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ABSTRACT
Recent research has explored the increasingly important role
of social media by examining the dynamics of individual and
group behavior, characterizing patterns of information dif-
fusion, and identifying influential individuals. In this paper
we suggest a measure of causal relationships between nodes
based on the information–theoretic notion of transfer en-
tropy, or information transfer. This theoretically grounded
measure is based on dynamic information, captures fine–
grain notions of influence, and admits a natural, predictive
interpretation. Networks inferred by transfer entropy can
differ significantly from static friendship networks because
most friendship links are not useful for predicting future
dynamics. We demonstrate through analysis of synthetic
and real–world data that transfer entropy reveals meaning-
ful hidden network structures. In addition to altering our
notion of who is influential, transfer entropy allows us to
differentiate between weak influence over large groups and
strong influence over small groups.

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: Information
Theory; H.3.4 [Systems and Software]: Information net-
works; J.4 [Social and Behavioral Sciences]: Sociology

Keywords
entropy, prediction, causality, social networks, spam, point
processes

1. INTRODUCTION
Recent years have witnessed an explosive growth of vari-

ous social media sites such as online social networks, discus-
sion forums and message boards, and inter-linked blogs. For
researchers, social media serves as a fertile ground for exam-
ining social interactions on an unprecedented scale [7]. One
important problem is the characterization and identification
of influentials, which can be defined as users who influence
the behavior of large numbers of other users. Recent work
on influence propagation has used numerous characteriza-
tions of influentials based on topological centrality measures
such as Pagerank score [19, 15]. To characterize influence in
Twitter, researchers have suggested various measures based
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on number of followers, mentions, retweets [8], and Pager-
ank of follower network [16]. It has been observed, how-
ever, that the purely structural measures of influence can
be misleading [10] and high popularity does not necessarily
imply high influence [25]. More recent work has attempted
to introduce dynamic information through the size of the
information cascades [3] and influence–passivity score [25].
One serious drawback of existing methods is that they are
based on explicit causal knowledge (i.e., A responds to B),
whereas for many data sets such knowledge is not available
and needs to be discovered.

Here we suggest a model–free approach to uncovering causal
relationships and identifying influential users based on their
capacity to predict the behavior of other users, through the
information-theoretic notion of transfer entropy, interchange-
ably referred to as information transfer. In a nutshell, trans-
fer entropy between two stochastic processes characterizes
the reduction of uncertainty in one process due to the knowl-
edge of the other process; a mathematical definition is given
below. Transfer entropy can be thought of as a nonlinear
generalization of Granger causality [5], and has been used
in computational neuroscience, e.g., for examining causal
relationships in cortical neurons [12]. In contrast to other
correlation measures such as mutual information, transfer
entropy is asymmetric and allows differentiation in the di-
rection of information flow. Furthermore, whereas most ex-
isting studies are concerned with aggregate measures of in-
fluence, the approach outlined here allows more fine–grained
analysis of information diffusion by analyzing information
transfer on each existing link in the network. Finally, our
approach is model-free. Information–theoretic measures al-
low us to statistically characterize our uncertainty without
making assumptions about human behavior.

The rest of this paper is organized as follows. We begin
by describing the basic intuition and mathematics behind
the information transfer, and briefly mention computational
issues of the approach. In Section 3.1 we present results of
our simulation with synthetically generated data, where we
thoroughly examine how the information transfer depends
on various characteristics of the data generating process.
In Section 3.2 we present our results on real-world data
extracted from user activities on Twitter. We conclude the
paper with related work in Section 4 and a discussion of
results and future work in Section 5.
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2. TRANSFER ENTROPY

2.1 Notation
For each user, X, we record the history of activity, e.g.,

timing of tweets, as a sequence of times as

SX = {tj : 0 < t1 < t2 . . .}.
In general, we assume each user’s activity is described by
some stochastic point process. We are limited by finite
data to consider finite temporal resolution, so we introduce
a binned random variable that tells us whether an event
occurred in some time interval.

BX(a, b) ≡
j

1 if ∃tj ∈ SX ∩ (b, a],
0 otherwise.

