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ABSTRACT
In many social computing applications such as online Q&A
forums, the best contribution for each task receives some
high reward, while all remaining contributions receive an
identical, lower reward irrespective of their actual qualities.
Suppose a mechanism designer (site owner) wishes to opti-
mize an objective that is some function of the number and
qualities of received contributions. When potential contribu-
tors are strategic agents, who decide whether to contribute or
not to selfishly maximize their own utilities, is such a “best
contribution” mechanism, MB , adequate to implement an
outcome that is optimal for the mechanism designer?

We first show that in settings where a contribution’s value
is determined primarily by an agent’s expertise, and agents
only strategically choose whether to contribute or not, con-
tests can implement optimal outcomes: for any reasonable
objective, the rewards for the best and remaining contribu-
tions inMB can always be chosen so that the outcome in the
unique symmetric equilibrium of MB maximizes the mech-
anism designer’s utility. We also show how the mechanism
designer can learn these optimal rewards when she does not
know the parameters of the agents’ utilities, as might be the
case in practice. We next consider settings where a contri-
bution’s value depends on both the contributor’s expertise
as well as her effort, and agents endogenously choose how
much effort to exert in addition to deciding whether to con-
tribute. Here, we show that optimal outcomes can never be
implemented by contests if the system can rank the qualities
of contributions perfectly. However, if there is noise in the
contributions’ rankings, then the mechanism designer can
again induce agents to follow strategies that maximize his
utility. Thus imperfect rankings can actually help achieve
implementability of optimal outcomes when effort is endoge-
nous and influences quality.
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1. INTRODUCTION
Social computing systems where web users generate on-

line content and create value in exchange for virutal rewards
are now ubiquitous on the Web. In particular, there is an
increasing number of online knowledge-sharing forums like
Yahoo! Answers, Quora, StackOverflow, as well as non–
English language forums like Naver (Korean) and Baidu
Knows (Chinese), where users address or solve questions
posed by other users. A number of these forums, such as
Yahoo! Answers, MSN QnA, and Rediff Q&A, to name a
few, are structured as a contest, where a contribution judged
to be the best answer receives extra virtual points compared
to the remaining answers, and users compete with each other
to provide the best answer and collect these virtual points1.
However, how good this best contribution is will depend on
which users choose to enter and contribute an answer in re-
sponse to the incentives provided by the system, since entry
is endogenous, i.e., a user may choose to simply not partic-
ipate in the system. In addition, viewers may also derive
value from contributions other than the one judged to be
best answer— for instance, in Q&A sites like Yahoo! An-
swers, there are questions (such as what to do over a weekend
in New York) that may not have a single objective answer,
and more than one answer may provide value.

Is a contest the ‘right’ structure for eliciting desirable out-
comes in such Q&A forums, in the presence of strategic par-
ticipants acting selfishly to maximize their own utility? In
this paper, we address this question from a game-theoretic
perspective. Users with varying abilities have a cost to an-
swer a question or complete a task, and the quality, or value,
of their output, is a function of their ability and possibly the
effort they expend. A mechanism in this setting specifies
how to reward agents for their contributions: for example, a
contest or “best contribution” mechanism would assign some
high reward of pB points to the winner and a lower reward
of pC ∈ [0, pB) points to all other contributors, while an
alternative mechanism may split a total prize P amongst
participants in proportion to the quality of their contribu-
tions.

1Virtual rewards indeed seem to be a strong incentive for
users of online systems: [14], [17], and [16] all present ev-
idence that virtual points tend to motivate contributions
from users.
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In such a scenario, the realized outcome— the number
and qualities of elicited contributions— depends on the
strategic choices of agents responding to the incentives pro-
vided by the mechanism. Suppose the mechanism designer
(i.e., the owner of the site) can quantify the desirability of
each such outcome, via some function of the number and
qualities of the elicited contributions. Is it possible, for any
choice of mechanism at all, to support an outcome that
is optimal for the mechanism designer in an equilibrium
of the corresponding game? And more specifically, is the
simple best contribution mechanism, MB , with only two
parameters pB and pC to vary, adequately powerful to
implement an optimal outcome?

Our Contributions. We present a model (§2) to ad-
dress the question of whether contests, modeled as best con-
tribution mechanismsMB , are adequate to implement opti-
mal outcomes in the presence of strategic contributors. We
address this question for two types of situations that arise
in online Q&A forums, depending on whether the value of a
contribution comes primarily from the contributors’ ability,
as in expertise-based questions, or whether it is a function
both of the agent’s ability and her endogenously chosen ef-
fort, as in research-intensive or thought-intensive questions.
Our results hold for a fairly general class of utility func-
tions V of the mechanism designer, as well as with general
amounts of noise or error in the rankings of the contributions
by the mechanism: we only require that V is increasing in
quality for any fixed number of contributions, and that the
ranking function is such that an agent’s probability of win-
ning increases with the quality of her contribution.

We first consider a model where agents with heterogeneous
abilities strategically choose only whether or not to con-
tribute, modeling settings where an agent’s expertise rather
than effort primarily determines the value of her contribu-
tion. Our main result for this model shows that surpris-
ingly, best contribution mechanisms are indeed adequately
powerful to implement optimal outcomes for a broad class of
objectives V— the rewards for the winning and remaining
contributions can always be chosen so that contributors fol-
low strategies maximizing the mechanism designer’s utility
in the unique symmetric equilibrium. The values of these
optimal rewards can be learned by the mechanism designer
when she does not know the parameters of the agents’ util-
ities, as might be the case in practice. We next address the
question of whether there exist asymmetric equilibria, and
prove by construction that suboptimal asymmetric equilibria
can indeed exist. However, this negative result is not limited
to best contribution mechanisms, and can be extended to a
more general class of mechanisms— the optimal outcome
need not be the unique equilibrium for general rank-order
mechanisms if asymmetric equilibria are considered as well.

We then consider endogenous effort settings where the
value of an agent’s contribution is a function both of her abil-
ity and effort, and agents strategically choose both whether
or not to participate as well as how much effort they expend
on their contributions. We first show that in this setting, op-
timal outcomes cannot be implemented if the system ranks
the qualities of the contributions perfectly— agents never
all follow strategies that maximize the mechanism designer’s
utility in any equilibrium of the game. However, these ad-
verse incentives can be avoided if the system does not rank
contributions perfectly— the mechanism designer may then

again be able to choose the rewards in the best contribu-
tion mechanism so as to implement the optimal outcome.
Thus when effort is endogenous and influences quality, it
can actually be beneficial for the mechanism designer to use
noisy rankings in order to achieve implementability of opti-
mal outcomes.

A number of proofs have been removed for want of space,
and can be found in the appendix of the full version of the
paper [7].

