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ABSTRACT

Cellular networks employ a specific radio resource management
policy distinguishing them from wired and Wi-Fi networks. A
lack of awareness of this important mechanism potentially leads
to resource-inefficient mobile applications. We perform the first
network-wide, large-scale investigation of a particular type of ap-
plication traffic pattern called periodic transfers where a handset
periodically exchanges some data with a remote server every t sec-
onds. Using packet traces containing 1.5 billion packets collected
from a commercial cellular carrier, we found that periodic transfers
are very prevalent in today’s smartphone traffic. However, they
are extremely resource-inefficient for both the network and end-
user devices even though they predominantly generate very little
traffic. This somewhat counter-intuitive behavior is a direct con-
sequence of the adverse interaction between such periodic trans-
fer patterns and the cellular network radio resource management
policy. For example, for popular smartphone applications such as
Facebook, periodic transfers account for only 1.7% of the overall
traffic volume but contribute to 30% of the total handset radio
energy consumption. We found periodic transfers are generated
for various reasons such as keep-alive, polling, and user behavior
measurements. We further investigate the potential of various
traffic shaping and resource control algorithms. Depending on
their traffic patterns, applications exhibit disparate responses to op-
timization strategies. Jointly using several strategies with moderate
aggressiveness can eliminate almost all energy impact of periodic
transfers for popular applications such as Facebook and Pandora.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design – Wireless Communication; C.4 [Performance

of Systems]: Measurement Techniques

Keywords

Periodic transfers, Periodicity Detection, Smartphone Applications,
Radio Resource Optimization, RRC State Machine, 3G Networks

1. INTRODUCTION
Cellular systems operate under restrictive constraints of resources

including radio channel capacity, network processing capability,
and handset energy consumption. A major U.S. carrier reported
a growth of 5000% of its data traffic over 3 years [12], and

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

all U.S. carriers are expected to spend $40.3 billion on cellular
infrastructures in 2011 [1].

To efficiently utilize the limited resources and balance their
incurred tradeoffs, cellular networks employ a resource manage-
ment policy distinguishing them from wired and Wi-Fi networks.
In particular, there exists a radio resource control (RRC) state
machine [17] that determines radio resource usage based on ap-
plication traffic patterns, affecting device energy consumption and
user experience. A lack of understanding of such an important
cellular resource control mechanism potentially leads to cellular-
unfriendly (i.e., resource-inefficient) mobile applications due to the
poor interaction between their traffic pattern and the state machine.
Equivalent resource control mechanisms with similar tradeoff con-
siderations are deployed by different types of cellular networks
such as UMTS [17], EvDO [11] and 4G LTE networks [20].

This paper presents the first network-wide, large-scale measure-
ment of a popular type of mobile application traffic pattern called
periodic transfers during which a handset (i.e., a mobile device)
periodically exchanges some data with a remote server. Our study
is motivated by the following two key observations.

First, periodic transfers can be extremely resource-inefficient

as they are small in size and short in duration relative to the
periodicity. This is explained by the aforementioned cellular-
specific resource management policy: unlike Wi-Fi and wired
networks, in cellular networks, the release of radio resources (i.e.,

demoting a handset from a high to a low-power state) is controlled
by inactivity timers. The timeout value itself, also known as the tail

time [10, 18], can last up to 17 seconds. Therefore, even for sending
a tiny data burst containing one packet, a handset has to occupy the
radio channel for at least 17 seconds due to the tail effect, thus
wasting scarce radio resources and handset energy. Transferring
such small bursts periodically (e.g., every one minute) leads to even
more serious resource inefficiencies.

Second, periodic transfers are typically delay-tolerant in that
each periodic transfer instance is not initiated by a user. The typical
way of generating them is to use a software timer with a fixed peri-
odicity (e.g., java.util.Timer.scheduleAtFixedRate()

for Android). Therefore, there exists some leeway for smartphone
applications to more intelligently reshape their traffic patterns to
better match the characteristics of the network’s radio resource
management and thereby reduce their resource impact. Examples
of such reshaping include adjusting the timing of each periodic
transfer instance to overlap with user-triggered data transfers. Our
analysis shows that by effectively applying traffic shaping tech-
niques for periodic transfers, the network-wide resource impact of
Facebook and Pandora can be reduced by up to 30% with very little
impact on user experiences.

Cellular periodic transfers have been reported by pervious works [19,
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15], which revealed that periodic transfers can be potentially ex-
tremely resource inefficient. In this paper, we perform a more
in-depth and comprehensive study to quantitatively understand the
following important characteristics:

• Their network-wide prevalence in today’s cellular traffic;

• Their impact on radio resources and handset battery life

for commercial cellular networks;

• Their application-level semantics;

• Opportunities to make them more resource-efficient.

None of the four aspects was addressed by previous work, and
we investigate all of them in this measurement study. They are
important to study because the findings will provide insights on
how to fundamentally eliminate resource inefficiency caused by
suboptimally scheduled traffic patterns, beyond periodic transfers.
We detail our contributions as follows.

I. The first measurement of cellular periodic data transfer

behavior in the wild (§4). Based on our measurement data consist-
ing of 1.5 billion packets of UMTS (Universal Mobile Telecommu-
nications System) traffic involving millions of users, we performed
a detailed characterization of periodic transfers using a lightweight
and robust periodicity detection algorithm. Our findings indicate
that (i) periodic transfers are very prevalent in today’s smartphone
traffic as they occur in at least 20% of sessions longer than 1 minute
within the dataset, (ii) periodic transfers are small and short with
the median transfer size of 1.1KB and 90% of transfers shorter
than 7 seconds, and (iii) the value of 60 seconds dominates the
periodicity, which is likely to be set by developers in an ad-hoc
manner. None of the above findings were previously known.

II. Exploration of the origins for periodic transfers (§5). This
is a prerequisite for determining how to optimize such transfers
without impacting any application semantic. By locally collecting
and analyzing smartphone application traces, we found periodic
transfers are caused by multiple factors such as polling, keep-
alive messages for push-based services, advertisement transfers,
and user-behavior measurement. In particular, we found popular
applications that either unnecessarily (e.g., Facebook) or aggres-
sively (e.g., Pandora and Textfree) issue periodic transfers, leading
to significant waste of radio resources and handset energy.