(1)

If we observe the actions of a user for some long period of
time T , we can define probabilities over these coarse-grained
variables. Fix δ ∈ R, then

P (BX(t, t − δ) = Xt) ≡ 1

T − δ

Z T

δ

dt[Bi(t, t − δ) = Xt],

where [] denotes an Iverson bracket.1 Similarly, we could
define a joint probability distribution over a sequence of ad-
jacent bins,

P (BX(t, t − δ0) = Xt, BX(t − δ0, t − δ0 − δ1) = Xt−1, . . .),

with widths δ0, δ1, . . . , δk ∈ R. We will omit the binning
function for succinctness, P (Xt, Xt−1, . . . , Xt−k). We can
write this even more compactly by defining

X
(t−k)
t ≡ {Xt, . . . , Xt−k}.

The dynamics of a user may depend on users they are linked
to in some unknown, arbitrary way. Therefore, for two users
X and Y , with activities recorded by SX , SY , we define a
joint probability distribution using a common set of bins

denoted with widths δ0, δ1, . . . , δk as P (X
(t−k)
t , Y

(t−k)
t ).

Conditional and marginal probability distributions are de-
fined in the usual way and we use the standard definition for
conditional entropy. For discrete random variables A, B dis-
tributed according to P (A,B),

H(A|B) = −
X
A,B

P (A,B) log P (A|B). (2)

We will use the logarithm in base two and report entropies
in bits. In practice, the probability distribution P (A,B)
will generally be estimated according to observed frequency
counts. Of course, this can lead to sampling problems which
we discuss in Section 2.3.

2.2 Definition of transfer entropy
The transfer entropy introduced in [26] is defined as

TX→Y = H(Yt|Y (t−k)
t−1 ) − H(Yt|Y (t−k)

t−1 , X
(t−l)
t−1 ) (3)

The first term represents our uncertainty about Yt given Y ’s
history only. The second term represents the smaller uncer-
tainty when we know X’s history as well. Thus, transfer
entropy explicitly describes the reduction of uncertainty in
Yt due to knowledge of X’s recent activity. For simplicity,
we take l = k from here on.

1The Iverson bracket is equal to 1 when the logical condition
enclosed is true and 0 otherwise.

We offer two more intuitive interpretations of the informa-
tion transfer. The first fruitful comparison is with Granger
causality[13], which states that X is Granger causal to Y if
Y is better predicted from a model that includes X’s and
Y ’s histories than from one that includes Y ’s history only.
In particular, linear regression models are typically used in
the comparison. For Gaussian random variables, Granger
causality is equivalent to information transfer [5]. In princi-
ple, conditional entropies should capture arbitrary nonlinear
relationships in the signal.

Information transfer can also be written as the mutual
information between Y ’s present and X’s past, conditioned
on Y ’s past.

TX→Y = H(Yt : X
(t−k)
t−1 |Y (t−k)

t−1 )

Because of the conditioning on Y ’s past, the transfer entropy
is asymmetric, as opposed to standard mutual information,
and thus better suited for characterizing directed informa-
tion transfer. This captures the intuition that we are only
interested in information about Y that is explained by X
but cannot be explained by Y ’s own history.

2.3 Sampling problems and solutions
The use of information–theoretic techniques to analyze

real-world point processes has been studied almost exclu-
sively in the context of neural activity[28]. Therefore, it is
in this literature that the problems associated with estimat-
ing entropies for sparse point process data have been ex-
plored most thoroughly. The fundamental problem is that,
in the absence of sufficient data, estimating entropies from
probability distributions based on binned frequencies leads
to systematic bias [20]. Intuitively, if we have k bins of his-
tory then we need O(2k) pieces of data in order to sample
all possible histories.

A variety of remedies are available and we make use of
several. Of course, we can simply pick k to be small, but if
we take too coarse grain of a sample, we might omit relevant,
predictive information. The most obvious solution is to re-
strict ourselves to situations where we have adequate data.
In the subsequent analysis, we filter out users that are be-
low a certain activity level. In practice, however, raising our
activity threshold high enough to guarantee convergence of
entropies would eliminate almost all users from our dataset.