1.1 Related Work
There has been some prior work on the design of incentives

for online Q&A forums [6], addressing the issue of delayed
responses. [6] studies the problem of designing incentives
for users to contribute their answers quickly, rather than
waiting to make their contributions; it does not distinguish
between the qualities of responses provided by different par-
ticipants. Our work relates more closely to that on the op-
timal design of crowdsourcing contests ([3], [5], [8]), as well
as a large body of work in the economics literature on the
design of contests to optimally incentivize participants ([2],
[9], [10], [11], [12], [13], [15]). The key differences between
all these papers and our work are the following. First, we
consider an environment with virtual points which are, to
a first-order approximation, costless to the mechanism de-
signer, whereas these papers all consider settings where the
mechanism designer pays real money to agents, and con-
sequently the size of these payments has a direct effect on
the mechanism designer’s utility. Second, this literature ad-
dresses the question of what are the best outcomes that can
be supported in equilibrium, i.e., the question of optimiz-
ing amongst implementable outcomes, rather than whether
the optimal outcome, assuming nonstrategic agents, is im-
plementable by any mechanism in the presence of strategic
agents. Finally, we study a model with endogenous entry,
i.e., agents can strategically decide whether or not to par-
ticipate, and also, we allow the mechanism designer’s utility
to depend in a general way on number and qualities of con-
tributions, in contrast to specific objectives like maximizing
the highest effort or the sum of the top k efforts for some
fixed k (see §2 for a motivation of more general utilities).

The work most closely related to ours from the crowd-
sourcing contest design literature is that of [3], which con-
siders a game-theoretic model of a crowdsourcing contest
and asks how to optimally split a prize budget amongst con-
testants to achieve the maximum equilibrium effort. In con-
trast, we ask whether a mechanism designer can achieve an
equilibrium outcome with utility equal to the maximum pos-
sible utility achievable with nonstrategic agents, rather than
how to optimize over the set of implementable outcomes. [5]
models crowdsourcing as an all-pay auction, where all agents
pay a cost to exert effort, but only one winner obtains the
benefit from winning the auction, and addresses the ques-
tion of how to design an all-pay auction to maximize the
highest effort, in contrast with the conventional objective
of maximizing revenue, or total effort. In contrast, we ask
whether the family of contest-style mechanisms is powerful
enough to optimize the mechanism designer’s objective and
how payoffs must be structured to incentivize this desired
optimal behavior.

The economics literature on how firms can use contests
to create incentives for employees to work hard ([2], [9],
[10], [11], [13]) again addresses questions related to using
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real money to optimize amongst a set of implementable out-
comes, and does not address whether a mechanism designer
can achieve her most preferred outcome over all possible
outcomes in a setting with virtual rewards. Also, this body
of work typically assumes a specific functional form for the
mechanism designer’s utility, and does not address how en-
dogenous participation may affect this utility.

2. MODEL
There are n potential contributors, or agents, i = 1, . . . , n,

who strategically make contribution choices in a single ques-
tion or task in an online Q&A forum. Different agents have
different abilities, or levels of expertise for any given ques-
tion or task. We denote the ability of an agent i as ai; an
agent who is more capable has a higher value of ai than a
less capable agent.

The abilities ai are independent and identically dis-
tributed draws from a distribution with CDF F . We assume
that F is atomless and strictly increasing on its support,
which we assume without loss of generality is the bounded
interval [0, 1]. An agent knows her own ability ai but not the
abilities aj drawn by the remaining agents; the distribution
F , however, is common knowledge to all parties.

The quality of the contribution produced by an agent i,
which we denote by qi, is a non-decreasing function of her
ability ai, as well as possibly the effort ei she puts in, i.e.,
qi = qi(ai, ei).

We model two different kinds of situations that arise in on-
line Q&A forums. In some settings such as knowledge-based
Q&A forums, agents possess differing amounts of knowl-
edge about a question and further knowledge is not easily
obtainable— here the quality, or the value provided by the
contribution is determined largely by the expertise of the
contributor rather than her effort, and the cost to answering
is only the effort of transcribing this knowledge. However,
there are also settings where a contributor might be able to
significantly increase the quality or value of her contribution
with additional effort, for instance on questions on sites like
StackOverflow which might request code to accomplish some
task. Here, the quality of a contribution depends both on
the contributor’s expertise and effort. We model these two
different settings via the homogenous and endogenous effort
models below.

1. Homogenous effort: In the homogenous effort model,
every agent incurs the same effort e and pays the same
cost cC if she chooses to make a contribution. The dif-
ferences in the realized qualities of contributions then
arise solely from the differences in agents’ abilities.
Without loss of generality, we may write qi(ai, ei) = ai.

The homogenous effort model corresponds to a situa-
tion in which agents differ in the extent to which they
are able to answer a question, but it would take all in-
dividuals similar levels of effort to actually contribute
their knowledge as, for example, in the context of a
question on health in Yahoo! Answers.

2. Endogenous effort: In the endogenous effort model,
each agent i can endogenously choose to exert some
level of effort ei ∈ [0, 1] if she decides to contribute. An
agent who exerts effort e pays a cost c(e), where c(e)
is a continuously differentiable and increasing func-
tion of e. The final quality of an agent’s contribution,

qi(ai, ei), is a continuously differentiable and increas-
ing function of the agent’s effort ei and her ability ai.

Note that agents are heterogeneous in both these models, as
captured by their different abilities ai.

Actions. Agents in our model can strategically choose
whether or not to contribute, as well as how much effort to
put in conditional on contributing in the endogenous effort
model. In addition, to fully capture the set of actions avail-
able to agents for gaining points on real Q&A forums such
as Y! Answers, we also allow agents to have the option of
rating the received contributions: an agent who decides to
rate incurs a cost of cR ≥ 02. We emphasize, however, that
all our results continue to hold if agents do not have the
option to rate, or do not receive points for rating.

Formally, each agent i strategically chooses an action
αi ∈ {C,R,N}, where αi = C indicates that agent i chooses
to contribute, αi = R indicates that agent i rates (some
nonempty subset of) the received contributions, and αi = N
indicates that agent i does not participate at all3. In the en-
dogenous effort model, an agent who chooses to contribute
(i.e., αi = C) can additionally choose her level of effort
ei ∈ [0, 1].

After agents strategically choose their actions, a mecha-
nism allocates rewards in the form of points to the agents.
We denote the number of agents that decide to contribute
by m. Let α ≡ (α1, . . . , αn) denote the vector of action
choices of the agents and q ≡ (q1, . . . , qm) denote the vec-
tor of the qualities of received contributions. In general,
an agent’s expected reward can depend on her choice of ac-
tion, the quality of her output if contributing, the actions
of the other agents, and the qualities and number of contri-
butions produced by other agents. Let pi(α, q) denote the
expected number of points awarded to agent i by the mech-
anism. An agent’s expected payoff for the game is equal to
the expected number of points she obtains minus any costs
associated with her choice of action:

ui = pi(α, q)− c(αi),

where c(αi) denotes the cost agent i incurs from taking
action αi. An agent who does not participate, i.e., chooses
αi = N , always receives no benefit and pays no cost, for a
payoff of 0.