III. Quantitative analysis of network-wide resource impact

of periodic transfers (§6). Using the large dataset, we found that
for popular applications such as Facebook and Pandora, periodic
transfers account for less than 1.7% of traffic volume while their
resource impact is as high as 30%. Even at the scope of all cellular
data traffic for all applications, their radio energy impact (8%)
is 20 times of their traffic volume contribution (0.4%). We have
informed Pandora and Facebook of the problem caused by periodic
transfers, and the responses were encouragingly positive [2].

IV. Detailed study of the effectiveness of optimization strate-

gies on periodic transfers (§7). There exist various data schedul-
ing, traffic shaping, and radio resource control algorithms for
reducing resource consumption in cellular networks [9, 10, 15,
6, 18]. These strategies with critical tunable parameters incur
complex yet important tradeoffs, which, although qualitatively
known, are not quantitatively explored. To fully understand such
tradeoffs, we quantify the effectiveness of various optimization
strategies on periodic transfers (e.g., scheduling them flexibly by
overlapping them with non-periodic transfers). Our results indicate
that jointly using multiple strategies with moderate aggressiveness
can eliminate almost all energy impact (30%) of periodic transfers
for Facebook and Pandora applications while incurring fewer side
effects than aggressively employing one single strategy does. Such
an approach greatly improves the battery life for end users and
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Figure 1: RRC State Machine of a large UMTS carrier in the U.S.

The radio power consumption was measured by a Monsoon power

monitor [3] on a Google Nexus One (HTC Passion) smartphone. More

details can be found in [17].

could lead to tremendous savings for cellular companies that invest
billions of dollars each year on cellular network infrastructures [1].

Paper organization. §2 summarizes related work. §3 provides
the background. We characterize cellular periodic transfers and
their origins using a large dataset from a commercial UMTS carrier
in §4 and §5. We identify the resource impact of periodic transfers
in §6 and show the resource improvement brought by various
optimization strategies in §7 before concluding the paper in §8.

2. RELATED WORK
Cellular periodic transfers were reported by the ARO (mobile

Application Resource Optimizer) tool [19] that provides a platform
for analyzing interactions between radio resource management and
mobile applications. In [19], as a case study of a typical usage
scenario, we used ARO to analyze locally collected Pandora traces
to discover its periodic transfer behavior and resource inefficiency.
We found from three Pandora traces that periodic data transfers
only carry 0.2% of total bytes, but they account for 46% of total
radio energy consumption and 40% of radio resource usage. Recent
work by Kononen et al. [15] also identified the potential resource
inefficiency of periodic transfers (without quantifying it) and pro-
posed scheduling algorithms that reduce their energy consumption
by up to 50%. Our study goes beyond previous works by sys-
tematically investigating the network-wide prevalence, application
semantics, resource impact, and optimization of cellular periodic
transfers.

Our study builds on previous work in measuring and optimizing
cellular resource consumption. Previous work [17] characterizes
the resource impact of the RRC state machine by analyzing a
different dataset collected from a commercial UMTS network. Fur-
ther, there exist various traffic shaping (e.g., piggyback, batching,
TailEnder [10], Intentional Networking [14], Time Alignment [15])
and radio resource control algorithms (e.g., fast dormancy [6] and
TOP [18]) for reducing resource consumption for cellular data
transfers. We detail most of them in §7.1. In this study, we
quantify the tradeoffs incurred by these techniques to maximize
their efficacy on traffic patterns of periodic transfers.

3. BACKGROUND
Here we provide sufficient background, focusing on the popular

3G UMTS network where we obtained our measurement data.

3.1 The Cellular RRC State Machine
To efficiently utilize the limited radio resources, the UMTS

radio resource control (RRC) protocol introduces a state machine
associated with each handset. Typically there are three RRC states:
IDLE (the default state when a handset is turned on, with no radio
resource allocated), DCH (the high-power state enabling high-
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Figure 2: Radio energy breakdown for transmitting a small burst. A

and B are two small HTTP objects of 1KB and 9KB, respectively.

speed data transmission), and FACH (the low-power state allowing
only low-speed data transmission). Figure 1 shows the RRC state
machine of one large commercial U.S. 3G UMTS carrier whose
state transition model was inferred by previous work [17]. As
illustrated, state promotions (going from a low-power to a high-
power state) are triggered by user data transmission in either direc-
tion. State demotions (going in the reverse direction) are triggered
by two inactivity timers configured by the RAN (Radio Access
Network). At the DCH state, the RAN resets the DCH→FACH

timer to a constant threshold T=5 seconds whenever it observes
any data frame. If there is no user data transmission for T seconds,
the DCH→FACH timer expires and the state is demoted to FACH.
The FACH→IDLE timer uses a similar scheme.

Promotion Delays and Tail Times distinguish cellular networks
from other types of access networks. An RRC state promotion
incurs a long latency (up to 3 seconds) during which tens of control
messages are exchanged between a handset and the RAN for
resource allocation. A large number of state promotions increase
signaling overhead at the RAN and worsen user experience [7]. In
contrast, state demotions take negligible time, but they incur tail

times that cause significant waste of resources [10, 18]. A tail

is the idle time period matching the inactivity timer value before
a state demotion. During the tail time, a handset still occupies
transmission channels and WCDMA codes, and its radio power
consumption is kept at the corresponding level of the state. Due
to the tail time, transmitting very small amount of data can cause
significant radio energy and radio resource consumption (§3.2).

Other Types of Radio Access Networks. Promotion delays
and tail times also exist in other types of cellular RAN including
GPRS/EDGE [5], EvDO [11], and 4G LTE networks [20]. For ex-
ample, in 4G LTE networks, there are two RRC states: RRC_IDLE

and RRC_CONNECTED (the low-power state is eliminated) [8].
We measured the inactivity timer from RRC_CONNECTED to
RRC_IDLE to be 11.6s for a large LTE carrier in the U.S.

3.2 Small Data Transfer: 3G vs WiFi
We compare radio energy overhead of small data transfer for 3G

and Wi-Fi to reveal the resource inefficiency of cellular periodic
transfers, which consist of evenly spaced small data bursts. For
3G, we assume the handset is at IDLE state before transmitting
a burst. Therefore the total radio energy consists of four parts:
EPromo (the IDLE→DCH promotion energy), E3G-Data (the energy
for transferring the actual data), EDCH-Tail (the DCH tail energy),
and EFACH-Tail (the FACH tail energy). For Wi-Fi, the radio energy
consists of EWiFi-Data and EWiFi-Tail, which are the energy for the data
and the short tail, respectively.

