 1.

CONDITIONAL FOR θ.
Next we compute the conditional for θ, i.e., P (θj |~θ¬j , ~z, ~w,~t). Re-
call that ~θ denotes the vector of T template configurations selected
by the model, from which each query is assigned a configuration.
Note that by updating the index j of ~θ to any configuration c (i.e.,
set θj = c), we indirectly update the template of each query that is
pointing to θj (i.e., queries which have tq = j). Hence,

P (θj = c|~θ¬j , ~z, ~w,~t) ∝ P (~z|~θ,~t)
P (~z¬j |θ¬j ,~t)

P (~θ)

P (~θ¬j)

where ~z¬j denotes the attribute sequence, excluding all the queries
whose template is pointing to θj configuration. We can compute
P (~z|~θ,~t)

P (~z¬j |~θ¬j ,~t)
as we computed it earlier. Next we look at P (~θ)

P (~θ¬j)

P (θj = c, θ¬j)

P (θ¬j)
=

n
(c)
θ,¬j + αc∑

c′ n
(c′)
θ,¬j + αc′

where n(c)
θ and n(c)

θ,¬j denote the number of elements in vector ~θ that
have attribute configuration c, with and without including element
j. Hence, n(c)

θ = n
(c)
θ,¬j + 1.

3.3 Overview of the Inference Algorithm
Above we have described the model and the update equations

(i.e., conditionals). Here we summarize how the conditionals are
used to perform the inference. The procedure begins with a random
initialization of the queryword-attribute assignment ~z, the query-
template assignment ~t, and the set of T template configurations ~θ.
Then we iterate over queries and the template set using the condi-
tionals derived in Section 3.2.2 to update the ~z, ~t, and ~θ vectors. At
each iteration we compute the likelihood of the observed query data
given the current learnt model parameters (φ, µ, γ, ~η). The proce-
dure ends with an assignment of each query to a template, and each
word in the query to an attribute.

4. ALTERNATIVE APPROACHES AND
A SURVEY OF RELATED WORK

Some existing methods can be adapted to tackle the problem of
discovering templates; in this section we describe two such approaches,
LDA, and k-Means, and highlight the ways in which our proposed
model differs from them. We end this section with a survey of some
past works that are broadly related to our problem setting.

4.1 Alternative Approaches

4.1.1 Latent Dirichlet Allocation (LDA)
Latent Dirichlet Allocation is a popular model for unsupervised

discovery of document topics [6, 14]. Before showing how it can
be applied for template extraction, we briefly describe the genera-
tive model here. In the LDA model, each topic has an associated
φ distribution over the vocabulary. To construct document d, first a
multinomial distribution over the topics, denoted by θd is sampled
from a Dirichlet prior. The ith word in the document is picked by
choosing a topic from this multinomial distribution, and then sam-
pling a word from the φ distribution associated with the topic.

In our scenario each query can be thought of as a document. By
applying LDA we can find the attributes (i.e., the topics) and their
associated vocabularies that have been used to generate the queries.
These attributes can then be used to construct the query templates.

Here we note that there are some fundamental differences be-
tween the LDA model and our proposed generative model. First,
LDA allows each query to pick an arbitrary topic distribution, while
we constrain the query to conform to one of the finite templates (i.e.,
attribute configurations) as is required by PROPERTY I of the prob-
lem definition in Section 2.2. Second, even if the topic distribution
for a query has a high probability for a topic, LDA does not require
that topic to contribute a word in the query. In contrast, our model
forces each attributes in the template to contribute at least one word
to the query enforcing PROPERTY II of the problem definition. As
discussed in detail in Section 2.2 these properties bring the genera-
tion closer to reality, and reduce the model search for our approach
to a more constrained and realistic space; this is particularly helpful
since queries are short and sparse.