Mechanisms. There are many different ways to re-
ward agents as a function of their actions. For instance,
a rank-order mechanism awards points to an agent based
on how highly her contribution ranks amongst all contribu-
tions (rather than its absolute quality), while a proportional
mechanism would award points in proportion to the realized
qualities of the contributions. In this paper, we will focus
on the family of best contribution mechanisms MB , which
choose a best or ‘winning’ contribution and give the winner a
higher reward than the other contributors. This mechanism

2Note that this cost cR is the total cost for rating, not the
cost of rating an individual contribution. This is reason-
able because we do not reward agents for individual ratings
either—agents are not required to rate all contributions, nor
to rate with high accuracy, to earn the reward for rating
3Since agents would not have an incentive to rate honestly if
they were allowed to rate their own contributions, we assume
that an agent can choose to either contribute or rate contri-
butions for a given question but not both; this is in keeping
with the practice on several websites such as Slashdot.
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is of particular interest because it is widely used in many
settings where extra points are awarded for the ‘best’ user-
generated contribution such as in MSN QnA, Rediff Q&A,
and Yahoo! Answers, as well as in crowdsourcing contests
where the best submission receives a prize or award (and the
remaining submissions usually receive nothing).

Definition 2.1. The best contribution mechanism
MB(pB , pC) selects some contribution as the best or win-
ning contribution, and awards the corresponding contributor
or winner pB > 0 points and all remaining contributors
pC ∈ [0, pB) points.

An agent who rates (any nonzero number of) contributions
receives pR ≥ cR points, but an agent receives no payoff
from choosing the rating action if there are no contributions
to rate. The assumption that pR ≥ cR ensures that agents
prefer to rate than to not participate at all. We note here
that a system which does not allow or reward rating is easily
captured in our model by setting pR = 0; identical results
can be obtained with substantively identical proofs in this
case where pR ≤ cR and all agents weakly prefer not to
participate than to rate.

Given a set of contributions, the best contribution mech-
anism MB needs to pick a winning contribution. We use
a function π to describe how the mechanism MB chooses
a winner as a function of the qualities of received contri-
butions. Note that we do not require the mechanism MB

to be able to identify the highest quality contribution with
perfect accuracy (in fact, as we will see in §4, this might
not even be desirable). Instead our results only require that
higher quality contributions are more likely to be chosen as
winners.

Definition 2.2. We use π(qi, q−i,m) to denote the prob-
ability that an agent i with a contribution of quality qi will
be chosen as the winner when there are m other agents who
produce contributions with qualities q−i.

We make the following assumptions on π:

1. π(qi, q−i,m) is increasing in qi and decreasing in m.
That is, agent i should be more likely to win if she
makes a higher quality contribution, and less likely to
win if the number of other contributors increases.

2. For any fixed values of m and q∗i , the set of values
of q−i for which π(qi, q−i,m) is discontinuous in qi at
qi = q∗i has measure zero.

Note that the ratings from the agents who choose to rate
may or may not be used towards determining the best
contribution: as long as the agents rating content are more
likely to rate a higher quality contribution more highly, the
probability π(qi, q−i,m) is likely to satisfy these conditions.

Solution Concept. Throughout this paper, we use the
solution concept of a Bayes-Nash equilibrium, in which each
player takes an action that maximizes her expected utility
given the strategies of the other agents and the unknown
abilities of the other agents. This an appropriate solution
concept when an agent knows her own ability but not that
of the other agents when taking an action, as in our setting.

Mechanism Designer’s Objective. We suppose that
the mechanism designer can quantify the desirability of each

possible outcome, specified by the number of contributors
m and their qualities, via some function V (m, q1, . . . , qm),
where qi denotes the quality of the ith best contribution. We
will assume that the function V is continuous in (q1, . . . , qm)
for all m, and that it is nondecreasing in {q} for a given
m. Such a utility function V is fairly general, capturing a
wide variety of possible preferences that a mechanism de-
signer might have— the only requirement we impose on V
is that, for any fixed number of contributions m, the mech-
anism designer must prefer higher quality contributions to
lower quality ones.

Specifically, our condition on V allows for non-
monotonicity in the number of contributions— a larger num-
ber of contributions may not always be more valuable, so
that, for example, the outcome (q1, q2), might be preferred
to the outcome (q1, q2, q3) even for large values of q3. Ac-
commodating such nonmonotonicity is important because it
allows modeling situations where there is a cost to search-
ing for higher quality contributions, so that the mechanism
designer may actually prefer to limit the number of con-
tributions to only those with adequately high quality. In
addition, it also allows capturing situations where a mech-
anism designer may value having multiple high quality an-
swers much more than he values each answer individually,
such as when these answers reinforce each other and increase
the asker’s confidence that he is getting high quality advice
that he can act on. Such a utility function, where for ex-
ample V (2, q, q′) > V (1, q)+V (1, q′), is not captured by the
standard objectives of highest or total quality.

3. HOMOGENOUS EFFORT
We begin with addressing the question of whether the pa-

rameters of the best contribution mechanism MB can al-
ways be chosen so as to implement optimal outcomes in
the homogenous effort model. In addition to capturing
expertise-based settings where effort does not significantly
affect the value of a contribution, the equilibrium analysis
in this simpler model serves as a useful building block for
the analysis in the endogenous effort model.

We first analyze the equilibria of the family of mechanisms
MB in §3.1, and show that there is a unique symmetric equi-
librium in threshold strategies, where this threshold ability
is a continuous, monotone function of the rewards (pB , pC).
Next we prove that as long as the mechanism designer’s util-
ity increases with quality (although not necessarily with par-
ticipation), some symmetric threshold strategy maximizes
her utility as well. This, together with the continuity and
monotonicity properties of the equilibrium threshold, can
be used to show that there exists a choice of rewards that
implements the optimal outcome (§3.2).

3.1 Equilibrium Analysis
We begin with the existence of a symmetric threshold

strategy equilibrium.

Lemma 3.1 (Existence). For any values of pB and
pC with pB > pC , there exists a symmetric equilibrium in
threshold strategies for the mechanism MB(pB , pC): there
is a threshold a∗(pB , pC) such that it is an equilibrium for
each agent i to contribute if and only if her ability ai ≥
a∗(pB , pC).