We measured radio energy consumption for small data transfers
by performing controlled local experiments. We set up an HTTP
server hosting two small objects A and B, whose sizes are 1KB
and 9KB, respectively (the median size of periodic transfers is
1.1KB as measured in §4.3). Then we used a Google Nexus
One phone to fetch both objects for 20 times, making sure no
caching takes place. Meanwhile, we recorded both power traces
(using a Monsoon power monitor [3] with a sampling rate of 5,000

Hz) and packet traces (using tcpdump) whose timestamps were
synchronized beforehand. We then correlated power traces with
packet traces so that the energy consumption of each component
(promotion, data and tail) could be accurately computed. All
experiments were performed when the signal strength was good
and stable. To determine the 3G radio power, we tried to keep
other device components consuming constant power (e.g., keeping
the screen at the same brightness level). Then the 3G radio power,
which contributes to 1/3 to 1/2 of the total handset power [19], can
be approximated by subtracting the constant power baseline at the
IDLE state (420 mW) from the overall handset power consumption
reported by the power monitor.

Figure 2 plots the energy breakdown. Clearly the state promotion
and tail time incur significant energy overhead for transmitting a
small burst. For transferring Object A (B), 97.0% (94.3%) of radio
energy belongs to EPromo, EFACH-Tail, or EDCH-Tail. The Wi-Fi energy
consumption is significantly less than that for 3G, because (i) Wi-
Fi has smaller RTT and higher data rate than 3G, thus the data
transfer time for Wi-Fi is much shorter, (ii) the Wi-Fi radio power
(300 mW) is also smaller than 3G (650 mW), and (iii) Wi-Fi has
a much shorter tail time (250 ms) and negligible state promotion
delay. In our experiments, E3G-Data is 22 (31) times of EWiFi-Data

for transferring Object A (B). When promotion and tail energy are
taken into account, the disparity is even as high as 140 times.

Implications on periodic transfers. Periodic transfers are
usually short in duration and small in size. This is not an issue
for wired or Wi-Fi networks. For cellular networks, however,
as demonstrated by our local experiment, due to their promotion

delays and tail times, periodic transfers may incur significant

resource inefficiency.

4. CHARACTERIZING CELLULAR

PERIODIC TRANSFERS IN THE WILD
This section characterizes cellular periodic transfers using packet

traces collected from a large UMTS carrier in the U.S.

4.1 3G Measurement Data
We analyzed a large packet header trace collected from a large

3G UMTS carrier in the U.S. for smartphones on Dec 29, 2010.
The collection point is one GGSN (Gateway GPRS Support Node),
and traffic from/to a subset of SGSNs (Serving GPRS Support
Node) served by the GGSN are captured without any user, protocol,
or flow-based sampling. The trace contains 1.5 billion packets
continuously captured between 15:49 EST and 17:04 EST. We only
recorded IP and transport-layer headers and a 64-bit timestamp for
each packet, without any subscriber IDs or phone numbers, due to
concerns of user privacy.

The major limitation of the dataset is its finite duration of 1.25
hours due to the storage limitation (1 Terabytes) although to our
knowledge this is so far the cellular packet trace with the largest
traffic volume. As recently reported by [23] using an aggregated
one-week cellular dataset involving 600K subscribers and 22K
smartphone apps, during daytime (9am to 5pm), traffic volume of
most application categories remains stable (except for sports apps).
We therefore expect our trace provides a largely representative
snapshot of smartphone traffic patterns. Also note that the trace
duration is much longer than the periodicities under investigation.

Subsequently, we extracted sessions from the trace, with each
session consisting of all packets transferred by the same handset
identified through the private client IP address present in the trace1.

1
Private IP addresses of our carrier are very stable. They change only at the

interval of tens of minutes.
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Multiple TCP or UDP flows may be mixed in one session. But
we did not separate them as RRC state transitions are determined
by the aggregated traffic of all applications on each handset. We
used a threshold of 5 minutes of idle time to approximate the
termination of a session. Changing this value to 3 or 6 minutes does
not qualitatively affect the analysis results. We extracted about 2.8
million sessions from the dataset.

4.2 Detecting Periodicities
Performing periodic transfers with periodicity t means com-

municating with a particular server for every t seconds. Our
periodicity detection algorithm takes a session (§4.1) as input, then
focuses on each single server IP at a time to detect the periodicity of
contacting that IP. For simplicity, we do not consider periodically
contacting different server IPs (e.g., contacting IP1 at t=0, IP2 at
t=30s, IP3 at t=60s, etc.) as such cases are rare based on our
observations of periodic DNS lookups (§5). But the algorithm does
consider a case where a handset periodically contacts IP1 for a
while, then switches to IP2. We also allow one session to have
multiple periodicities. This happens when, for example, two TCP
connections carrying periodic transfers coexist.

Why not use previous approaches? There are several existing
techniques for such a common task of finding periodicities. Previ-
ous study [16] directly examines the frequency domain to extract
the “TCP flow clock” (i.e., regular spacing between flights of
packets) by applying DFT on the packet time series then identifying
peaks in the frequency spectrum. Previous work [21] employs
auto-correlation to estimate RTT, which they assume causes equal
spacing between bursts of packets. We found that neither method
works well in our scenario because our interested periodicities
(e.g., 0.05Hz∼0.003Hz) have much fewer samples than RTTs
(5Hz∼1Hz) do due to finite duration of sessions. ARO [19], which
only analyzes short locally collected trace samples, uses a very
simple approach by enumerating all n(n−1)/2 intervals in a time-
series of n packets, incurring unacceptable complexity for our large
dataset involving millions of long-lived sessions.

We instead propose a simple heuristic-based approach to ef-
fectively detect such “macroscopic” periodicities by exhaustive

search. For each server IP i presented in the input session, we

perform three steps to find the periodicity and periodic transfers
associated with i (if exist). (i) Convert the continuous timestamps
into discrete time slots to reduce noises and to speed up the search
process. (ii) Search for repetitions of slots (containing packets of
server i) spaced by a fixed timing gap t. Each of such detected slots
is a “periodic seed” and t is the periodicity. (iii) Extract periodic
transfers based on the periodic seeds. We now detail the three steps
illustrated in Figure 3.