Incorporating these properties in our model adds significant tech-
nical complexity. For example, for enforcing PROPERTY I we main-
tain a finite pool of allowed configurations (~θ). All other latent vari-
ables (e.g., ~z, ~t) depend on this ~θ vector, and as a result, when ~θ is
updated in the inference process, all other latent variables have to be
updated accordingly. Similar, enforcing PROPERTY II means that
we cannot sample the attributes for words (z’s) independently. In-
stead, the sampling is done on a per-query basis. In our experiments
we justify this added complexity by comparing LDA with our pro-
posed model and showing that our approach results in much better
template extraction performance.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

413

4.1.2 k-Means
The problem of extracting attributes can be framed as a problem

of grouping the query words, and hence any text-clustering approach
can be used. In this section we describe how Spherical k-Means [10]
can be applied. We represent each word wu as a vocabulary-sized
vector, where each element v of the vector contains the number
of times words wu and wv occur together in queries. By running
Spherical k-Means on these vectors, we put together those words
into a cluster which have similar co-occurrence behavior as other
words, e.g., words such as accord and toyota should have similar
co-occurrence behavior with respect to brand words and years, and
should fall into the same cluster. Hence, these clusters act like at-
tributes for our scenario; using them we construct query templates.

4.2 Survey of Related Work
Many past works have tackled problems related to modeling query

keywords. While a full survey is not possible due to lack of space,
we discuss some key works that can help us put our work into con-
text.

The problem of assigning an attribute to each word in a query has
been explored in [3, 25]. Agarwal et al. [3] proposed an approach
based on random-walk on the tri-partite graph of queries, sites, and
templates. Sarkas et al. [25] assumed that “structured” data is given
in the form of tables. Then queries are annotated by mapping a
query to a table and the attributes of this table. Both these works,
however, assume that the attributes and their vocabularies are given
as input to the algorithms. In contrast our work finds both the query
templates as well as the attributes and their vocabularies in a com-
pletely unsupervised manner.

The problem of named entity recognition in web queries (eg. find-
ing movie names) is related to our problem with entities playing the
role of attributes. In [15], Guo et al. give a nice semi-supervised ap-
proach to extract entities from queries while ensuring that the model
topics and pre-defined classes align. In [30] the approach learns a
topic-model using click-through data under some supervision from
humans and uses the model to resolve ambiguities among named en-
tities. In another related work [20] a weakly-supervised extraction
framework is given for extracting named entities from web search
queries starting from a seed set. Another set of work seek to ob-
tain useful segmentations of web queries via learning from labeled
examples [5] or using click-through data [19]. Our work differs
from these in the focus – we focus assigning all words to attributes,
not just named entities – and based on the fact that our proposed
approach works with just the query-set and does not need manual
intervention or data click-through interactions.

Finally, there are recent works that seek to exploit query templates
for accomplishing search related tasks. In [27] Szpektor et al. used
entity hierarchies to mine query templates, which were used to im-
prove query recommendation algorithms by defining better relation-
ships between queries. Similarly, Jain et al. [18] use many heuristics
to define relationships between queries, and query templates could
be used as one such signal. Hence, our work is complementary to
these works that seek to improve web mining algorithms via query
templates and could act as input into them.

5. EXPERIMENTS
In this section we analyze the performance of our approach (QT-

GEN) on real-world search engine queries. We also provide an em-
pirical comparison with the state-of-the-art alternatives described
in Section 4.1. We begin with a description of the experimental
methodology and then proceed to describing the results. We end the
section with an application of our approach to the task of predicting
query-advertisability.

Domain Attribute Vocabulary Vocab-size

Automobiles

Brand Honda, Toyota . . . 56
Model Civic, Camry . . . 188
Year 2010, 2009 . . . 73
Parts engine, tires . . . 148
Specs mpg, 250hp . . . 30

Vehicle_type car, sedan . . . 44

Travel

Tasks purchase, flights . . . 42
Brand hilton, southwest . . . 27

Location hawaii, SFO . . . 132
Qualifiers cheap, discount . . . 27

Movies

Tasks tickets, reviews . . . 54
Names avatar, brad pitt . . . 60
Genres horror, bollywood . . . 25

Qualifiers free, online . . . 20

Table 1: Ground Truth: attributes and vocabularies created manually.
The learned attributes output by QTGEN and baselines are evaluated
in terms of their match to this ground truth.

5.1 Experimental Setup
We first describe the construction of the query dataset and ground

truth. We then describe the implementation details of our approach,
QTGEN, and of the competing baselines.