Proof. First note that regardless of the strategies of the
remaining agents, agent i has a unique best response, which
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is a threshold strategy a∗i , where i contributes (i.e., chooses
action C) if and only if her ability ai ≥ a∗i . To see this, note
that agent i’s expected payoff from rating is independent of
her ability ai, but her payoff from contributing is strictly in-
creasing in her ability ai because her probability of winning
is strictly increasing in ai. Thus if agent i prefers contribut-
ing to rating at ability ai, she must strictly prefer contribut-
ing to rating at all abilities a′i > ai. Similarly, if she prefers
rating to contributing at ability ai, she must also strictly
prefer rating to contributing at all abilities a′i < ai. Thus
regardless of the strategies of the other agents, an agent i’s
unique best response is to use a threshold strategy a∗i in
which the agent contributes if and only if ai ≥ a∗i .

It follows that an equilibrium in the related game in which
agents are restricted to using threshold strategies is also an
equilibrium of the original game. But the game in which
agents are restricted to using threshold strategies is a sym-
metric game in which each agent has a set of possible ac-
tions that is compact and Hausdorff and each agent’s ex-
pected utility is a continuous function of the actions of the
agents. Thus by Theorem 1 of [4], it follows that there ex-
ists a symmetric mixed strategy equilibrium in the game
in which agents are restricted to using threshold strategies.
Now since an agent has a unique best response to any strat-
egy choices of the remaining agents, it follows that the agents
must not be randomizing over different thresholds in this
equilibrium. Thus there exists a symmetric threshold equi-
librium in which all agents use the same threshold a∗.

For the remaining results in this section it will be useful
to introduce the following notation.

Definition 3.1. [Pr(C>0|a, n), P r(W|a, n)] Recall that
agents’ abilities qi are drawn from the distribution F . We let
Pr(C>0|a, n) denote the probability that an agent sees at least
one contribution from the other agents when these remain-
ing n− 1 agents each use a threshold strategy with threshold
a. We let Pr(W|a, n) denote the probability that an agent
with ability a ‘wins’, i.e., is chosen as the best contribution,
when the remaining n−1 agents are using a threshold strat-
egy with the same threshold a. We drop the dependence on
n when the value of n is fixed and clear from the context.

Note that Pr(C>0|a, n) = 1 − Fn−1(a). If contribu-
tions are perfectly ranked according to their qualities, then
Pr(W|a, n) = Fn−1(a), since the only way an agent with
ability ai = a can win against other agents j who contribute
according to the threshold a is if none of them contributes.
However, since we allow for the possibility that contribu-
tions are not ranked perfectly according to their qualities,
in general Pr(W|a, n) may be greater than Fn−1(a) under
our model.

Now we prove that there is a unique symmetric equilib-
rium to MB(pB , pC).

Theorem 3.1 (Uniqueness). The mechanism
MB(pB , pC) has a unique symmetric equilibrium.

Proof. Since any individually rational strategy is a
threshold strategy, any equilibrium must be in threshold
strategies. Thus it suffices to show that there is a unique
symmetric threshold strategy equilibrium.

First note that since F is an atomless distribution, the
probability Pr(C>0|a∗) that another agent contributes is
strictly decreasing and continuous in a∗, and similarly

Pr(W|a∗) is strictly increasing in a∗ (because the agent faces
less competition in the sense of first order stochastic dom-
inance when a∗ increases) and continuous in a∗ (because
the random amount of competition the agent faces varies
continuously with a∗).

Therefore, the expected utility an agent obtains from
choosing to rate when all agents play according to a thresh-
old strategy a∗,

uR(a∗) = (pR − cR)Pr(C>0|a∗),

is nonincreasing and continuous in a∗, and the expected util-
ity an agent i with ability ai = a∗ obtains from contributing
when all other agents are using a threshold strategy with
threshold a∗,

uC(a∗) = (pB − cC)Pr(W|a∗) + (pC − cC)[1− Pr(W|a∗)],

is strictly increasing and continuous in a∗.
Now if there is a value a∗ such that an agent with ability

ai = a∗ is indifferent between rating and contributing when
all other agents play according to the threshold a∗, i.e., if
there is a solution a∗ ∈ [0, 1] to the equation

uR(a∗) = uC(a∗),

then this threshold a∗ constitutes an equilibrium. Since uR

is nonincreasing in a∗ and uC is strictly increasing in a∗,
such a solution a∗, if it exists, is unique, and gives the unique
symmetric equilibrium to MB(pB , pC).

If there is no such a∗, then either uR(a∗) > uC(a∗) for
all a∗ ∈ [0, 1] or uR(a∗) < uC(a∗) for all a∗ ∈ [0, 1]. In the
former case, the only equilibrium is for all agents to always
rate (corresponding to the threshold a∗ = 1), and in the
latter case the only equilibrium is for all agents to always
contribute (corresponding to the threshold a∗ = 0). There-
fore, in all of these cases there exists a unique symmetric
threshold equilibrium.

We note that if pC − cC > pR − cR, then an agent always
prefers contributing to rating even if she knows that she will
not have the best contribution. Similarly, if pB − cC < 0,
an agent always prefers not to contribute even if she knows
that she will have the best contribution. In these cases, the
symmetric threshold equilibrium will have thresholds a∗ = 0
and a∗ = 1 respectively. But in intermediate cases, where

pC − cC < pR − cR < pB − cC ,

the symmetric threshold equilibrium must have a∗ ∈ (0, 1),
so that agents neither always rate nor always contribute.

Next we prove that the unique equilibrium threshold
a∗(pB , pC) varies continuously with pB and pC , which we
use to prove the main implementation result in the next
section. This result guarantees that agents will not dra-
matically change the strategies they use as a result of small
changes in the rewards that the mechanism designer is using
to incentivize the agents.

Theorem 3.2 (Continuity). The equilibrium thresh-
old a∗(pB , pC) is continuous in pB and pC .

Proof. The equilibrium threshold a∗ is given by the
unique solution, if it exists, to

u∆(pB , pC , a) ≡ (pR − cR)Pr(C>0|a)− (pB − cC)Pr(W|a)

− (pC − cC)[1− Pr(W|a)] = 0,
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where Pr(C>0|a) and Pr(W|a) are the probabilities given in
Definition 3.1.

Note that if pB and pC change by an amount no greater
than δ > 0, then u∆(pB , pC , a) changes by an amount O(δ).
If a increases (decreases) by ε, then Pr(C>0|a) decreases
(increases) by Ω(εn−1) and Pr(W|a) increases (decreases)
by Ω(εn−1), meaning u∆(pB , pC , a) decreases (increases) by
Ω(εn−1). Thus for any ε > 0 there exists some δ > 0 such
that if pB and pC change by an amount no greater than δ,
then the value of a that satisfies u∆(pB , pC , a) = 0 changes
by an amount no greater than ε. Thus the equilibrium
threshold is continuous in pB and pC if there exists some
a satisfying u∆(pB , pC , a) = 0.