1. Discretize timestamps of packets of i into a binary array
in which each slot has a fixed length of ω seconds. In other
words, the k-th slot is marked if and only if there is at least one
packet of i arrived within [ωk, ωk + ω)2. Discretizing packet time
series effectively tolerates noises caused by the network delay and
reduces the computational overhead.

2. Search for the periodicity. The algorithm exhaustively
searches for a periodicity of t slots, which is detected if and only
if two conditions hold. First, we observe at least θ marked slots
spaced by a fixed number of t slots i.e., ∃a such that slot a, a + t,
..., a + (θ − 1)t are all marked. Second, there is no marked slot
between consecutive periodic transfers i.e., ∀0 ≤ p < θ,∀0 < b ≤
q ≤ t− b : slot a+ pt+ q should not be marked. b is a parameter
tolerating the duration of a periodic transfer, which may occupy
several slots from a+ pt− b to a+ pt+ b. We empirically choose
b = t/4 but changing b to t/5 or t/3 has negligible impact on
detection results. If both conditions hold, we mark slots a, a+t, ...,
a+(θ−1)t as “periodic seeds” as indicated by arrows in Figure 3.

3. Identify periodic transfers and their associated packets

for server i. A transfer consists of a succession of packets. In
order to be periodic, a transfer must cover at least one periodic
seed. Quantitatively, as shown in Figure 3b, we first cluster packets
of i into transfers that are separated by at least γ seconds of idle
time. Subsequently, a transfer of i is considered to be periodic if
and only if at least one of its slots is a periodic seed.

The algorithm involves three key parameters: ω (the slot length),
θ (the minimal repetitions to be observed before declaring a peri-
odicity), and γ (the threshold for separating two transfers). Gen-

2
We also mark slot k− 1 and k+ 1 to prevent the algorithm from missing

a periodicity due to the round-off error caused by discretization.
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erally speaking, decreasing ω or increasing θ makes the algorithm
more conservative and more confident in reporting periodicities.
Increasing γ potentially makes identified (periodic) transfers larger
in size and longer in duration. For example, we assume γ = 2ω in
Figure 3b. Increasing γ to 3ω makes Transfer 2 further cover the
rightmost slot. We investigate all above tradeoffs in §4.3.

Evaluation of the detection algorithm is challenging due to the
lack of ground truth although the algorithm itself is intuitive. To
validate our results, we built a program that visualizes the detected
periodicities like Figure 3a. Then we manually inspected 100
randomly sampled sessions with at least one periodicity and 100
sessions with no periodicity detected (we used ω = 750ms and θ
= 4 as justified in §4.3). The overall false negative rate is 3%.
Here a “false negative” means a server IP in a session has obvious
periodic transfer behavior identified by manual inspection but the
algorithm missed it. One limitation of such a manual approach is
that it is difficult to evaluate the false positive rate, which however
is expected to be low due to discovered dominating periodicities
(more than 90%) of 1 minute, 30 seconds, and 2 minutes (§4.3).

4.3 Measuring Periodicities
We apply the periodicity detection algorithm to the 2.8 million

sessions of our dataset, and describe our findings.
How popular are periodic transfers? Figure 4 plots the per-

centage of sessions with at least one periodicity among all long

sessions, whose durations are defined to be at least one minute, for
different (ω, θ) pairs. Such long sessions account for only 35% of
total sessions while they contribute to 98% of the traffic volume.
Figure 4 indicates that the detection algorithm is more sensitive to
θ than to ω. Given that 4 is a reasonable (yet still conservative)
value of θ (justified later), we estimate periodic transfers occur in
about 20% of long sessions. On the other hand, these 20% of long
sessions contain almost 100% of detected periodicities.

Which periodicity values are commonly used? Figure 5 plots
the CDF of detected periodicities for θ = 4 and four ω values.
Figure 6 plots the same distribution for ω = 750ms and four θ
values. The key observation is that a particular value of 60 seconds
dominates the periodicities. Such a one-minute value is likely to
be set by smartphone application developers in an ad-hoc manner.
We also notice small clusters of 20 seconds, 30 seconds, and 2
minutes in Figure 5 and Figure 6. We learn from Figure 5 that the
slot length ω has negligible impact on the periodicity distribution.
However Figure 6 shows the distribution of θ = 3 differs from
those of θ = 4, 5, 6 due to falsely identified small periodicities,
most of which can be eliminated by increasing θ. Doing so
however also reduces true positives. In particular, the algorithm
will miss all periodic transfers with a periodicity of one minute,
which dominates the periodicity distribution, occurring in sessions
shorter than θ minutes. We pick θ = 4 which yields a reasonably
good tradeoff between the accuracy and the coverage, as only about
10% of long sessions are between 3 and 4 minutes.

What are typical periodic transfer sizes? Figure 7 indicates
that when γ, the idle timing gap threshold for separating con-
secutive transfers, is greater than 7 seconds, the 25th, 50th, and
75th percentiles of periodic transfer sizes remain very stable, with
the values of 0.2KB, 1.1KB, and 1.8KB, respectively. Figure 8
confirms that distributions of periodic transfer sizes for γ = 5, 7.5,
and 10sec are almost identical. Therefore, the extracted periodic
transfers are insensitive to γ. We conclude that the vast majority
of periodic transfers are small as 97% of periodic transfers are less
than 10KB. Further, they are short relative to the periodicity in that
90% of them are shorter than 7 seconds (not shown in the Figures).
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Table 1: Applications generating periodic transfers. Periodicities

listed below account for 46% of all detected periodic transfer instances.

Content Provider/ % Periodic
Remarks

Applications Transfers

facebook.com 48.4% Keep connection alive for pushing
andomedia.com 15.5% Pandora’s audience measurement
medialytics.com 4.9% User behavior monitoring

DNS 14.1% DNS lookups
Advertisements 3.3% Advertisement update

gmail.com 1.4% Checking emails
pinger.com 1.4% Polling to fetch updates for SMS

Other 11.1% e.g., checking weather

5. ORIGINS OF PERIODIC TRANSFERS
Understanding the origins of periodic transfers is a prerequisite

for determining how to optimize such transfers without violating
the application semantics. We do that in two steps.