QUERY DATA-SET AND GROUND TRUTH.
In order to obtain robust results and reduce the effect of any one

topic we perform our empirical evaluation using queries from mul-
tiple different domains: Automobiles, Travel, and Movies. This is
the standard methodology in this area. Topical classification of
queries is a well-studied problem and we use a state-of-the-art multi-
label classifier [28] to classify a randomly sampled set of 100 mil-
lion Yahoo search queries executed in September of 2010 into the
above domains. These queries were suitably anonymized and care
was taken to remove all personally identifiable information was re-
moved. From these domain-specific queries we construct datasets
for our two evaluation tasks. First, we construct three domain-
specific query-sets of roughly 1000 queries each; the size was picked
so that we could manually construct the ground truth. Second, for
the large-scale automatic evaluation on the query-advertisability task
we construct three datasets with 43793, 83387, and 15050 tail queries
from the Automobiles, Travel, and Movies domains, respectively.
For this task we also obtain the sponsored search impressions and
clicks from the search logs.

In order to construct the ground truth, templates underlying the
queries in these query-sets were manually extracted. This resulted in
the construction of 6 attributes for Automobiles domain and 4 each
for the Travel and Movies domains, each of which was populated
with the words likely to be generated from them; some words were
labeled as being generated from multiple attributes. Some details
about the ground truth are given in Table 1. Note that the ground
truth construction was completed before the outputs of any of the
approaches under evaluation were seen by the editors.

OUR APPROACH AND BASELINES.
QTGEN: This is an implementation of the approach outlined in

Section 3. Each run of QTGEN is parameterized by the following
settings: number of attributes (k), number of iterations (N), and val-
ues of model parameters β, g1, and g2. Please see the description of
our model for details of these parameters. In our empirical analysis
we perform many experiments by varying values for these param-
eters, but unless mentioned otherwise, the values are set to k = 5,
N = 100, β = 0.1, g1 = 4, and g2 = 0.2; these parameter values
were tuned using a 10% validation set.

LDA: For this baseline approach we used the Mallet [1] imple-
mentation of Latent Dirichlet Allocation, which has been described
in detail in Section 4.1.1. The parameters values are set to k = 5,
α = 50 and β = 0.01.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

414

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
R

E
C

IS
IO

N
 (N

)

CORRECT RECALL (N)

Automobile domain

QTGEN
LDA

k-Means

Figure 2: PRECISION vs. CORRECTRECALL curves of QTGEN and
baselines on the Automobiles domain. Each mark on the curves (from
left to right) is produced by evaluating the top-N learnt attributes.

K-MEANS: This baseline approach is described in detail in Sec-
tion 4.1.2. In this implementation the initialization is done via far-
thest first approach. For our experiments, k was set to 5 (set using a
10% validation dataset) and distance measure between vectors was
computed using cosine similarity [10].

5.2 Evaluation on Manually Labeled Ground
Truth

Above we described the process through which the templates that
generate queries were manually extracted for three domains. In
this section we evaluate the performance of QTGEN, LDA, and
K-MEANS in successfully retrieving the attributes that form these
templates. Before proceeding to the results we describe the metrics
we use to evaluate the outputs of the various approaches.

INTERPRETING THE OUTPUT OF ALGORITHMS.
Traditional clustering evaluation measures such as pairs-based

ones (e.g., Adjusted RAND [17]) and entropy-based ones (e.g., nor-
malized mutual information [26]) are not suited for the tasks we
consider in this paper. In designing an evaluation scheme relevant
to our problem setting, we first attempt to understand how the ex-
tracted templates/attributes are likely to be used. Most applications
of interest need the attributes to be returned in some order, and since
none of the approaches under evaluation ranks the attributes, we as-
sume each approach returns attributes in the decreasing order of the
number of queries that generate words from it. Once the order is set,
we want that each learned attribute contain words from only one at-
tribute from ground truth. Moreover, we want that for each attribute
in the ground truth, all its words be covered by one learnt attribute.

To fulfill these requirements each ground truth attribute must be
mapped to a unique learnt attribute. In a real-life application, this
mapping would be constructed by a human expert when she studies
the attributes output by the system. In order to evaluate numerous
runs of our approach and baselines objectively, we construct this
mapping automatically by evaluating all possible mapping in terms
of the total AUC [12] between the learnt and the ground truth at-
tributes, and picking the one with the maximum score.