If there is no a satisfying u∆(pB , pC , a) = 0, then either
all agents strictly prefer to rate when all other agents are
rating or all agents strictly prefer to contribute when all
other agents are contributing. Small changes in pB and pC
would not affect these strict preferences, so it would remain
an equilibrium for all agents to rate or for all agents to con-
tribute after small changes in pB and pC . Thus the equilib-
rium threshold is also continuous in pB and pC when there
does not exist a a satisfying u∆(pB , pC , a) = 0.

3.2 Implementability
Having characterized equilibrium strategies in the mech-

anism MB in the previous section, we now prove the main
implementation result for the homogenous effort model. We
show that, regardless of the precise form of the mechanism
designer’s utility function V (m, q1, . . . , qm), the values of the
rewards pB and pC in the best contribution mechanismMB

can always be chosen to induce agents to follow strategies
that maximize the mechanism designer’s expected utility.

The proof of this implementation result breaks down into
two parts. First we show that for any utility function V ,
E[V ] can be maximized by a threshold strategy â in which
each agent i chooses to contribute if and only if ai ≥ â. We
then show that for any â, pB and pC can always be chosen
such that agents use the threshold strategy â in equilibrium
in MB .

Throughout this section, we will restrict attention to sym-
metric strategies: specifically, the strategy maximizing the
mechanism designer’s expected utility is the optimal strat-
egy amongst symmetric strategies.

Lemma 3.2. There exists a threshold strategy, where each
agent contributes if and only if her quality is greater than
a common threshold â, that maximizes the mechanism de-
signer’s expected utility.

Proof. Suppose there exists some strategy σ such that
the mechanism designer’s expected utility E[V ] is maxi-
mized when all agents use the strategy σ. Let λ(σ) denote
the probability (over random draws of agents’ abilities from
F and any randomness in σ) with which an agent contributes
when using the strategy σ. Consider the alternative thresh-
old strategy â(σ) whereby an agent i contributes if and only
if her ability ai ≥ â(σ), where â(σ) = F−1(1− λ(σ)) is cho-
sen so that the probability an agent contributes under this
threshold strategy remains unchanged at λ(σ). Such a â al-
ways exists because F (a) is continuous in a on its support.

Now the mechanism designer’s expected utility E[V ] is at
least as large when the agents use this threshold strategy as
it is when they use the strategy σ: to see this, note that
the distribution of the number of agents who contribute is

the same regardless of whether agents use the strategy σ
or the threshold â(σ). But conditional on contributing, an
agent’s distribution of qualities under the threshold strategy
â(σ) first order stochastically dominates this distribution
under the strategy σ. Since V is increasing in the quality of
the contributions by assumption, the mechanism designer’s
expected utility when agents are using the threshold strategy
â(σ) is at least as large as that when agents are using the
strategy σ.

Therefore, there exists a (symmetric) strategy that max-
imizes E[V ] if and only if there exists a threshold â that
maximizes E[V ] amongst the class of (symmetric) threshold
strategies. But such an optimal threshold always exists be-
cause E[V ] is continuous in â and there is a compact set of
possible thresholds â. The result then follows.

From Lemma 3.1 and Theorem 3.1, we know that agents
use the threshold strategy a∗ in equilibrium, and from
Lemma 3.2, we know that the mechanism designer’s utility
function is maximized when agents use the threshold strat-
egy â. So to prove the implementation result, we only need
to show that these thresholds can be made to coincide. We
now show that for any â ∈ [0, 1], there exists a choice of
pB and pC such that the threshold a∗(pB , pC) that agents
use in equilibrium in the mechanism MB(pB , pC) satisfies
a∗(pB , pC) = â.

Theorem 3.3. For any pR and any fixed ratio of the re-
wards pB/pC > 1, there exist values of pB and pC such that
the unique symmetric threshold equilibrium of MB(pB , pC)
maximizes the mechanism designer’s expected utility.

Proof. Note that if pB − cC < 0 and pC − cC < 0, then
the unique equilibrium is for all agents to rate, i.e., a∗ = 1.
If pB−cC > pC−cC > pR−cR, then the unique equilibrium
is for all agents to contribute, corresponding to the thresh-
old a∗ = 0. Since a∗ is continuous in pB and pC (by Lemma
3.2), it follows from the intermediate value theorem that
there exist values of pB and pC such that a∗(pB , pC) = â
for any value of â ∈ [0, 1]. And since we know from Lemma
3.2 that the mechanism designer’s expected utility can al-
ways be optimized by using a threshold strategy, the result
follows.

This result indicates that the commonly used best con-
tribution mechanism is actually quite powerful for inducing
agents to follow strategies that are optimal for the mecha-
nism designer when the main difference between agents is
how they differ in their levels of expertise. We note the
generality of this result: (i) it holds for arbitrary utility
functions of the mechanism designer (provided they depend
only on the number and qualities of contributions) and (ii)
it holds even with general amounts of noise or errors in the
rankings of the contributions; i.e., the probability a con-
tribution may be ranked best even if it is not the highest
quality contribution can depend in a very general way on
the number and qualities of the contributions. Our imple-
mentation result in this section continues to hold as long as
V is increasing in quality and an agent’s probability of win-
ning increases with quality (i.e., higher quality contributions
are more likely to win).

Next we illustrate how the mechanism designer would
want to choose the values of pB and pC in practice. First
we show how the values of pB and pC that must be used
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to induce the optimal outcome vary as a function of the
number of agents, n. This is relevant because some types of
questions differ systematically in the numbers of agents that
arrive.

Proposition 3.1 (Comparative Statics). Suppose
that the threshold the mechanism designer would like the
agents to use in equilibrium is independent of n. For any
fixed pR and any fixed ratio pB/pC > 1, the numbers of
points the mechanism designer should award as a function
of n, pB(n) and pC(n), are strictly increasing in n.

Next we address how the mechanism designer can learn
the values of agents’ utility functions when the mechanism
designer does not initially know how costly it is for agents
to make contributions. In order to compute the values of
the rewards pB and pC that implement optimal outcomes
in MB , the mechanism designer needs to know the values
of the agents’ costs cC for making a contribution, but these
may not be known in practice. The following result shows
how the mechanism designer can conduct a series of contests
to learn the cost of contributing if the cost of rating, cR, is
known (a plausible assumption since this cost is often close
to zero).

Theorem 3.4. Suppose the mechanism designer conducts
a series of T contests with n agents in which the mechanism
designer awards pB > pR + c points for winning and pC = 0
points for contributing but not winning, and let ntC denote
the number of agents who choose to contribute in the tth

contest. Then,
∑T
t=1 n

t
C/(Tn) converges in probability to an

invertible function of cC as T →∞.