The next remedy to apply is to estimate the average mag-
nitude of the systematic bias that results from using sparse
data and subtract it from our estimate. When we calcu-
late the conditional entropies in Eq. 3, we subtract out the
Panzeri-Treves bias estimate[21]. For discrete random vari-
ables A,B, the first order estimate in the bias of H(A|B)
due to finite sample effects is,

BIAS[H(A|B)] =
−1

2N ln(2)

X
b∈dom(B)

(Nb − 1), (4)

where N is the number of joint samples of A, B and Nb is
the number of unique variables a ∈ dom(A) observed for a
given b ∈ dom(B). Therefore, when we calculate conditional
entropies as in Eq. 2, we will always subtract the bias es-
timate in Eq. 4. Figure 2 illustrates the effect of this bias
correction as a function of amount of data collected.

The definition in Eq. 3 implicitly depends on bin widths
specified by the δi’s. The simplest procedure, and the one
taken in the neural spike train literature, is to set all the
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bins to have equal width. We have a great deal of pre-
existing empirical knowledge about human activity that can
help us improve on this method. Many studies have shown
that humans exhibit a heavy tail in the distribution of their
response times to communications[4]. This implies that bins
accounting for recent activity should be narrower while bins
accounting for older activity can be wider. We can even base
these bin widths on measured response times, if such data
is available. Using more informative bins means we can use
fewer bins, reducing the effect of sampling problems.

A final technique to reduce bias is discussed in [28] and
uses a class of binless entropy estimators. These techniques
carry their own mathematical difficulties and we will not
consider them here. With these tools in hand, we can pro-
ceed to use information transfer to analyze user activity in
social media.

3. RESULTS
In this section we report the results of our experiments

with both synthetic data and real world data from Twitter.
The ultimate goal is to infer information transfer between
agents in the network by analyzing their patterns of activ-
ity. Patterns of activity could include many things including
timing, content, and medium of messages. We focus only on
the timing of activity on Twitter (tweeting of URLs). In
principle, our analysis could be extended to include more
complex information, but, as discussed, this would require
either more data or better methods for dealing with sparse
data.

Figure 1: If we have influence from X → Y but not
vice versa, the asymmetry in the information trans-
fer correctly reflects the direction of influence. In-
formation transfer plotted for a single pair of users.

We test and validate our ability to infer information trans-
fer from patterns of activity in two ways. First, while our
information–theoretic analysis of social network data uses
only timing of activity, the data includes unique identifiers
allowing us to track the flow of information through the net-
work. On Twitter, we track specific URLs. We can use the
spread of these trackable pieces of information to confirm
that the information transfer inferred solely from the timing
of activity corresponds to actual exchanges of information.

For the synthetic data, we dictate that an agent’s activ-
ity depends on its neighbors’ activity in some fixed way.
This allows us to check how well information transfer recov-
ers the hidden dependence structure from activity patterns
alone. For instance, even without knowing anything about

the network structure, we find that a sufficient amount of
data allows perfect reconstruction of the underlying network.

(a)

(b)

Figure 2: Mean and std for the estimate of informa-
tion transfer averaging over 200 pairs of users with
γ/μ = 0, 2 as a function of time. (a) Results without
correcting for bias and (b) with Panzeri-Treves bias
correction[21].

3.1 Experiments with synthetic data
To form a better understanding of different factors im-

pacting information transfer, we performed extensive exper-
iments with synthetically generated data. Ideally, we would
like our synthetic data to reflect, in a tunable way, the chal-
lenges we face with real world data. These challenges in-
clude a long tail for human response times, heterogeneous
response to neighbors’ activity, background noise affecting
node dynamics, incorrect data, and insufficient data. We
explore these challenges first for a pair of nodes, and then
for an entire network.

We model user activity as a coupled, non-homogeneous
Poisson point process, similar to a typical self-exciting point
process [18]. Suppose that we have two nodes and a single
link from X → Y . We can characterize Y ’s activity in terms
of a time-dependent rate. We define St

X ≡ SX ∩ [0, t), that
is, the activity for X until time t.