Once the mapping is fixed, we go over the learnt attributes in
the order established and evaluate them in terms of net PRECISION
and CORRECTRECALL. We say that a word is correctly placed if
the learnt attribute and the ground truth attribute it belongs to are
mapped to each other. Hence, PRECISION(N) is the fraction of
words in the first N learnt attributes (in the algorithm’s ordering)
that are correctly placed. Similarly, CORRECTRECALL(N), is the
fraction of words in ground truth attributes mapped to the first N
learnt attributes that are correctly placed. Intuitively, it can be seen
that PRECISION measures the accuracy of the system while COR-
RECTRECALL measures the correct coverage.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
R

E
C

IS
IO

N
 (N

)

CORRECT RECALL (N)

Travel domain

QTGEN
LDA

k-Means

Figure 3: PRECISION vs. CORRECTRECALL curves of QTGEN and
baselines on the Travel domain. Each mark on the curves (from left to
right) is produced by evaluating the top-N learnt attributes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
R

E
C

IS
IO

N
 (N

)

CORRECT RECALL (N)

Movies domain

QTGEN
LDA

k-Means

Figure 4: PRECISION vs. CORRECTRECALL curves of QTGEN and
baselines on the Movies domain. Each mark on the curves (from left to
right) is produced by evaluating the top-N learnt attributes.

PRECISION VS. CORRECTRECALL.
We plot PRECISION and CORRECTRECALL of all approaches on

the three domains in Figures 2, 3, and 4. The PRECISION is plotted
on the y-axis while the CORRECTRECALL is on the x-axis. The
markers on each curve indicate the performance values at different
N, with markers on the left indicating values for lower N. As we can
see, in general, at higher values of N, PRECISION tends to decrease
while CORRECTRECALL monotonically increases.

First we observe that attributes found by QTGEN match the ground
truth very precisely in their word compositions. For example, in
the Automobiles domain, the top-3 learnt attributes have > 60% of
the words that were assigned to them and were also manually la-
beled as belonging to these attributes. Similar results are also seen
for the other two domains. Being this precise makes the learnt at-
tributes easier for downstream human users to interpret as well as
easier for automated algorithms to use. We also observe that for
all domains and operation points, the attributes found by QTGEN
dominate those found by LDA and K-MEANS in terms of CORREC-
TRECALL. The runners-up in terms of PRECISION is clearly the K-
MEANS approach; in fact it equals QTGEN in terms of PRECISION
for the Movies domain.

The second observation about the results concerns the CORREC-
TRECALL of the learnt attributes. As we can see, upon learning 5
attributes our approach consistently finds around 50% of the words
in the matched ground truth attributes. On the Automobiles dataset,
QTGEN vastly outperforms the baseline approaches, while on the
other two domains the algorithms are roughly comparable in terms
of CORRECTRECALL. In fact, LDA, and to a lesser degree K-
MEANS, consistently operate at a lower PRECISION and slightly
higher CORRECTRECALL profile. In many applications producing
output with high CORRECTRECALL is very important, however, we
feel that the the low PRECISION of attributes learnt by LDA and
K-MEANS will make them too obscure to be used automatically by
algorithms or manually by human editors.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

415

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
R

E
C

IS
IO

N
 (N

)

CORRECT RECALL (N)

Automobile domain

Model

Year
Brand Parts

#iters=100
#iters=75
#iters=50
#iters=25
#iters=10

Figure 5: PRECISION vs. CORRECTRECALL curves of QTGEN after
different number of iterations on the Automobiles domain.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
R

E
C

IS
IO

N
 (N

)

CORRECT RECALL (N)

Automobile domain

k=4
k=5
k=6
k=7

Figure 6: PRECISION vs. CORRECTRECALL curves of QTGEN using
different number of attributes on the Automobiles domain.

Finally, we note that the results indicate that learnt attributes that
are heavily used also score high in terms of PRECISION and COR-
RECTRECALL. This is completely true in the case of the Automo-
biles domains and to a slightly lesser degree for the other two do-
mains. This can be seen in the curves of QTGEN in Figures 2,
3, and 4 which are constructed by considering attributes in the de-
creasing order of their usage. As we can see for the performance
curve of QTGEN on Automobiles domain (Figure 2), the PRECI-
SION drops monotonically, indicating that the most precise attributes
are the most heavily used, and the gaps between successive marks on
the x-axis become smaller, indicating the same trend for the COR-
RECTRECALL of learnt attributes. It is also clear from the figures
that the attributes learnt by LDA and K-MEANS display this desir-
able property to a much lesser degree.