First, we leverage a database containing IP address to content
provider name mappings to understand which applications are
responsible for periodic transfers. The database was generated
by the carrier by examining the “Host” field of HTTP requests
for the same set of SGSNs covered by the packet trace at a
different time period (1.2 hours) on the same day when the packet
trace was collected. Using the database, we found “meaningful”
content providers, from which we can determine the application
information, for IP addresses of 46% of detected periodicities (one
session may contain multiple periodicities). For the remaining
IP addresses, their content provider names (most are host names
of CDN servers) are either useless for inferring the application
information or not present in the database. Table 1 breaks down
the origins of these 46% of periodicities.

Next, we locally collected and analyzed traces for the corre-
sponding Android and iPhone applications to understand why those
applications generate periodic transfers, whose intent can be largely
classified into five categories, which are all delay-tolerant except
for periodic DNS lookups.

1. Keep-alive Messages. Periodic transfers are used to prevent
a TCP connection from being closed by the cellular NAT, whose
timeout is much shorter than the TCP timeout (at least 2 hours by
default [4]). We found when Facebook for iPhone starts, it sends
an HTTP request to facebook.com. The server however does
not send back the response immediately until either (i) a 60-second
timeout is reached or (ii) it has a notification (e.g., a message from
a friend) to be pushed immediately to the client handset. In the first
case, the server sends a keep-alive HTTP response (containing for
(;;);{"t":"continue"}) to prevent a TCP connection from
being shut down by the cellular NAT. When the handset receives
the response, it immediately sends the next request and waits for
the next response by following the same above procedure.

In its chatting mode, Facebook uses an even more aggressive
periodicity of 20 seconds, which is slightly longer than the total
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tail time (17 seconds shown in Figure 1), resulting in (i) a handset
is almost always on the tail, and (ii) an IDLE→DCH promotion is
triggered by each ping when no concurrent traffic exists, leading to
very high signaling overhead.

Recent work [22] carried out local experiments to study NAT
timeout behavior for four large cellular carriers in the U.S. Among
them, three use a long timeout value of at least 20 minutes. The
fourth carrier has the shortest timeout of 255 seconds before a TCP
RST is sent to a handset. In any case, sending a keep-alive message
every 60 seconds is too aggressive and incurs unnecessarily high
resource overhead. We have shared our analysis with developers at
Facebook and the reception has been enthusiastic.

2. Measurements. Mobile applications measure user behavior
or preferences, and periodically send out collected information.
For example, Pandora, the top mobile music streaming application,
performs various audience measurements (e.g., monitor online
listeners’ favorite radio stations) and uploads the measurement data
to andomedia.com every one minute, which is too frequent as
most songs are longer than one minute and Pandora is running in
the background for most of the time. We have informed Pandora of
the problem [2]. Their response was also positive and they agreed
that the periodicity should be increased to at least 2 or 3 minutes
based on their domain knowledge.

3. Polling. Periodic polling is observed in some applications.
For example, Textfree, a popular SMS application, sends an HTTP
request to poll.pinger.com every 20 seconds for querying for
new short messages, and usually gets a “no-new-update” response.
Due to its high energy overhead and delayed response, such a
polling-based design is clearly worse than the push-based scheme
used by, for example, Facebook.

4. Advertisements. Most, if not all, popular mobile advertise-
ment platforms periodically refresh ads embedded in smartphone
applications. For example, by default, AdMob uses a refresh rate
of 60 seconds, while Mobclix aggressively updates the ad for every
15 seconds that is even shorter than the default tail time (17 sec, see
Figure 1), making a handset persistently occupy the DCH or FACH
state whenever the application containing an ad widget is running.

5. Periodic DNS lookups may happen before periodic transfers
described above when persistent TCP connections are not used.
Although handsets have local DNS caches, some content providers
may set DNS TTLs to be small for load balancing (e.g., 30 sec
for Facebook). However, we observe that IP addresses returned
by periodic DNS lookups seldom change for the same host name.
This suggests that DNS-based load balancing is not frequently
performed although content providers have such capabilities.

6. RESOURCE IMPACT
We use the large dataset described in §4.1 to study the resource

impact of periodic transfers detected in §4.2 on the commercial
UMTS network. Three metrics are used to quantify the resource
impact. We leveraged the RRC state machine simulator and the
handset power model used by the ARO tool [19] for computing the
metrics below. The state machine simulator takes a packet trace as
the input. It infers the RRC states experienced by the handset based
on the timing, size, and direction of each packet, according to the
state transition model shown in Figure 1.

• E: the handset radio energy consumption. It is calculated
by associating each RRC state or state promotion an average
power value measured from a particular phone [17, 19]3.

3
We measured power parameters of three handsets: Google Nexus One,

HTC TyTn II, and HTC Dream. They yield similar ∆E values. Here we
present the results using parameters of Nexus One (shown in Figure 1).

Table 2: Impact of periodic transfers at different scopes.

The contribution of periodic transfers.
Study

Traffic
∆E ∆S ∆D

Scope
Volume

Radio Signaling Radio
Energy Overhead Resources

U0: All
0.4% -7.9% -8.9% -6.5%

Sessions

U1: Periodic
0.7% -20.4% -25.3% -15.6%

Sessions

U2:Facebook
1.7% -30.5% -30.4% -30.5%

Sessions (µ=0.5)

U3:Pandora
0.5% -28.7% -35.0% -20.5%

Sessions (µ=0.5)
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Figure 9: Impact of µ on Pandora sessions (U3) in terms of ∆D, ∆S,

and ∆E. A Pandora session is defined more strictly as µ increases.

• S: the signaling overhead. It is quantified by the total state
promotion delay.

• D: the radio resource consumption. It is estimated by the
total DCH occupation time (including the DCH tail time).

To investigate the impact of periodic transfers at different scopes,
we study four session sets U0 toU3 listed in Table 2. U0 is the entire
dataset; U1 refers to sessions that contain periodic transfers (they
may also contain non-periodic transfers); U2 and U3 correspond to
Facebook and Pandora sessions, respectively. It is trivial to identify
sessions belonging to U0 and U1. A session (not necessarily
containing periodic transfers) is considered to belong to U2 if the
fraction of bytes received from or sent to Facebook servers is at
least µ. Pandora sessions (U3) are defined in a similar way. We
pick Facebook and Pandora since they are extremely popular [13]
and both heavily use periodic transfers (§5).