λY (t|St
X) = μ + γ

X
ti∈St

X

g(t− ti) (5)

The probability of a spike in an interval of time (t, t + dt)
is just λY (t)dt. The first term, μ, represents a constant
rate of background activity. The second term represents a
time-dependent increase in the rate of activity in response to
activity from a neighbor. The strength of influence of X is
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parametrized by γ. In practice, we will set the background
rate equal to a constant and vary the relative strength γ/μ
through the parameter γ. The time dependence of the in-
fluence is captured by the function g. We set

g(Δt) = min

 
1,

„
1 hour

Δt

«3
!

to roughly match the observed distribution of re–tweet times
in our Twitter dataset. This also agrees with the observed
fact that the distribution of human response times are char-
acterized by a long tail[4].

Along with a causal network, Eq. 5 defines a generative
model for point process activity. We can efficiently generate
activity according to this model using the thinning method
discussed in [18]. We vary the total amount of data by fixing
the background rate μ = 1 event/day and varying the total
amount of observation time, T . Equivalently, we could have
fixed T and varied the rate of activity. After fixing the
parameters, we can generate data and then use that data to
infer the appropriate probabilities to calculate information
transfer according to Eq. 3.

As discussed in Sec. 2.3, we take a variety of measures
to ensure good estimation. In this case, we directly con-
trol the amount of data through the parameter T . For the
bin widths we choose δ0 = 1 sec, fixing the finest tempo-
ral resolution. For the history we choose wider bin widths
for less recent history. In the synthetic examples we take
the past three hours of history into account by choosing
δ1 = 1 hour, δ2 = 2 hours. Also, it should be assumed
that the Panzeri-Treves bias estimate has been taken into
account, except in Figure 2(a) where we compare results
without bias correction.

Figure 3: A summary of the mean and std of the
inferred value of TX→Y averaged over 200 trials as a
function of the sampling rate, with T = 500 days and
γ/μ = 2.

Note that in the example in Eq. 5, we have allowed X to
affect Y , but not vice versa. As a first test we can generate
some data for a pair of users and then compare TX→Y and
TY →X . In Figure 1, we compare these two quantities when
γ/μ = 2 as a function of the total observation time T .

In Figure 2 we examine the accuracy and convergence of
information transfer estimates as a function of time both
with and without bias correction. We ran 200 trials and plot
the mean and standard deviation of the information transfer
estimate at each time step. Clearly, there is a systematically
high estimate in the low sampling regime, but, even in that
case, higher influence leads to a higher information transfer

Figure 4: Each row represents a different user. Each
line represents an event for that user over a time
period of thirty days. With enough data we could
calculate the information transfer between each pair
of users and recover the unknown network structure
exactly.

on average. The Panzeri-Treves bias correction drastically
reduces, but does not completely eliminate, this systematic
error.

Next, we consider the same scenario, where we generate
X, Y according to some stochastic process, but now imagine
that we do not see all activity. That is, what if we do not see
every event due to limited sampling? This is often the case,
for instance, with Twitter data, where researchers typically
have access to only a small fraction of all tweets, ranging
from 1% − 20%. So we set a sampling parameter f , and
say that for each ti ∈ SX , we only keep that event with
probability f . A summary of how the final transfer entropy,
TX→Y , depends on the sampling rate, f , is given in Figure 3.
We show the results after 500 days to guarantee enough
data to be very close to convergence. We see that sampling
drastically reduces the inferred transfer entropy, destroying
our ability to deduce flow of information.

So far, we have only considered two nodes with a single
link between them. Now, we want to consider a directed,
causal network of N nodes, with some arbitrary connectivity
pattern. We consider a similar stochastic model as defined
in Eq. 5, except now we denote the set of Y ’s neighbors (i.e.,
people who can influence Y ) as N (Y ).

λY (t|St
N (Y )) = μ +

X
X∈N (Y )

γX

X
ti∈St

X

g(t − ti) (6)

To begin we imagine γX = γ for all neighbors, but in general
a node may be affected more strongly by some neighbors
than others. A sample of activity generated according to
this model is given in Figure 4.

The challenge is to take the information given by the ac-
tivity and recover the underlying graph structure. For each
pair of nodes, X, Y , we calculate TX→Y . Then we pick some
threshold T0, and if TX→Y > T0, we consider there to be an
edge from X → Y , otherwise not. We could check our true
positive rate and false positive rate as a function of T0, as
shown in Figure 5(a), for N = 20, γ/μ = 1.0 and time = 450
days. We show an example of the recovered versus actual
network in Figure 5(b), using a threshold picked according
to F-measure.