To summarize, we have seen that QTGEN outperforms the base-
lines in terms of obtaining interpretable attributes that cover a large
fraction of the query-terms correctly. The parameter setting used to
report this performance was tuned over a 10% held-out validation
dataset. Next, we show the effect of variation of these parameters
on the performance of QTGEN in terms of PRECISION and COR-
RECTRECALL.

5.3 Effect of Parameter Values
EFFECT OF NUMBER OF ITERATIONS.

We start by studying the effect of the number of model iterations.
In Figure 5 we have plotted the scores of attributes identified by QT-
GEN after a fixed number of iterations. These performance num-
bers are plotted by averaging the result of multiple runs with random
initializations, but we do not show the confidence intervals to reduce
clutter. Note that the results of this experiment on all three domains
were very similar and hence we show them only for the Automo-
biles domain. From the results displayed in Figure 5 we make two
observations.

First, it can be easily seen that while the performance of QTGEN
does improve with increasing iterations, after very few iterations
(>50) the performance differences become indistinguishable. The
only statistically significant differences in performance are between

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
R

E
C

IS
IO

N
 (N

)

CORRECT RECALL (N)

Automobile domain

0.01
0.1

1
10

Figure 7: PRECISION vs. CORRECTRECALL curves of QTGEN
run with different values of φ on the Automobiles domain.

the #iters = 10 and #iters = 25 curves and the rest. This fast
convergence of QTGEN can be attributed to the fact that it imposes
a lot of structure derived from domain knowledge on the model. For
instance, in our model queries are required to be generated from
one of a few attribute configurations and each attribute is required
to generate at least one word. These restrictions reduce the num-
ber of choices that must be evaluated and hence the convergence is
achieved in fewer iterations.

Second, we observe that QTGEN converges faster to a precise
characterization of attributes that are used more frequently than it
does for other less frequently used attributes. In Figure 5 we have
annotated each mark of a converged attribute with the ground truth
attribute that it maps to. As we can see, QTGEN converges to the
final characterization of the attribute that maps to Model first. This is
because a model-name is specified in nearly every query in our data.
Next most commonly used attribute is Year, which, in addition, also
has a small vocabulary and is hence found in few iterations as well.
Finally, Brand and Parts that participate in fewer queries are found.

EFFECT OF NUMBER OF ATTRIBUTES.
In Figure 6 we plot the performance of QTGEN when it learns

templates by allowing for different number of attributes. As we can
see the performance for most settings are very similar showing that
with any given number of attributes QTGEN is able to learn at-
tributes that closely map to ground truth attributes. However, the
main difference is in the number of ground truth attributes that are
covered by the learnt attributes. This difference is primarily rep-
resented in the CORRECTRECALL values that QTGEN is able to
achieve with the lower settings of number of attributes.

Often, in unsupervised learning scenarios, one of the hardest pa-
rameters for a domain expert to set is the true number of clusters /
attributes in the data. These results show that QTGEN has the abil-
ity to find appropriate attributes as long as the number of desired
attributes is set to a reasonable value.

EFFECT OF MODEL PARAMETERS.
In these experiments we report on the results of tuning the Dirich-

let parameter φ that acts as a prior to the attribute-word multinomial
distributions and the Gamma distribution parameters g1 and g2 that
are used to generate the Poisson distributions for each attribute. The
φ parameters controls the extent to which the modeling procedure
relies on the observed data as opposed to the priors. The smaller the
value of φ, the more the multinomial distribution of words associ-
ated with each attribute is tuned to the data. In Figure 7 we plot the
performance of QTGEN when run with different settings of φ. It is
clear from the results that for a wide range of parameters values the
results stay stable. Only in the case when the value of φ is very high
do the results deteriorate since the system now relies on the prior
too much and ignores the evidence of the data.