When cR is unknown, the mechanism designer can learn
the values of cC and cR by conducting two separate series of
contests of the form in Theorem 3.4; we discuss the extension
of this result to cases where cR is unknown in the appendix
of the full version of the paper [7].

Implementation for General Mechanisms.
We have seen that the mechanism MB , which awards a

strictly larger number of points to a single best contribution,
and a flat number of points to all remaining contributions, is
a rather powerful mechanism in terms of creating optimal in-
centives for agents. IsMB special in this regard, or does this
implementation result hold for other mechanisms as well? In
fact, this result does hold for other mechanisms— the key
property that is needed for the implementation result is the
monotonicity and continuity of an agent’s expected payoff
from contributing as a function of quality.

Consider a more general class of mechanisms where the
expected reward an agent with quality qi obtains from con-
tributing when m other agents contribute with qualities q−i
is some function p(qi, q−i,m). Suppose that p(qi, q−i,m) is
strictly increasing in qi and continuous in (qi, q−i). The best
contribution mechanismMB that we study is a special case
of this general class of mechanisms, but there are many other
mechanisms with this property. For example, a mechanism
in which the highest ranked contribution receives p1 points,
the contribution ranked second receives p2 < p1 points and
so on, satisfies these criteria as long as the probability that
agent i is ranked ahead of agent j is increasing in qi and
continuous in qi and qj . Another example is a proportional

mechanism in which p(qi, q−i,m) = qi∑
j qj

(with appropriate

values when qi = 0 for all i).
The implementation result in fact continues to hold for

this more general class of mechanisms as well. The proof is
very similar to the argument for the best contribution mech-
anism MB in §3.1 and 3.2. Lemma 3.1, which guarantees
existence of a symmetric threshold equilibrium, only relies
on the fact that an agent is more willing to contribute when
she has a greater ability, which remains true for this more
general class of mechanisms, since an agent obtains more
points in expectation from contributing with greater ability.
The continuity of the equilibrium threshold in the number
of points awarded, given in Theorem 3.2, will continue to
hold because p(qi, q−i,m) is continuous in (qi, q−i).

Given this, if the mechanism designer awards an expected
number of points equal to kp(qi, q−i,m) for some k > 0 cho-
sen by the mechanism designer, k can be chosen to induce
the agents to follow a strategy that maximizes the mecha-
nism designer’s expected utility: when k is very small, then
agents will never want to contribute, whereas when k is very
large, agents will always want to contribute. From the con-
tinuity of strategies in points, it then follows that by appro-
priately choosing an intermediate value of k, the mechanism
designer can induce any intermediate rates of contribution
characterized by any threshold q̂ ∈ (0, 1).

3.3 Asymmetric Equilibria
The implementation result we proved in §3.2 guarantees

uniqueness of the optimal outcome amongst the set of sym-
metric equilibria— there exists a choice of pB and pC such
that the unique symmetric equilibrium of MB(pB , pC) con-
sists of strategies that maximize the mechanism designer’s
utility. But what about asymmetric equilibria— can there
exist other, asymmetric, equilibria in MB?

In this section, we show that the answer to this question,
unfortunately, is yes. However, as we show, this is not a diffi-
culty only with the mechanismMB— asymmetric equilibria
can arise in a more general class of mechanisms as well, even
with a general amount of noise or error in the rankings of
the contributions. This indicates that, even for fairly general
classes of mechanisms, it is not possible to guarantee that
the equilibrium maximizing E[V ] will be the unique equilib-
rium of the game, if we also consider asymmetric equilibria.

We consider a general class of mechanisms in which an
agent ranked first receives p1 points, an agent ranked sec-
ond receives p2 points, and in general the k-th ranked agent
receives pk points. These values of pk do not depend di-
rectly on the precise quality of any agent’s contribution but
instead depend only on the ordering of the contributions.
We assume throughout that p1 ≥ p2 ≥ . . . ≥ pn and at least
one of these inequalities is strict.

In order to allow for a wide range of accuracies with
which contributions are ranked, we introduce a parameter
β ∈ [0, 1] which represents the extent to which the system is
able to distinguish contributions on the basis of their qual-
ities. With probability β, the system is able to perfectly
distinguish the qualities of the contributions and ranks a
contribution i ahead of another contribution j if and only
if qi > qj . With probability 1 − β, the system is unable
to distinguish the qualities of any of the contributions, and
simply orders them randomly. Larger values of β indicate
that it is more likely that the system will accurately order
the contributions by quality. While this is not the most gen-
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eral possible formulation, it suffices to illustrate our point.
Under this general class of mechanisms and general levels
of system accuracy in ranking contributions, there always
exists the possibility of asymmetric equilibria, as shown by
the following result.

Theorem 3.5. For any values of pk and β, there exists
an asymmetric equilibrium as long as it is not an equilibrium
for all agents to rate or for all agents to contribute.

Proof. We construct an equilibrium in which agent 1
always contributes (corresponding to the threshold a∗1 = 0)
and the remaining agents i = 2, . . . , n contribute according
to a threshold a∗i = a∗ > 0. Note that by the assumptions
on the distribution F , F (a∗) > 0 if a∗ > 0.

The expected payoff to agent 1 if she chooses to rate when
all other agents use the threshold strategy a∗ is

uR1 = (1− F (a∗))n−1(pR − cR),

while the payoff to agents i ≥ 2 from rating, when all
remaining agents play according to their strategies a∗, is
uRi = pR− cR. Note that uRi ≥ uR1 for i ≥ 2: this is because
agent 1’s strategy is to always contribute, which means that
there is always content for the remaining agents to rate.

Now consider payoffs from contributing. If the system can
perfectly distinguish the qualities of the contributions, then
the probability that an agent i finishes ahead of some par-
ticular other agent when she draws a quality equal to her
threshold (ai = a∗i ) is F (a∗): if the other agent is j ≥ 2,
i wins only if the other agent does not participate, which
has probability F (a∗); if the other agent is j = 1, i wins
if a1 ≤ a∗i = a∗, which also has probability F (a∗). If the
system cannot distinguish qualities, and orders the contri-
butions randomly, then the probability that an agent who
contributes finishes ahead of some particular other agent
i ≥ 2 is F (a∗) + 1

2
(1 − F (a∗)) = 1

2
+ 1

2
F (a∗), while the

probability that an agent who contributes finishes ahead of
agent 1 is 1

2
< 1

2
+ 1

2
F (a∗) for a∗ > 0.

Therefore, the distribution of the number of other agents
that agent 1 beats, when she plays according to this strat-
egy and has ability equal to her threshold, strictly first order
stochastically dominates the distribution of the number of
other agents than an agent i ≥ 2 beats when contributing
with ability equal to her threshold. This means that the ex-
pected payoff to agent 1 from contributing at her threshold,
uC1 (a∗1), is greater than the expected payoff uCi (a∗) to other
agents i ≥ 2 from contributing at their threshold abilities.

