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ABSTRACT 
We introduce an entity-centric search experience, called Active 
Objects, in which entity-bearing queries are paired with actions 
that can be performed on the entities. For example, given a query 
for a specific flashlight, we aim to present actions such as reading 
reviews, watching demo videos, and finding the best price online. 
In an annotation study conducted over a random sample of user 
query sessions, we found that a large proportion of queries in 
query logs involve actions on entities, calling for an automatic 
approach to identifying relevant actions for entity-bearing queries. 
In this paper, we pose the problem of finding actions that can be 
performed on entities as the problem of probabilistic inference in 
a graphical model that captures how an entity bearing query is 
generated. We design models of increasing complexity that 
capture latent factors such as entity type and intended actions that 
determine how a user writes a query in a search box, and the URL 
that they click on. Given a large collection of real-world queries 
and clicks from a commercial search engine, the models are 
learned efficiently through maximum likelihood estimation using 
an EM algorithm. Given a new query, probabilistic inference 
enables recommendation of a set of pertinent actions and hosts. 
We propose an evaluation methodology for measuring the 
relevance of our recommended actions, and show empirical 
evidence of the quality and the diversity of the discovered actions. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Retrieval models 

General Terms 
Algorithms, Measurement, Experimentation, Theory 

Keywords 
Actions, Active Objects, Entity-Centric Search, Query Log 
Mining, Web Search 

1. INTRODUCTION 
Entities are central to a large fraction of Web search queries. 

Whether users seek to find information about an entity or transact 
on the entity (e.g., “[buy] toy story 3”, “[watch or listen to] obama 
weekly address”), understanding the underlying query intent is 
key to providing a rich search experience. 

Web search today has already taken great strides away from 
simple query word matching. For example, popular entities in 

large query segments (e.g., local, entertainment, shopping) are 
routinely recognized in queries and rich direct displays are 
presented to users by filling editorially-defined templates with 
associated structured data. For example, a query for “lion king” on 
Bing yields such a direct display consisting of an image of the 
movie cover, showtimes at local theaters, the running time, genre, 
and ratings of the movie. However, since the focus is on the 
dominant actions, the search engine underserves, for instance, a 
Netflix user seeking other actions such as adding the movie to her 
streaming queue, or a child trying to find a toy figurine. In 
addition, a different movie such as Michael Moore’s most recent 
documentary would certainly have a different underlying intent 
distribution. Also, actions associated with queries for tail entities 
such as flashlights or small vineyards are completely ignored. 

Search as an action broker: A promising future search scenario 
involves modeling the user intents (or “verbs”) underlying the 
queries and brokering the webpages that accomplish the intended 
actions. In this vision, the broker is aware of all entities and 
actions of interest to its users, understands the intent of the user, 
ranks all providers of actions, and provides direct actionable 
results through APIs with the providers. For example, consider a 
user who queries for “jetbeam rrt-0”, a flashlight. The broker, 
which maintains a collection of all possible actions on flashlights 
and associated websites and applications that can accomplish 
those actions, would recognize the particular entity mentioned in 
the query, and would return a personalized ranked list of actions 
to the user. Figure 1 provides a simplistic illustration of how this 
user experience could look on a search results page. With actions 
present, users could save clicks and save time, and sometimes 
even discover new actions to help them toward their goals. New 
revenue streams open up from paid action placement, lead 
generation, and on-site commercial transactions. 

This paper addresses several key questions that arise within this 
paradigm. Do Web queries tend to lend themselves to actions on 
entities? What does the space of actions look like? And most 
importantly, given a query with an entity (e.g., identified via a 
technique such as [18]), how can a search engine determine 
actions to recommend?  

 
*This work was conducted at Microsoft Research. 
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Figure 1. Search as an action broker. 
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for one of our discovered actions. Clearly this is a cluster that 
relates to downloading free software.1 We then tease out the 
“actions” by obtaining a list of verbs/action words, and then 
intersecting this list against the context words in the clusters. 