The Gamma distribution parameters g1 and g2 control the Poisson
parameters which in turn control the propensity of each attribute
to generate words in the query. We performed experiments with

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

416

Attribute Words most frequently used in queries
Brand honda, toyota, chevy, ford, jeep, nissan, dodge, mustang, ranger
Model truck, camaro, corvette, civic, bmw, accord, silverado, yukon, ram
Year 2010, 2007, 2008, 2006, 2004, 2005, engine, 2011, 2009, custom
Parts parts, accessories, couple, rims, reviews, problems, tires, manual, seat
Specs owners, belt, floor, door, coupe

(a)

Query Template Frequency Ad-clicks
Brand Model Year 33.3% 11%

Brand Model Year Parts 16.6% 8.7%
Brand Model Year Parts Specs 13.6% 5.3%

Model Year Parts 8% 2.9%
Brand Model Parts 7% 4.2%

(b)

Table 2: Structure extracted by QTGEN for the Automobiles domain.
Table (a) shows the attributes found along with the most popular words
in them. The attribute name is the ground truth attribute it matched
with in our evaluation. Table (b) shows the top-5 frequently used query
templates found by QTGEN in the Automobiles domain. The frequency
indicates the fraction of the query traffic that is generated from this tem-
plate. The Ad-clicks is fraction of all ad clicks on Automobiles domain
queries that are on queries generated from this template.

settings that forced attributes to generate very few words per query
and others that allowed attributes to generate more. Our results were
remarkably similar across these settings and we do not show them
here due to paucity of space.

Our results in this section show that QTGEN is extremely robust
to changes in parameters values and performs well for all values in
a reasonable range.

5.4 Anecdotal Evidence and Discussion
Here we present a qualitative evaluation of the attributes and tem-

plates found by QTGEN and discuss potential applications.
In Table 2 we have shown the template structure uncovered by

QTGEN. Table 2(a) shows the attributes found along with the most
popular words in their vocabularies. The attribute name in the table
is the ground truth attribute that matched it. As is clear most of the
words are grouped together into coherent attributes. Moreover, these
attributes and their vocabularies closely match those in the manually
constructed ground truth in Table 1.

In Table 2(b) we have listed the five most popular query tem-
plates, and the fraction of queries in our dataset covered by them,
as detected by QTGEN. The results make intuitive sense. The most
popular query template found by QTGEN is “Vehicle” queries (that
covers 33% of queries in our set) and describes the vehicle of in-
terest using the three most important attributes, Brand, Model, and
Year. These users are most probably researching an automobile for
a purchase or lease. Beyond this template the users are querying
for more detailed information on specific vehicles: to do this they
first establish the identity of the vehicle using some combination of
Brand, Model, and Year, and then express their information need via
attributes Part and Spec. These “Parts” queries all together are about
as frequent as the “Vehicle” queries in our dataset.

In the final column of Table 2 we list the fraction of all spon-
sored search advertisement clicks (in the Automobiles domain in
our dataset) due to queries that are generated from these templates.
As we can see these query templates demonstrate a large difference
in their tendency to attract ad-clicks from users. For example, the
“Parts” queries contribute a larger fraction of ad-clicks while occur-
ring a smaller fraction of times than the “Vehicle” queries. Hence,
knowledge gathered by QTGEN on the template from which the
query has been generated should be useful for inferring its advertis-
ability [22]. Other potential applications of extracting the attributes
and query templates can be in generating special case search expe-

(a) 2 % (b) 5 %

(c) 10 % (d) 50 %

Figure 8: Clicks vs Impressions curves for models trained using vary-
ing amounts of data in the Travel domain.

Approaches
% of Training data TERM + SMOOTH TERM + SMOOTH + QT

2% 6.26% 12.04 %
5% 6.57% 10.41%
10% 4.29% 6.20%
50% 2.81% 4.18%

100% -0.83% 1.35%

Table 3: The %-improvement in the AUC of predicting the query-
advertisability for different approaches. The two approaches using
SMOOTH and QT are explained in this section. The improvements are
measured over the TERM baseline. The numbers in bold represent im-
provements that are statistically significant at α = 0.01

riences, such as returning on the search results page the price and
availability of the automotive part plugged into the query template.

5.5 Case Study: Query Advertisability
The results from Table 2 show that the presence of certain ex-

tracted templates and attributes is positively correlated with the click-
through-rate (CTR) on sponsored search advertisements. Motivated
by these observations, in this section we conduct experiments to
validate the usefulness of templates extracted by QTGEN for the
problem of predicting Query-Advertisability of tail queries [22].