Combining the facts that uRi ≥ uR1 and uC1 (a∗1) > uCi (a∗),
we see that if an agent i ≥ 2 is indifferent between rating
and contributing when her ability ai is equal to her threshold
a∗, then agent 1 strictly prefers contributing to rating when
she draws ability a1 = a∗1. So if there is a value of a∗ > 0
such that an agent i ≥ 2 is indifferent between rating and
contributing at ability ai = a∗ (given that the remaining
agents play according to their thresholds a∗1 = 0 and a∗i =
a∗), we will have

uC1 (a∗1) > uCi (a∗) = uRi ≥ uR1 ,

in which case the threshold strategies a∗1 = 0 and a∗i = a∗

constitute an (asymmetric) equilibrium.
To prove such a a∗ exists, note that we may assume that

a∗1 = 0 and a∗i = a∗ = 1 is not an equilibrium, since other-
wise we have already produced an asymmetric equilibrium
as claimed. So suppose that it is not an equilibrium for

agents i ≥ 2 to use the threshold a∗i = 1 and agent 1 to use
a∗1 = 0. We will show that a solution to uCi (a∗) = uRi must
exist for some a∗ > 0.

For a∗ = 1, note that uCi (a∗) > uRi . To see this, suppose
by means of contradiction that uCi (a∗) ≤ uRi . Then none of
the agents i = 2, . . . , n have any incentive to deviate under
the thresholds a∗1 = 0 and a∗i = 1. Since we assumed that
these strategies do not constitute an equilibrium and agents
2, . . . , n have no incentive to deviate, this means that agent 1
prefers to deviate from contributing to rating when all other
agents are rating. Thus p1 − cC ≤ 0, since the expected
payoff from rating when no other agent is contributing is 0.
But when p1 − cC ≤ 0, it is an equilibrium for all agents to
rate, contradicting the assumption in the statement of the
theorem. So uCi (q∗) > uRi must hold when a∗ = 1.

Next note that if agents i ≥ 2 use the threshold a∗i = 0, so
that all agents always contribute, then an agent with ability
equal to the threshold must strictly prefer to deviate by
rating because we have assumed that it is not an equilibrium
for all agents to contribute content. Therefore, uCi (a∗) < uRi
at a∗ = 0.

Thus if w∆(a∗) denotes the expected utility difference that
an agent j ≥ 2 obtains from rating rather than contributing
when j has ability aj = a∗ and all remaining agents are
playing according to their threshold strategies (a∗1 = 0 and
a∗i = a∗), then w∆(a∗) > 0 when a∗ = 0 and w∆(a∗) < 0
when a∗ = 1. But w∆(a∗) is continuous in a∗, so by the
intermediate value theorem, there exists some a∗ ∈ (0, 1)
such that w∆(a∗) = 0. For this a∗, it is an equilibrium
for agent 1 to always contribute and agents i ≥ 2 to use
the threshold strategy a∗. Thus an asymmetric equilibrium
exists.

This result indicates that while the mechanism designer
can choose the rewards pB and pC inMB so that there is an
equilibrium in which E[V ] is maximized, it is not possible
to ensure this is the unique equilibrium when allowing for
asymmetric equilibria. However, this negative result also
holds for a more general class of mechanisms: using more
general rank-order mechanisms will not help to strengthen
the implementation result.

We note that the class of mechanisms for which we explic-
itly constructed asymmetric equilibria is not the only class
of mechanisms that is available to a mechanism designer,
and is in fact a strict subset of the class of mechanisms for
which we proved the optimal implementation result. We
leave open the question of whether there is some alternative
mechanism that would result in a unique equilibrium that
implements the optimal outcome. Nonetheless, this result
indicates that asymmetric equilibria remain a distinct pos-
sibility under a broad class of mechanisms corresponding to
those most commonly used in practice.

4. ENDOGENOUS EFFORT
The implementability result in Theorem 3.3 was for the

homogeneous effort model where all agents incur the same
cost cC for contributing, as might be the case in expertise-
based Q&A forums where the cost to answering is primarily
the effort of transcribing one’s knowledge. However, there
are other settings where a contributor might be able to sig-
nificantly increase the quality of her contribution by putting
in more effort, as in research or effort-intensive questions,
such as those on StackOverflow which request code to ac-
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complish a task. Suppose that in addition to making strate-
gic decisions about whether or not to contribute, an agent
can also make strategic decisions about how much effort to
exert on her contribution. In this section, we investigate the
question of whether contestsMB(pB , pC) are still adequate
to implement optimal outcomes in such an endogenous ef-
fort model where agents can strategically choose their effort
or cost.

As before, to address the question of implementability,
we must first answer the question of whether an equilibrium
exists, and understand the form of equilibria. We begin with
the following result.

Theorem 4.1. There exists an equilibrium in which all
agents use a symmetric threshold participation strategy
where an agent participates if and only if her ability is
greater than a common threshold a∗, and conditional on par-
ticipating, each agent chooses an effort level using a symmet-
ric strategy that is a function of her ability ai.

Next we address the nature of the strategies that will max-
imize the mechanism designer’s utility. As before, we restrict
attention to symmetric strategies and discuss which subset
of these symmetric strategies optimize the mechanism de-
signer’s utility. Again, we find that V is maximized when
only agents with abilities above a certain threshold partici-
pate; in addition, every such participating agent must exert
the maximum possible effort.

Theorem 4.2. There exists some â ∈ [0, 1] such that the
mechanism designer’s utility is maximized when an agent i
participates if and only if ai ≥ â, and each participating
agent chooses effort ei = 1.

We are now ready to address the question of whether
outcomes that maximize the mechanism designer’s utility
can be supported in an equilibrium of the best contribu-
tion mechanism MB(pB , pC) for any values of pB and pC .
Recall that when agents have homogeneous costs cC , i.e.,
they cannot endogenously choose their efforts to influence
their contribution qualities, it is always possible to choose
pB and pC to implement an optimal outcome. Our first
result shows that in contrast, the best contribution mecha-
nism need not be adequately powerful to incentivize optimal
strategies if agents can endogenously choose their costs or
levels of effort— surprisingly, this inability arises from per-
fectly ranking contributions’ qualities.

Theorem 4.3. Suppose that the mechanismMB(pB , pC)
always ranks contributions perfectly, i.e.,

π(qi, q−i,m) = 1⇔ qi > qj

for all contributing agents j 6= i. Then there is no equi-
librium in which agents follow strategies that maximize the
mechanism designer’s utility V for all values of pB and pC .