The previous example was chosen to show what kinds of
errors arise given a weak signal. In general, with either
enough data or strong enough influence, we can perfectly
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(a)

(b)

Figure 5: (a) ROC curve and (b) transfer–entropy
induced graph for the synthetically generated data
described in the text. Threshold is chosen according
to F-measure. Black solid lines correspond to true
positives, red dashed lines to false positives and blue
dotted lines to false negatives.

Figure 6: AUC of the network inferred using trans-
fer entropy as a function of T , with γ/μ = 2, 4.

recover the underlying graph structure. If we consider the
area under the ROC curve (AUC), as in Figure 5(a), then
an AUC of 1 corresponds to perfect reconstruction of the
graph. We summarize the AUCs for random networks with
N = 20 and 〈k〉 = 3, while varying T and γ/μ in Figure 6.

As a final experiment, we can consider the effect of allow-
ing different γ between different pairs of nodes. Again, we
set T = 500 days to ensure that we are close to convergence.
Figure 7 shows that transfer entropy is able to recover the
relative influence well. However, we see that it makes more
sense to consider links that have generally higher informa-
tion transfer, while specific rankings of edges with similar
information transfer probably has little meaning.

Figure 7: Information transfer between pairs of
nodes for varying γ/μ with T = 500 days. The black
line corresponds to the mean information transfer
for a given γ/μ and the shaded region denotes the
standard deviation after 100 trials.

In principle, there are many other effects we could have
considered to make a more realistic synthetic model. Back-
ground and influence rates should vary for different indi-
viduals. There may be periodicity defined by daily, weekly,
and monthly cycles. However, because information trans-
fer makes no model assumptions, it is relatively insensitive
to such details. The main constraint is data, which is why
we focused on sensitivity to amount and quality of observa-
tions.

3.2 Results for Twitter dataset
Twitter is a popular micro-blogging service. As of July

2011, users send 200 million tweets per day. Twitter has
become an important tool for researchers both due to the
volume of activity and because of the easily available tools
for data collection. Twitter’s “Gardenhose” API, allows ac-
cess to 20% − 30% of all tweets.

Unfortunately, as discussed in Sec. 3.1, filtering of data
can lead to a drastic reduction in the measured information
transfer. Instead, the Gardenhose API was used to identify
URLs being tweeted. Then, the search API was used to find
all mentions of these URLs in any tweets by any users. In
this way, the random filtering limitation is avoided, while we
restrict ourselves to the domain of URL posting. Addition-
ally, each URL corresponds to a unique piece of informa-
tion whose movement through the network can be traced.
The data also includes the full social network among “active
users”, in this case, anyone who tweeted a URL in the three
week collection period. The data we used was collected in
the fall of 2010 [10]. The dataset included about 70 thou-
sand distinct URLs, 3.5 million tweets, and 800 thousand
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users. We further filtered our results to “very active” users,
namely, users who tweeted at least 10 URLs during this time
period.

Before we can calculate transfer entropy as presented in
Eq. 3, we need to specify the relevant bin widths. We take
the finest resolution to be δ0 = 1 second, the same resolu-
tion as presented by the Twitter API. For binning of the
history, we used distribution of observed re-tweet response
times to motivate a choice of δ1 = 10 min, δ2 = 2 hours, δ3 =
24 hours. Although we saw a long tail of re-tweet times
stretching into days, our data were insufficient to include
this weak effect. By limiting ourselves to only three bins,
we only have to sample over 8 possible histories. Note that
the activity is for any tweeting of URLs; our calculations
do not make use of the information encoded in the URL.
We then calculate the transfer entropy between each pair of
users who are connected.