In brief, the search query frequencies are skewed as a power-law
and a large fraction of queries are unique (or occur very few times).
This makes predicting the CTR of sponsored search advertisements
on these queries very challenging. One way is to predict the Ad-
vertisability for these tail queries in an attempt to help the search
engine decide whether to show advertisements for them. In [22]
we proposed an approach for this task that was shown to outper-
form state-of-the-art baselines. Due to paucity of space we refer
the reader to the original paper [22] for details of the proposed ap-
proach. Here we only describe how we enhance this approach using
query templates learnt by QTGEN.

EXPERIMENTAL SETUP.
The approach proposed in [22] is based on learning word-specific

scores that are then combined to predict the query-advertisability;
we call this approach TERM. We then learn the query templates
for the training set of these tail queries and hence the assignment
of each term to an attribute. We then augment the query with these
learnt attributes and learn the attribute-specific scores. Our two en-
hancements of the TERM baseline are as follows:

1) TERM + SMOOTH: Here each term’s score is smoothed using
the attribute it is assigned to by adding (a fraction of) the attribute

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

417

impression and click counts to the term’s. This is likely to help for
rare terms and in cases where very little data is available to reliably
estimate term-specific scores. The weight to be given to the attribute
impressions is tuned on a validation set and varies with number of
training data points. Finally, only the smoothed term-specific scores
are then combined into the query-advertisability score.

2) TERM + SMOOTH + QT: In this baseline we perform smoothing
as above. In addition, however, we combine term-specific scores
as well as attribute-specific scores to learn the query-advertisability
score. The methodology for combining these scores is exactly the
same as in [22].

As before, in order to remove the effects of particular topics and
obtain robust results, the experiments were performed on 43793,
83387, and 15050 tail queries from the Automobiles, Travel, and
Movies domains, respectively, randomly sampled from the Yahoo!
query logs. Most of these queries occurred once with less than 5%
occurring twice. Each of the approaches orders the queries in terms
of their predicted advertisability scores and we report the AUC [12]
of the clicks-vs-impressions plots (see Figure 8). Queries in each
domain were evaluated separately since the presence of exclusive
templates makes the predicted scores a little difficult to compare.
The AUC values reported in Table 3 are weighted average across
the domains, with tests in each domain averaged over 100 runs with
randomly selected training points. 40% of queries in each domain
were put into the training set, 10% for tuning the SMOOTH param-
eter, and rest for testing. Care was taken to ensure that the queries
used in the test data had occurred later in time than the ones used
for training and validation. To simulate low-data situations we sub-
sampled the training data to 2%, 5%, 10%, and 50%.

RESULTS AND DISCUSSION.
The averaged AUC results are in Table 3 and results from the

Travel domain are plotted in Figure 8. The main points to note are
that we get huge percentage improvements from the addition of tem-
plates found by QTGEN in situations when very little training data
is present. This is because attribute-specific scores are estimated
over a larger number of terms making them more robust than term-
specific scores, and using them to smooth the latter improves accu-
racy significantly. Moreover, note that even the presence of certain
attributes (SMOOTH + QT) gives the algorithm an additional accu-
racy boost over just using SMOOTH; this was as expected from the
observations in Table 2. While the improvements are overwhealm-
ing for smaller training set sizes, the effect remains until at least
50% of the training data is available.

To conclude, the main goal of this experiment was for us to ver-
ify that QTGEN finds good query template assignments by showing
that these assigned attributes help in estimating query-advertisability.
As the plots in Figure 8(a) and 8(b) show, the very strong base-
line [22] is essentially random in very low-data situations. How-
ever, the accuracy significantly improves with the addition of query
templates. Moreover, even in settings with more data the benefit of
using query templates persists.

6. SUMMARY
In this paper we focused on the goal of automatically enrich-

ing short keyword search queries by finding domain-specific query
templates in a completely unsupervised manner. More specifically,
we gave a generative model based approach that finds query tem-
plates as well as query attributes and their vocabularies, without
any human intervention. We empirically demonstrated the perfor-
mance of our approach by comparing it against two state-of-the-art
approaches on real datasets. Finally, we showed an application of
query templates to computational advertising. In particular, we sig-

nificantly improved the performance of an approach for predicting
query advertisability by supplementing query keywords with their
attributes and template information.