Proof. Suppose that all other agents are following a
strategy that maximizes the mechanism designer’s utility,
and consider an agent i with ability ai = â, where â de-
notes the threshold according to which agents contribute in
this strategy. Note that such an agent will be selected as
the winner if and only if she is the only agent who con-
tributes, because any other agent j who contributes content
has greater ability and exerts effort ej = 1 and therefore has

a higher quality. But this means that agent i’s choice of ef-
fort has no effect on the agent’s probability of being selected
as the winner. So if this agent contributes, then it is a best
response for her to exert effort ei = 0.

Note that this low effort best response is not an artifact of
choosing an agent with ability exactly equal to the thresh-
old: a similar argument shows that if an agent has ability
ai = â + ε for some small ε > 0, then her best response
cannot be to choose ei = 1. From this it follows that there
is no equilibrium in which all agents with abilities ai ∈ [â, 1]
choose ei = 1, i.e., follow strategies that maximize the mech-
anism designer’s utility.

Thus if the system can (and chooses to) rank contribu-
tions perfectly in decreasing order of quality, it will fail to
create incentives for agents to exert optimal levels of effort in
equilibrium. The intuitive reason behind this result is that
when a mechanism ranks contributions perfectly, a contribu-
tor with low ability ai knows that she has no chance of being
ranked ahead of higher ability contributors (when they also
exert high effort) regardless of how much effort she exerts,
since q(a, e) is increasing in both a and e. So she has no in-
centive to expend effort to try to improve the quality of her
contribution, and it is not an equilibrium for contributors to
exert the maximal level of effort as required to optimize the
mechanism designer’s utility.

However, our next result shows that while perfect rank-
ings of the contributions always create incentives for agents
to avoid exerting the optimal level of effort, these adverse
incentives can be avoided if the system does not rank the
contributions perfectly in order of their qualities, for exam-
ple by perturbing the rankings by adding random noise to
q(ai, ei). With such noisy rankings, exerting extra effort
can always increase the probability that a contributor will
ultimately be (possibly erroneously) ranked ahead of other
participants and be selected as the best contribution, giving
agents a greater incentive to exert effort than when quali-
ties of contributions are measured perfectly. In particular,
the mechanism designer may then be able to induce agents
to follow strategies that maximize the mechanism designer’s
utility if the cost of effort c(e) does not grow too rapidly, as
the following theorem illustrates.

Theorem 4.4. Consider any pR ≥ 0 and any particular
ratio of the rewards pB/pC > 1. Suppose that

c′(ei) ≤
∂qi
∂ei

∂π

∂qi
(pB − pC)(1− F (â)n−1)

for all ei, ai, q−i and m ≥ 2 when pB = c(0) and â denotes
the optimal threshold in equilibrium. Then the mechanism
designer can choose the values of pB and pC such that it is
an equilibrium for agents to follow strategies that maximize
the mechanism designer’s utility.

Perfect and noisy rankings. If contributions are ranked
perfectly according to their qualities, then ∂π

∂qi
= 0 for al-

most all values of q because incremental changes in qi do
not affect the fact that the highest quality contribution is
always chosen as the best. Similarly, if the winning con-
tribution is chosen completely randomly without regard to
the qualities of the contributions, then ∂π

∂qi
= 0 also holds

because qualities have no affect on the rankings. However,
if we rank contributions according to a noisy signal of qual-
ity si = qi + εi, where εi is drawn from some distribution
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with adequately large support, then ∂π
∂qi

> 0 because incre-

mental improvements in qi always increase a contribution’s
probability of being selected as the best answer.

Theorem 4.4 says that if the marginal cost of exerting ef-
fort, c′(e), is not too large and the system does not rank
the qualities of the contributions perfectly, so that ∂π

∂qi
> 0

always holds when there are at least two contributions, then
the values of pB and pC can be chosen so that agents follow
strategies that maximize the mechanism designer’s utility
in an equilibrium of MB(pB , pC). We note that the condi-
tion on the cost function in this result can be weakened to
only requiring the inequality in theorem statement to hold
for pB = c(0) + max{pR − cR, 0}; we choose the current
statement for simplicity and to be obviously applicable irre-
spective of whether the system allows rating or not.

Together, Theorems 4.3 and 4.4 suggest that a system
that does not rank contributions perfectly (of course, the
ranking must still remain monotone in quality) may induce
better outcomes than a system that does perfectly rank con-
tributions, because such perturbed rankings can create in-
centives for agents to exert greater effort. While our results
require a condition that the cost function does not grow too
rapidly, and therefore do not necessarily imply this will hold
under full generality, they do indicate that the designer may
wish to intentionally induce noise in these rankings when
the marginal cost of effort is not too large to allow imple-
mentation of optimal outcomes.

We note that this reasoning, indicating that it can be bet-
ter for a mechanism designer not to have precise information
about the qualities of contributions, parallels a result in [1]
showing that a firm may find it beneficial not to perfectly
monitor its workers if it wants to create incentives for its
employees to work hard. [1] finds that with perfect monitor-
ing, the higher ability workers will always do better than the
lower ability workers, and employees will have no incentive
to work harder than necessary to maintain their position.
However, if a firm does not monitor its workers perfectly,
then employees have an incentive to work hard because ex-
tra effort can always increase the probability that they will
ultimately be (possibly erroneously) ranked ahead of their
coworkers.

5. DISCUSSION
In this paper, we analyzed the effectiveness of the

widely used best contribution mechanism at implementing
optimal outcomes, i.e., at inducing selfish agents to choose
strategies that achieve the maximum utility the mechanism
designer could obtain if agents were nonstrategic. We
conclude by discussing the robustness of our results to the
assumption that users are homogeneous in their motivations
to contribute. While most users may be well-described
by the strategic incentives in our model, there may also
be users who contribute non-strategically, without regard
to any gain of points (as an example, there might be
heavily invested users who always supply high quality
answers for topics they care about, without regard to
point-based incentives). Such contributors can be modeled
as nonstrategic agents whose participation choices and
qualities are exogenous. Our results about when optimal
implementation can be achieved all continue to hold in this
case, using similar arguments. For instance, in the case of
homogenous effort, strategic agents would continue to follow

symmetric threshold strategies in equilibrium (the specific
thresholds would depend on the distribution of the qualities
of the non-strategic agents), and the equilibrium threshold
would again vary continuously with the rewards pB and
pC . The mechanism designer would continue to want the
strategic agents to use some symmetric threshold strategy
in equilibrium (again, the value of the desired threshold
might depend on the distribution of the nonstrategic agents’
qualities). The same argument as in Theorem 3.3 would
then show that the mechanism designer could achieve
optimal outcomes by choosing rewards appropriately.
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