The result of this procedure is the construction of a di-
rected, weighted graph, where each edge in the original di-
rected graph is now labeled by the calculated transfer en-
tropy. We can now compare standard measures of influence
to measures based on this weighted graph. The simplest
measure of influence on static graphs is to count the num-
ber of followers a user has. This ignores the fact that not
all followers are the same, nor do followers react in the same
way to different people that they follow. For instance, it
may be that a recommendation from a close friend is worth
more to a person than the same recommendation from five
acquaintances. This problem is only exacerbated by the re-
cent emergence of “followers for pay” services, which seek to
artificially inflate the number of followers to your Twitter
account. In Figure 8, we explore the comparison between
out degree and transfer entropy and we find that although
on average people with more followers have more transfer
entropy, two people with the same number of followers may
have vastly different influence as measured by transfer en-
tropy.

Figure 8: For each user, we compare the number
of their followers to their cumulative outgoing infor-
mation transfer. Note that the outgoing informa-
tion transfer may differ by an order of magnitude
for people with the same number of followers.

To verify that transfer entropy is a meaningful quantity,
we could test how well the transfer entropy, based only on
the timing of activity, matches the measured flow of infor-
mation, as determined by tracing specific URLs. To that
end, for each pair of connected users, X → Y , we count how
many specific URLs were first tweeted by X and then sub-

sequently re-tweeted by Y . This number is compared to the
transfer entropy in Figure 9. The existence of even a weak
correlation is surprising considering the limited amount of
data and the fact the transfer entropy is not making use
of URL or re-tweet information at all. We also note that
while a high number of re-tweets implies high information
transfer, a low number of re-tweets is uncorrelated with in-
formation transfer. This makes sense because information
transfer measures influence that is not necessarily in the
form of re-tweets; we will give some examples below.

Figure 9: If the number of URLs that were first
tweeted by user X and subsequently tweeted by X’s
follower, Y, is high, then the calculated transfer en-
tropy between X and Y is also high, even though
transfer entropy is calculated only from the timing
of activity, without regard for specific URLs. Note
that the converse is not true. Pearson’s correlation
coefficient is 0.22.

Table 1 shows the edges with the highest information
transfer. These accounts are all solely for the purpose of
promotion. Looking at the top example, for instance, re-
veals that these two accounts will tweet exactly the same
message within a few seconds of each other (in a random
order, hence both orderings show up in the list). In the text
of their tweets neither account uses re-tweets or an “@” for
attribution. Twitter specifically forbids indiscriminate auto-
matic re-tweets and has a policy against duplicate accounts.
Many of the accounts on this list have since been banned
by Twitter. Figure 10 gives some examples of how the ac-
tivity looks for pairs of users with high information trans-
fer. We picked one example with high information transfer
(188 · 10−6) but lower activity for comparison. Unfortu-
nately, the differences in tweeting times are typically too
small to be distinguishable on the plot.

To see more complex examples, we restrict ourselves to
the top 1000 edges according to information transfer. Then
we look at the largest connected components. The largest
component involved 600 users in Brazil, most of whom had
multiple tweets of the form “BOMBE O SEU TWITTER,
COM MILHARES DE NOVOS FOLLOWERS, ATRAVES
DO SITE: http://? #QueroSeguidores”, where “?” was a
frequently changing URL. Google translates this as “Pump
up your Twitter, get thousands of new followers, link to this
site: http://? #IWantFollowers.” Clicking on some of these
links suggests that this a “followback” service. You agree to
follow previous users who have signed up and in return other
users of the service follow your account. It also appears from
the text that you are required to re-tweet the link to get your
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User Follower I.T.(·10−6)

Free2BurnMusic Free2Burn 4328
Earn Cash Today income ideas 1159
BuzTweet com scate 1006
Free2Burn Free2BurnMusic 939
Kamagra drug2 sogradrug3 929
sougolinkjp sogolinksite 903
kcal bot FF kcal bot 902
nr1topforex nr1forexmoney 795
wpthemeworld wpthememarket 709
viagrakusurida viagrakusuride 679
BoogieFonzareli Nyce Hunnies 668
A tango kobuntango 662
Kamagra drug2 sogra drug3 638
dti affiliate kekkonjyoho 630
Best of Deals Orbilook SMI 621
viagrakusurida kamagra 100mg3 561
kcal bot Family Mart 542
kamagra 100mg3 viagrakusuride 535
viagra drug baiagura drug 532
kcal bot Seven Eleven 530

Table 1: List of edges with highest information
transfer. All are promotional accounts and many of
the accounts have been banned since the data were
collected.