7. REFERENCES
[1] Mallet. http://mallet.cs.umass.edu/.
[2] Powerset. wikipedia.org/wiki/Powerset_(company).
[3] G. Agarwal, G. Kabra, and K. C.-C. Chang. Towards rich query

interpretation: walking back and forth for mining query templates. In
19th WWW, 2010.

[4] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman, Boston, MA, 1999.

[5] S. Bergsma and Q. I. Wang. Learning noun phrase query
segmentation. In EMNLP-CoNLL, 2007.

[6] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3, 2003.

[7] A. Broder. A taxonomy of web search. SIGIR Forum, 36, 2002.
[8] A. Broder, M. Ciaramita, M. Fontoura, E. Gabrilovich, V. Josifovski,

D. Metzler, V. Murdock, and V. Plachouras. To swing or not to swing:
Learning when (not) to advertise. In 17th CIKM, 2008.

[9] A. Z. Broder, M. Fontoura, E. Gabrilovich, A. Joshi, V. Josifovski,
and T. Zhang. Robust classification of rare queries using web
knowledge. In 30th SIGIR, 2007.

[10] I. S. Dhillon and D. S. Modha. Concept decompositions for large
sparse text data using clustering. Machine Learning, 42(1), 2001.

[11] S. Goel, A. Broder, E. Gabrilovich, and B. Pang. Anatomy of the long
tail: ordinary people with extraordinary tastes. In 3rd, 2010.

[12] M. Gonen. Receiver operating characteristic (ROC) curves. SAS Users
Group International (SUGI), 31, 2006.

[13] T. Griffiths. Gibbs sampling in the generative model of latent dirichlet
allocation. Technical report, Stanford University, 2002.

[14] T. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of
the National Academy of Sciences, 101, 2004.

[15] J. Guo, G. Xu, X. Cheng, and H. Li. Named entity recognition in
query. In 32nd SIGIR, 2009.

[16] Q. Guo and E. Agichtein. Exploring mouse movements for inferring
query intent. In 31st SIGIR, 2008.

[17] L. Hubert and P. Arabie. Comparing partitions. Journal of
Classification, 2, 1985.

[18] A. Jain, U. Ozertem, and E. Velipasaoglu. Synthesizing high utility
suggestions for rare web search queries. In 34th SIGIR, 2011.

[19] Y. Li, B.-J. P. Hsu, C. Zhai, and K. Wang. Unsupervised query
segmentation using clickthrough for information retrieval. In 34th
SIGIR, 2011.

[20] M. Paşca. Weakly-supervised discovery of named entities using web
search queries. In 16th CIKM, 2007.

[21] S. Pandey and K. Punera. Unsupervised extraction of template
structure in web search queries. www.ideal.ece.utexas.edu/
~kunal/papers/querytemplates_long2011.pdf.

[22] S. Pandey, K. Punera, M. Fontoura, and V. Josifovski. Estimating
advertisability of tail queries for sponsored search. In SIGIR, 2010.

[23] P. Pantel and A. Fuxman. Jigs and lures: Associating web queries with
structured entities. In ACL, 2011.

[24] K. Punera and S. Merugu. The anatomy of a click: modeling user
behavior on web information systems. In 19th CIKM, 2010.

[25] N. Sarkas, S. Paparizos, and P. Tsaparas. Structured annotations of
web queries. In SIGMOD, 2010.

[26] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse
framework for combining multiple partitions. JMLR, 3, 2002.

[27] I. Szpektor, A. Gionis, and Y. Maarek. Improving recommendation for
long-tail queries via templates. In 20th WWW, 2011.

[28] L. Tang, S. Rajan, and V. K. Narayanan. Large scale multi-label
classification via metalabeler. In 18th WWW, 2009.

[29] X. Wang, D. Chakrabarti, and K. Punera. Mining broad latent query
aspects from search sessions. In 15th KDD, 2009.

[30] G. Xu, S.-H. Yang, and H. Li. Named entity mining from
click-through data using weakly supervised latent dirichlet allocation.
In 15th KDD, 2009.

WWW 2012 – Session: Search April 16–20, 2012, Lyon, France

418