Using a generic verb list is not ideal here because we are 
restricted to actions that users can perform on the Web, many 
verbs do not take people in the agent role (e.g., “merge”), and 
generic verb lists often do not contain words that can be used as 
Web-based actions such as “blog”, “podcast” or “torrent”. To 
obtain a list of appropriate actions, we defined a few key lexical 
patterns (similar to Hearst [13]) that generally contain action 
words, such as: 

 

“want to (x)”    “have to (x)”    “you can (x)”    “I can (x)” 
 

We then obtain the most frequent instances of (x) by applying 
these patterns against a large Web body-text trigram corpus. After 
filtering out adverbs (using 21 additional patterns, designed to 
catch adverbs in this corpus) and noise (the 25% of actions with 
the lowest frequency / unigram count, e.g., “a” and “boy”), this 
leaves us with a list of 13,417 action words. This list still contains 
a number of actions (e.g., “shock” or “kill”) that users cannot 
perform over the Web, so we filtered it down to the 1,279 Web 
actions that also occurred with the pattern “(x) at (y)” in our 
trigrams, where (y) takes the form of a website URL (e.g., 
“Amazon.com”). Examples of the most popular Web actions 
include: “buy”, “review”, “shop” and “unsubscribe”. 

The second word cloud in Figure 5 shows P(n | a) for those 
contexts n that passed our filter. The third word cloud shows the 
remaining words when Web action words are removed. The 
resulting three word cloud types, illustrated in Figure 5, are used 
as a tool for a human-annotation task to specify the appropriate 
action phrases for each cluster. From our automatically generated 
word clouds of action words, non-action words, and the popular 
hosts for each action cluster, we found it easy for annotators to 
specify these action phrases. In future work we will explore 
techniques for fully automating this process of learning action 
phrases from action words. 

5. EXPERIMENTAL RESULTS 
5.1 Data 

We collected several months of queries issued to Bing and 
filtered them to retain only those that contain a signal for learning 
actions, by (i) removing any query that did not lead to a click and 
(ii) removing any query that did not contain an entity. 

We cover a large number of oft-queried entities by focusing on 
the most important entity types discovered in our query analysis 
                                                                 
1 Note that ‘@’ is a wildcard for any digit. Thus “@.@” is a 

placeholder for software versions such as “3.1” or “2.0.” 

from Section 3 (see Figure 3). Note that Schema.org does not 
provide actual instances for their entity taxonomy, so we rely 
instead on Freebase for instances. We chose types from Freebase 
that correspond to the most often queried types in Schema.org 
such as films, business operations, product lines and people. Since 
Freebase is a fine-grained knowledge base, we also included 
subtypes such as athletes, actors and politicians, for a total of 21 
total types (Table 1). The resulting sets account for approximately 
3.4 million entity instances after de-duplication. 

Accurate entity recognition is a difficult problem and at model 
application time one needs high precision and high recall entity 
recognition and entity to type mappings (e.g., using methods such 
as described in [7] and [21]). For our model training, given the 
large amount of available queries, we require only high precision 
entity recognition, so we turn to the following simple but effective 
method. We start by matching our query log with all our Freebase 
entity instances. To avoid problems like a query for “nice pants” 
getting matched to the city “Nice” in France, we apply an 
ambiguity filter on the capitalization ratio of our instances and 
allow matches on only the entities that appear capitalized at least 
50% of the time in Wikipedia. To ensure that we do not match on 
substrings within entities (e.g., if “Harry Potter” is the correct 
entity but not in our database of entities, we do not want to match 
on “Harry” or “Potter” separately), we also apply a standalone 
score filter [14] at 0.9, which calculates how often a string occurs 
as an exact match in queries relative to how often it occurs as a 
partial match. 

Table 1: 21 Freebase types used in our experiments. 
website product line digital camera 
consumer product software film 
comp/video game person  athlete  
politician  actor  artist 
employer  business operation restaurant  
location  travel destination  tourist attraction 
sports facility  university  road  

For query contexts n1 and n2 defined in Section 4, although one 
could potentially use arbitrary n-gram context sizes, we keep only 
queries where the contexts are empty or consist of single words 
(accounting for a very large fraction of the queries). 