Figure 10: Timing of tweets for three pairs of users
with high information transfer. From bottom to top:
Free2BurnMusic, Free2Burn, Earn Cash Today, in-
come ideas, Random Nyanko, amechihua.

followers. Some other examples of high information transfer
clusters are shown in Figure 11.

(a)

(b)

(c)

Figure 11: (a) This cluster appears to be non-
automated, and revolves around fandom of singer
Justin Bieber. (b) The cluster of drug spam ac-
counts. (c) An account which aggregates soccer
news by following and re-tweeting different regional
soccer accounts.

We consider another advantage of measuring influence
through information transfer by looking at two users who
had almost the same outgoing transfer entropy (∼ 0.025, in
the top 20 for individuals in our dataset), but vastly dif-
ferent behavior of followers. The first Twitter account is
SouljaBoy, a prominent American rapper who is also very ac-
tive in social media. The second account is “silva marina”,
the Twitter account of Marina Silva, a popular Brazilian
politician. This data was taken during the run up to the
Brazilian presidential election, in which Marina Silva was a
candidate; she received 19.4% of the popular vote. At first it
seems surprising that SouljaBoy, who has six times the fol-
lowers, should have a similar outgoing transfer entropy to a
politician known mostly in one country and with fewer than
a million Twitter followers. On the other hand, Figure 12
reveals the reason for this disparity. Marina Silva may have
fewer followers, but her effect on them tended to be much
stronger. Marina Silva’s activity tended to be a better pre-
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dictor of her followers’ behavior than Soulja Boy’s activity
was for his followers.

Figure 12: A histogram showing the probability dis-
tribution of outgoing transfer entropy to followers
of two different Twitter accounts.

The strength of Marina Silva’s influence along with the
serendipitous timing before the Brazilian elections suggests
another intriguing possibility. It seems likely that not only
does transfer entropy vary for different followers, it may vary
over time as well. This suggests that a dynamic estimate of
information transfer could detect changes in the importance
of individuals in the network.

4. RELATED WORK
The general problem of identifying influence in social net-

works has traditionally centered on topological measures like
PageRank[19, 15] and other centrality measures[11]. Recent
work has highlighted the insufficiency of structural measures
alone to predict dynamics. For instance, in [16] they find
that the number of followers and PageRank for a user on
Twitter does not correlate well with the number of retweets
that user can inspire. Retweets and mentions of a user were
considered in [8] with the conclusion that these dynamic
measures are not related to the number of followers for that
user. In [3], they find that past influence on immediate
neighbors is the most important predictor of how large of
an information cascade will result from a user’s tweet. In
[25], they develop a heuristic which calculates influence tak-
ing into account the fact that many users are passive and will
not be moved to retweet under any circumstances. In our
framework, passivity is taken into account automatically:
users who are always inactive have low entropy, which up-
per bounds the possible information transfer to them.

While we have chosen transfer entropy as a nonlinear,
model–free approach to time series, Granger causality dis-
covers causal relationships in time series data via linear re-
gression [13]. It corresponds to transfer entropy for Gaus-
sian random variables [5]. Granger causality has been suc-
cessfully applied to the problem of prediction for temporal
graphs [2, 17].

Using information–theoretic techniques for inference prob-
lems has a long, rich history[9], but we will briefly mention
just the most mathematically analogous results. Neurosci-
entists have found that the electrical signal for individual
neurons are characterized by sequences of spikes at specific
times [6]. The goal is to “decode” the spikes to understand
how the brain represents information. To that end, neuro-
scientists have turned to entropy as the most general way
to represent information [28]. The general strategy is to
present different random stimuli and then measure the mu-

tual information between the stimuli and the pattern of neu-
ral spikes. However, applying transfer entropy in particular
has also been considered in [12], which showed that transfer
entropy could produce information about directed flow of
information that was not captured by standard correlation
measures.

Most of the results invoking transfer entropy consider con-
tinuous random processes [14], rather than stochastic point
processes. For instance, an EEG produces a continuous sig-
nal by monitoring the average electrical response for thou-
sands or millions of neurons at a time and was considered
in the context of transfer entropy in [23].