For each study scope Ui, we quantify the resource impact of
periodic transfers by taking the difference of computed metrics
for the original trace and for the modified trace with all periodic
transfers removed. Specifically, the radio energy impact of periodic
transfers is computed as ∆E = (ER − E0)/E0 where E0 and
ER correspond to the radio energy consumed by the original and
the periodic-transfer-free trace, respectively, across all sessions of
Ui. ∆E is negative as removing periodic transfers reduces energy
consumption. The radio resource impact ∆D and the signaling
impact ∆S are defined in similar ways.

The results are shown in Table 2. All results in §6 and §7
were generated using ω=750ms, θ=4 (defined in §4.2 and justified
in §4.3), and µ=0.5. Clearly, there exists tremendous disparity be-
tween the traffic volume and the resource consumption of periodic
transfers, indicating that the state-of-art cellular periodic transfers

are extremely resource inefficient.
As an example, periodic transfers are responsible for only 0.5%

of Pandora traffic (U3), but their network-wide radio energy (∆E),
signaling overhead (∆S), and radio resources (∆D) impact are 40
to 70 times higher. Even at the scope of all cellular data traffic (U0),
their radio energy impact (8%) is 20 times of their traffic volume
contribution (0.4%). Figure 9 shows how µ, controlling how U3

is generated, affects ∆D, ∆S, and ∆E. For both Pandora and
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Facebook, the resource impact of periodic transfers is considerable
(at least 20%) even if µ is as low as 0.2.

7. OPTIMIZING PERIODIC TRANSFERS
Periodic transfers are prevalent but resource-inefficient. For-

tunately, they have predictable periodicities and they are delay-

tolerant in that the application usually has the flexibility over a
time window in scheduling each transfer. There exist various data
scheduling, traffic shaping, and radio resource control algorithms
for reducing resource consumption for cellular data transfers (in
particular, for delay-tolerant transfers). There however, remain
several challenges in applying them effectively. (i) Depending
on the diverse traffic patterns, various optimization strategies may
result in different outcomes. Thus it is not trivial to select the right
strategy for a specific application. (ii) The degree of aggressiveness
of an optimization strategy, controlled by its critical parameters,
often involves complex tradeoffs among handset radio energy,
radio resources, signaling overhead, and user experience. Such
tradeoffs, although qualitatively known, are not quantitatively and
explicitly visible. (iii) Multiple strategies can be jointly applied.
Their interaction can be even more complicated and is not well
understood by previous work. To address these challenges, we
make the aforementioned tradeoffs explicit by:

• Evaluating the effectiveness of traffic shaping and radio
resource control techniques on periodic transfers.

• Determining the level of aggressiveness for resource opti-
mization strategies by systematically exploring their param-
eter spaces.

• Testing the compatibility of multiple optimization tech-
niques jointly applied to periodic transfers.

We next describe several representative optimization techniques
in §7.1 before showing their optimization results in §7.2. Then
in §7.3, we examine in detail the interplay between traffic patterns
and various optimization techniques by performing case studies of
three popular Android applications using locally collected traces.

7.1 Optimization Techniques
We consider four strategies (S2 to S5) below for optimizing

periodic transfers. They can be applied individually or jointly
to the input trace. We denote target transfers as our traffic of
interest (i.e., periodic transfers) to be optimized. The input trace
contains both target and non-target transfers but the optimization
strategies are applied to only target transfers (except for S4). To
our knowledge, S2 to S5 are representative and cover most online

methods for optimizing (periodic) delay-tolerant transfers. They
can be implemented in a generic library of a smartphone OS.

S1: The original trace without modification. This corresponds
to the comparison baseline.

S2: Piggybacking. Target transfers can be shifted earlier, or
be postponed till later, so that they can potentially be overlapped
with non-target transfers, thus reducing the tail time. Clearly, user-
triggered transfers cannot be shifted earlier. But periodic transfers
can be transferred ahead of schedule since applications have com-
plete control on when to initiate them. Assume that originally, a
target transfer T occurs at time t0, then after piggybacking, T can
be transferred at any time between t0 − δ and t0 + δ where δ is a
parameter defining an “elastic” window. If any non-target transfer
happens within (t0 − δ, t0 + δ), then T is piggy-backed with the
earliest non-target transfer. Otherwise T is transferred at t0 + δ.

S3: Batching. In order to reduce the overall tail time, several
periodic transfer instances can be grouped into one single burst.
Applying batching on periodic transfers essentially increases the
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Figure 10: Validating the piggyback optimization S2.

periodicity4. It is performed by (i) creating batching points that
are evenly spaced by k seconds from the first target transfer (k is a
user-specified parameter determining the new periodicity), and (ii)

scheduling each target transfer at its nearest batching point.
S4: Fast dormancy is a recently proposed feature in 3GPP

specifications [6, 17]. Instead of waiting for inactivity timers
to expire, a handset can actively request for an immediate state
demotion to IDLE by sending a special RRC control message to
the radio access network. Fast dormancy can dramatically reduce
the tail time while the potential penalty is increased signaling load
(a positive ∆S) when it is aggressively used [7].

We consider the following algorithm for invoking fast dormancy:
a handset maintains a fast dormancy timer (shorter than and inde-
pendent to the RRC inactivity timers) that is reset whenever the
handset sends or receives any packet. When the timer expires, the
handset invokes fast dormancy to transition to IDLE regardless of
the current RRC state or RRC timer value. Such behavior was
observed on some baseband versions of Android smartphones. Fast
dormancy does not change the traffic pattern. It can either be
globally applied to all traffic, or be selectively used for only target
transfers.

S5: TailEnder [10] schedules transfers to minimize the energy
consumption while meeting user-specified deadlines by delaying
transfers and transmitting them together. It was implemented using
the default parameters described in [10]. It is similar to piggyback
while the major difference is that for TailEnder, a transfer can only
be delayed but cannot be transferred ahead of schedule.