We define a navigational query as one where the user only 
wants to navigate to a specific site and is unlikely to be interested 
in any other action presented to her. We automatically eliminate 
such queries from the training set, where a query is considered 
navigational if in our logs it is associated with >1,000 clicks 
where >98% of clicks were to the same host (~2% of our data 
points). Finally, we eliminate entries with clicked hosts that have 
been clicked fewer than 100 times over our entire query log. 

After applying the filters described above, this yielded several 
million data points for training our models. Our data covers 235K 

 
 

Figure 5. To obtain Action Phrases we first identify top Web Action words from the action’s most likely context words. 
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distinct Freebase entities, 129K distinct context words, and 58K 
distinct click hosts. We refer to the resulting queries as actionable 
queries and denote the resultant query set as Q according to 
Section 4. 
5.2 Model Settings 

We trained our models with 50 action clusters, set according to 
our earlier annotation study in Section 3.2, which found that this 
would give us good coverage over the main actions in Web 
search. Alternatively, the constraint could be alleviated by 
analyzing the semantic similarity between context words in the 
resulting clusters, or by using techniques similar to those for 
finding the optimal k in k-means [12], or by other methods such as 
those discussed by Blei et al. [2]. We conducted our two-step 
learning over 100 total EM iterations, running 2 folds per model.  

5.3 Experimental Configurations 
We used three test sets for our study: 

• HEAD: 100 queries from a frequency-weighted random 
query sample of Q. 

• TAIL: 100 queries from a uniform random sample of Q. 
• Type-Balanced: 16 queries obtained as follows: Sampling 

starts from a frequency-weighted sample of Q, but during 
sampling, we only admit new queries to the test set if they 
cover a type that has not been covered yet.  

The HEAD sample was used to test expected user impact in a 
Web search scenario whereas the TAIL sample tests how our 
method applies to rare entities. Whereas manually curated models 
could potentially address a large portion of head queries, only an 
automated method can model the tail. In our TAIL sample, we 
noticed that the entities were skewed towards the person type. We 
introduced the Type-Balanced set to test our model performance 
over a broad set of entity types, including less common types such 
as university and tourist attraction. 

Finally, we report our results against the following models: 

• Baseline: Simpler version of Model 1 that uses only query 
context words as observed variables, illustrated in Figure 6. 

• Models 1, 2: As described in Section 4. 
• Model 2+: Model 2 with the Empty Switch as described in 

Section 4.3 and illustrated on the right in Figure 4. 

There are 12 resulting experimental configurations. 

5.4 User Study 
We conducted a user study for each experimental configuration 

to determine relative effectiveness at discovering and suggesting 
actions. The goals of the study are to assess the following: 

• End-to-end application results: Given a new query, the 
model should be able to recommend actions that are of 
interest to users. 

• Diversity: The model should learn a comprehensive set 
of user intended actions, not just a few common actions. 

The latter goal is interesting because it deepens our 
understanding of the actions that Web search users most 
commonly perform, and a diverse set of actions internally could 
also be indicative of the ability to perform well on less common 
queries and on queries whose entities belong to less popular types.  

Annotation Guidelines: To measure whether the recommended 
actions are of interest to users, we adopt a PEGFB graded 
relevance scale similar to Web search [9]. In our case, we define 
the grades as:  

• Perfect action: Exactly the explicit intent of the user as 
stated in the query. (only used for queries with context) 

• Excellent action: The presumed likely intent of the user 
as stated in the query. 

• Good action: Likely to be interesting to the user, 
although not the stated intent. 

• Fair action: Possibly of interest to some users who issue 
the query. 

• Bad action: Unlikely to be of interest to any user who 
issues this query. 