Although we have taken information transfer to mean
transfer entropy as defined in Eq. 3, one can certainly imag-
ine other information–theoretic measures. Schreiber’s origi-
nal paper considers a comparison with time delayed mutual
information[26]. A different causal measure called the di-
rected information was used in [24] to recover causal net-
works among neurons. Some of the subtle differences in
these measures are considered in [14].

5. CONCLUSION
We have presented a novel information–theoretic approach

for measuring influence. In contrast to previous studies that
focused on aggregate measures of influence, the transfer en-
tropy used here allows us to characterize and quantify the
causal information flow for any pair of users. For a small
number of users, this can allow us to reconstruct the network
of connections from user activity alone. For large networks,
this allows us to identify the most important links in the
network.

The method used here for calculating information transfer
did not require any explicit causal knowledge in the form of
re-tweets or other textual information. On the one hand,
this may be an advantage in situations where such informa-
tion is either missing or misleading, as was the case in the
example for marketers on Twitter. On the other hand, we
may be neglecting valuable information, and in the future
we would like to incorporate textual information in more
sophisticated ways but still within an information–theoretic
approach. Although this should be straightforward in prin-
ciple, in practice entropy based approaches require large
amounts of data. More complex signals require a commen-
surate increase in data. Therefore, the other main thrust
of future work should be towards reducing data required
for entropy estimation, either through better bias correction
or through binless approaches[28]. Another approach is to
adaptively pick bin resolution depending on a user’s activity
level. This would also avoid coarse-graining of information
for extremely active users.

Because this measure has a rigorous interpretation in terms
of predictability, it allows us to easily understand results
that might otherwise seem anomalous. For instance, in one
example we found that Marina Silva, the Brazilian pres-
idential candidate, had high information transfer both to
and from a Brazilian news service. Neither Twitter account
ever retweeted or explicitly mentioned a tweet of the other.
However, there was an external cause, the upcoming debates
and elections, that explained both of their activities. With-
out knowing this external cause, it is entirely consistent to
say that either user’s activity could help you predict the
others. In fact, it may be possible to use this bi-directional
predictability to identify external causes in the first place.
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The possibility of hidden causes highlights a shortcom-
ing of using transfer entropy — or Granger causality — as
a causal measure. A more stringent definition of causality
would use the effect of randomized interventions as a causal
measure [22], but the possibilities for intervening in a social
network are limited [1]. Although in some cases it may be
feasible to rule out hidden causes even with purely obser-
vational studies, the requirements may be too stringent to
allow results at the level of individuals [27]. Transfer entropy
strikes a balance between making few implicit assumptions
about the underlying process while nevertheless allowing us
to make useful statements about the dynamics of specific
edges in the network.

Another result that is easy to understand in the context
of predictability is the high incidence of “spam” in our re-
sults. This is no surprise since a large amount of spam is
produced by automated systems and these systems are in-
trinsically very predictable. Although identifying spam is a
natural application of our analysis, some human behavior
stood out as well. Diehard fandom also leads to quite pre-
dictable behavior. We also expect conversations to have a
regular temporal activity pattern that could be easily iden-
tified by transfer entropy. However, only collecting tweets
with URLs probably included more promotional tweets and
excluded casual conversations.

Because information-theoretic measures make no assump-
tions about the structure of the underlying process, they are
likely to be most valuable for data exploration. Looking at
Fig. 10, we can instantly see that spammers have a specific
temporal pattern that can likely be captured with a sim-
ple activity model. Transfer entropy in this case could be
viewed as a tool to highlight important phenomena so that
they can be modeled explicitly. A deeper, iterative analy-
sis could then use information transfer to search for other
patterns that are not explained by this initial model.

Many existing notions of influence are static, ad hoc, or
only apply in aggregate. Information transfer is a rigorously
defined, dynamic measure capable of capturing fine-grain
notions of influence and admitting a straightforward predic-
tive interpretation. Many of the mathematical techniques
necessary have already been developed in the neuroscience
literature and we have shown how to usefully adapt them to
a social media context.
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