7.1.1 Implementation and Validation
We implemented offline versions of the four optimization strate-

gies, allowing us to systematically exploring the optimization strate-
gies and their parameter spaces using existing traces. Let P be the
input trace and W be one or more optimization strategies. The
offline optimizer computes P1, the modified trace of P according
to W . For validation purpose, we also implemented an online

optimizer for S2 and S3 (§7.1) on a real smartphone (Samsung
Galaxy S running Android 2.2). It initiates requests according to P .
The requests are then scheduled and get transferred on the network
based on the W , resulting in traffic pattern P2. Ideally P1 and P2

should be the same.
We describe how we evaluate W = {S2}. In this example

shown in Figure 10, P contains two series of periodic transfers,
C1 and C2, with the size of each transfer instance of 2 KB. The
periodicities of C1 and C2 are 7 sec and 11 sec, respectively.

4
For some applications of periodic transfers (e.g., using them as keep-

alive messages), batching may cause duplicate transfers, which are
(conservatively) not removed due to the difficulty of identifying them.
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Figure 11: Impact of piggyback (S2).
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Figure 12: Impact of batching (S3).
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Figure 13: Impact of TailEnder (S5).
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Figure 14: Impact of fast dormancy applied

to only periodic transfers (S4).
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Figure 15: Impact of fast dormancy

applied to all traffic (S′

4
).
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Figure 16: Resource savings of jointly using

fast dormancy (the timer is 5s) for periodic

transfers, piggyback (δ=30s), and batching

(increasing the periodicity to 3 minutes).

W = {S2} corresponds to a scenario where transfers of C2 (target
transfers highlighted in red in Figure 10) are piggybacked with C1

(non-target transfers) using an elastic window of δ=8 sec. Figure 10
shows that qualitatively P1 and P2 are very similar in terms of
both traffic pattern and RRC states. Quantitatively, their total DCH
time, FACH time, and promotion delay differ by no more than
3%. Changing the periodicities of C1 and C2 yields similarly
small differences between P1 and P2, which are also similar for
W = {S3} and W = {S2, S3} (S2 and S3 are jointly applied)
with varied parameters. The differences are mainly caused by
network and promotion delays that vary between P1 and P2. The
results indicate our offline optimizers are accurate.

7.2 Optimization Results
We consider the four types of optimizations described in §7.1:

S2 (piggyback), S3 (batching), S4 (fast dormancy applied to only
periodic transfers), S′

4 (fast dormancy for all transfers), and S5

(TailEnder [10]). The results are shown in Figures 11, 12, 14,
15, 13, respectively, for Facebook and Pandora. Similar to §6,
we quantify the positive or negative impact of each optimization
technique using ∆E and ∆S (∆D is well correlated with ∆E)
by comparing two scenarios where the optimization is disabled and
enabled, respectively.

We highlight our findings as follows. (i) As expected, invoking
batching, piggyback, and TailEnder more aggressively reduces
more radio energy and signaling overhead at the cost of potentially
degraded application functionality (e.g., ad transfers may be de-
layed thus affecting real-time ad customization). The performance
of piggyback and TailEnder are qualitatively similar. (ii) The side-
effect of fast dormancy is increased signaling overhead as going to
IDLE too quickly may incur an additional IDLE→DCH promotion
triggered by the next packet. (iii) Blindly applying fast dormancy
on all traffic is not recommended due to its prohibitively high
signaling overhead increased by up to 175% (Figure 15). However,
invoking fast dormancy only at the end of periodic transfers incurs

acceptable signaling overhead while the achieved resource savings
are still significant (Figure 14).

Further, we search combinations of multiple optimization tech-
niques to reveal the merit of combining different strategies. Fig-
ure 16 considers a case where we jointly use batching (increasing
the periodicity to 3 minutes, justified in §5 based on our contact
with Pandora and our knowledge of cellular NAT), piggyback
(δ = 30sec), and fast dormancy for periodic transfers (the timer
is 5 seconds). Combining them essentially means increasing the
periodicity to 3 minutes before piggybacking each periodic transfer
with non-periodic transfers, then invoking fast dormancy at the end
of each (shifted) periodic transfer if possible. Such a combined
scheme eliminates almost all radio energy impact (about 30%) of
periodic transfers for Facebook and Pandora.

To summarize our findings:

• All optimization strategies described in §7.1 effectively re-
duce the resource consumption of periodic transfers by in-
curring diverse tradeoffs.

• By jointly using several optimization strategies with mod-
erate aggressiveness, the saved resources are comparable to
those achieved by aggressively employing one single strategy
with more significant side effects incurred.

7.3 Case Studies using Local Traces
We study three popular Android applications and show how to

optimize their delay-tolerant transfers.

7.3.1 Traces and Experimental Methodology
Table 3 lists the three applications. Pandora is one of the

most popular mobile music streaming applications. Dictionary

corresponds to the top dictionary application on Android Market.
Pocket Express News is a critically acclaimed news application. We
refer to them as Pandora, Dict, and News henceforth. For each
application, we analyze traces collected from five students who
used the application as normal users. Clearly, the recorded traffic
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Table 3: Case studies for three popular Android applications.

Trace Application # Traces Length Usage Scenario Target Transfers

Pandora Pandora Music 3 1.5∼2 hrs Continuously playing the music Periodic measurement (every 1 min)
Dict Dictionary 5 10∼12 mins Looking up an English word every 15 to 30 sec Periodic ad (every 1 min)
News Pocket Express News 5 14∼16 mins Browsing and reading the news articles Ad transfers triggered by user

Table 4: Effectiveness of optimization techniques for the three case study applications.

Resource impact relative to the overall Pandora Dict News

resource consumption of the trace ∆E ∆D ∆S ∆E ∆D ∆S ∆E ∆D ∆S

Impact of target transfers -47.7% -39.2% -57.3% -12.6% -23.9% -9.8% -42.3% -48.3% -42.9%

S2: Piggyback (δ = 30 s) -19.3% -16.7% -18.8% -6.5% -8.6% -6.6% N/A
S3: Batching (every 3 mins) -29.3% -22.0% -34.9% -2.4% +0.3% +2.5% N/A
S4: FD for target transfers (5s) -24.1% +2.1% +8.9% -0.2% +9.4% +12.3% -18.4% +5.9% +11.4%
S′

4
: FD for all traffic (5s) -34.4% +3.1% +12.5% +1.5% +62.3% +64.8% -28.7% +11.3% +17.1%

S5: TailEnder (deadline 60s) -19.7% -15.4% -20.5% -3.1% -3.5% 0.0 -19.1% -19.3% -23.5%
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Figure 17: Traffic pattern examples of (a) Pandora, (b) Dict, (c)

News. Target transfers are marked in red. Refer to Figure 10 for

legends of the RRC states.

patterns are affected by user behavior randomness. We therefore
focus on applications’ most common usage scenarios (Table 3),
which we found resulted in qualitatively similar traffic patterns
among users. We are interested in usage patterns of the applications
for a long period of usage time (at least several minutes) so that the
optimization strategies for delay-tolerant transfers are effective.