We employed a total of seven paid independent annotators for 
grading the actions suggested in each configuration. For each 
action, two annotations were obtained. Inter-rater agreement using 
Fleiss’ κ was 0.28 (fair agreement) when the P, E, G relevance 
judgments were collapsed. Note that there is some amount of 
subjectivity in ratings, especially for queries with no context. For 
example, on a query for “Obama”, some annotators felt that the 
“Watch videos about” action is Good, while others felt it is Fair. 
When exact ratings differed, they still tended to be close in rank. 
Annotators were also allowed to specify and skip labeling any test 
query that was judged navigational or that contained entity 
recognition errors. This occurred in 16.5% of the test cases. 

For each query set, each model configuration was set to return 
up to seven actions to be judged according to our PEGFB scale. 

5.5 Experimental Results 
The results (using P=5, E=4, G=3, F=2, B=1) from our model 

configurations are summarized in Figure 7. The evaluation 
measure is Normalized Discounted Cumulative Gain (nDCG) on 
the top-7 suggested actions per model.  

 
Figure 6. Baseline Model. 

Figure 7. Normalized Discounted Cumulative Gain (nDCG)
for each experimental configuration from Section 5.3, with
95% confidence bounds. The addition of types and entities
(Model 2) had the largest effect, followed by clicked hosts
(Model 1) and then empty switch (Model 2+). 
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metric for visualizing this is to graph “Total P(Action | Type)” as 
a function of “Cluster Rank,” as in Figure 9. This illustrates the 
distribution of probability mass across the cluster ranks. Here we 
only compare Models 2 and 2+, because Model 1 does not model 
entity type. Given that we used 21 total types, the maximum value 
would be 2100% (if all 21 types mapped 100% to one cluster). 
Model 2 appears to have six primary action clusters that receive 
the majority of the probability from types, while Model 2+ learns a 
much more diverse set of actions clusters, which we also observed 
by inspecting the word clouds in the Φ parameter. 

Note that only learning 6 primary action clusters does not mean 
that Model 2 can only recommend up to 6 distinct action phrases. 
First, the remaining clusters do have nonzero weight and can 
contribute action phrases. Second, individual action clusters may 
contain a mixture of action phrases. For example, one of the 
Model 2 clusters contains actions for “read biography”, “find 
lyrics” and “download file” all within the same cluster. This does 
not cause type mismatches at decoding time because action 
phrases are typed (e.g., “download file” will only be 
recommended when the entity is of a type it applies to, such as 
software type), but it does limit the ability of the models to 
discover and refine good action clusters specifically around the 
less common actions. The lower ranked clusters within Model 2+ 
do look very coherent around specific actions, for example, “read 
biography” is in a cluster only with related terms such as “facts”, 
“childhood” and “timeline” while “download” is in a cluster with 
related terms like “software”, “install” and “free”. 

6. CONCLUSIONS 
We proposed the notion of actions in Entity-Centric Search. 

We conducted an annotation study on query log data to gauge the 
prevalence of entities and associated actions in Web search. We 
developed generative models to learn latent actions from queries, 
and we implemented them over large real-world query logs. We 
experimentally showed that modeling click hosts and entity types, 
along with query context words, yields high relevance on the task 
of action recommendation, and that explicitly representing empty 
contexts greatly improves action diversity. Finally, we addressed 
various issues for developing an end-to-end system for actions, 
and we are now able to automatically recommend good sets of 
actions for users issuing new queries. 

Future research directions include expanding the number of 
entity types and modeling actions for “entity category” queries 
(e.g., “shoes”). Additionally, we believe that our current random 
initialization of action clusters can be improved upon by seeding 
the clusters with some prior knowledge. We are also considering 
adding a user model to our approach in order to better target user-
specific actions. For the “Webster University” query in Table 2, 
for example, actions such as “read reviews of” and “see rankings 
of” are more suited for prospective students, while “see map of” 
and “follow sports teams of” are a better fit for current students. 

This work takes first steps towards the larger vision of search as 
an action broker outlined in the introduction. We envision a world 
where publishers can tag (automatically or manually) their Web 
pages and native applications with the actions that they can 
accomplish; a world where users’ intended actions can be inferred 
and executed seamlessly via connections to these providers. Only 
then will entities become, truly, active objects. 
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