7.3.2 Traffic Patterns of the Three Applications
Figure 17 plots traffic patterns and inferred RRC states for the

three applications.
Traffic patterns of target transfers are highlighted in red in

Figure 17. Both Pandora and Dict employ periodic transfers,
which are automatically detected, for every one minute. News

does not use periodic transfers. Instead, its advertisement transfers
(manually labeled by us) are triggered when a user switches to a
different news article or to the headline screen.

Traffic patterns of non-target traffic. As depicted in Figure 17,
non-target traffic for Pandora is sparse and bursty, but each burst
(music streaming) is transmitted using the maximal bandwidth. In
contrast, packets for Dict are more evenly spread out, leading
to a much higher ratio of radio channel occupation time to the
total application usage time (86%). We found this is intrinsic
to the application design of Dict, which makes delay-sensitive
data inefficiently transferred by significantly under-utilizing the
bandwidth, even if user requests are made at a moderate frequency
of every 15 to 30 sec. For News, its ratio of radio channel
occupation time (43%) lies between those of Pandora (21%) and
Dict (86%).

7.3.3 Optimization Results
As summarized in Table 4, overall, the three applications exhibit
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Figure 18: Impact of S4 (fast dormancy for target transfers).

different responses (in terms of resource savings) to optimization
strategies due to their diverse traffic patterns. Note that piggyback
and batching are not applicable to News, whose delay-tolerant
transfers are initiated by a user.

The impact of target transfers. As indicated in Table 4, for
Pandora and News, significant amount of radio energy (at least
42%) and signaling overhead (at least 43%) are spent on target
transfers. For Dict, their contributions are only 12.6% for radio
energy and 9.8% for signaling overhead, although Dict uses the
same periodicity. This is because its non-target transfers already
occupy radio channels for most of the time. Thus injecting target
transfers only marginally increases resource utilization.

The impact of fast dormancy. S4 and S′

4 in Table 4 indicate
that fast dormancy yields significantly different consequences on
the three applications. For Pandora, fast dormancy effectively
reduces resource consumption with very small signaling overhead
(i.e., state promotions) incurred, since the inter-burst time (illus-
trated in Figure 17a) is usually much longer than the fast dormancy
timer value. For Dict, its traffic pattern consists of intermittent
data bursts interleaved with short pauses, many of which are shorter
than the fast dormancy timer. Therefore, invoking fast dormancy
causes high signaling overhead. For example, by applying S′

4, the
total promotion delay increases by 40 sec for one Dict trace of
11 minutes, leading to even a positive value of ∆E. Such an
application-dependent tradeoff is confirmed by Figure 18, which
systematically investigates the impact of fast dormancy on ∆E
(plot a) and on ∆S (plot b), for S4. Aggressively invoking
fast dormancy for target transfers benefits Pandora by bringing
significant reduction of radio energy by up to 40% with signaling
overhead of no more than 5%. On the other hand, fast dormancy
is not applicable to Dict because the cost of achieving a saving of
5% of radio energy is the high signaling overhead of 35%.

The impact of piggyback and batching. For Pandora, S2 and
S3 in Table 4 indicate that both piggyback and batching effectively
save resources (TailEnder is qualitatively similar to piggyback).
For Dict, the resource savings brought by piggyback and batching
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Figure 19: Jointly applying piggyback (varying δ), batching (varying the number of batches), and fast dormancy (the timer is 5s) on target transfers

for the three apps: (a) Pandora (b) Dict (c) News. Piggyback and batching can be (a) compatible, (b) ineffective, or (c) incompatible.

are very limited due to its inefficient non-target transfers. Figure 19
shows how each application is jointly optimized by three strategies:
piggyback, batching, and fast dormancy (only for target transfers),
revealing interesting interactions between piggyback and batching.
For Pandora, either increasing δ or decreasing the number of
batches (i.e., increasing the periodicity) effectively reduces radio
energy consumption. However, neither strategy is effective for
Dict due to its non-target transfers that are already spread out.
Since piggyback and batching are not applicable to News, we just
use its traffic pattern to demonstrate a potential type of interac-
tion between piggyback and batching. As shown in Figure 19c,
jointly applying piggyback and batching does not outperform the
piggyback-only approach, which effectively overlaps almost all
target transfers with non-target transfers. In that case, aggressively
using batching actually wastes radio energy since one long batched
transfer is not as flexible as several short transfers when being over-
lapped with non-target transfers (unlike Pandora whose batched
transfers are still short enough).

To summarize, our case study indicates that it is far from trivial to
determine what combination of techniques and for each technique
what parameter settings to use for balancing the tradeoff. Effective
solutions require efforts from both application and platform devel-
opers. We summarize our recommendations as follows.

• For Pandora, fast dormancy, batching, and piggyback can
be jointly and aggressively used whenever timing constraints
of audience measurement are satisfied. The savings of radio
energy and signaling overhead are 40% when the parameters
of S2, S3, and S4 are 60s, every 3mins, and 5s, respectively
(similar to our findings of Pandora in §7.2).

• For Dict, the inefficient non-target transfers need to be
improved, otherwise the optimization is largely ineffective.

• For News, TailEnder (a deadline of 60 sec) and fast dor-
mancy (5s for target transfers) can be applied to reduce radio
energy and signaling overhead by up to 25%.

8. CONCLUDING REMARKS
Using large packet traces collected from a commercial UMTS

network, we performed the first network-wide investigation of
cellular periodic data transfers, which have significant impact on
resource consumption despite contributing only small traffic vol-
umes. Periodic transfers are widespread and are generated for
various reasons, many of which are overly aggressive, if not un-
necessary. We also investigated how well various traffic shaping
and resource control algorithms might be used to optimize resource

utilization for periodic transfers. Our work is an important step
towards better understanding cellular traffic dynamics and the com-
plex interactions between radio resource control policy and mobile
application behavior, and determining how to develop cellular-
friendly mobile applications.
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