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ABSTRACT
User modeling on the Web has rested on the fundamental assump-
tion of Markovian behavior — a user’s next action depends only
on her current state, and not the history leading up to the current
state. This forms the underpinning of PageRank web ranking, as
well as a number of techniques for targeting advertising to users.
In this work we examine the validity of this assumption, using data
from a number of Web settings. Our main result invokes statisti-
cal order estimation tests for Markov chains to establish that Web
users are not, in fact, Markovian. We study the extent to which the
Markovian assumption is invalid, and derive a number of avenues
for further research.

Categories and Subject Descriptors. F.2 [Theory of Compu-
tation]: Analysis of Algorithms and Problem Complexity; G.3
[Mathematics of Computing]: Probability and Statistics

General Terms. Measurement, Theory

Keywords. Markov chains, Browsing behavior, User models

1. INTRODUCTION
The Markovian model for Web user behavior posits that when a

user is browsing a Web page P , the next page she visits depends
only on P and not on how the user arrived at P . This assump-
tion is central to some of the most widely used Web algorithms and
systems including Google’s PageRank [15] and other forms of link
analysis [13]. Markovian user models have also been proposed for
advertising [1] and in fact, many systems used for behavioral tar-
geting of advertisements use an even simpler zeroth order model
in which the next page visited is drawn from a probability distribu-
tion that is independent of the user’s current position. The central
question we examine in this paper is: how valid are these simple
(Markovian, as well zeroth order) models? Using data from a va-
riety of different sources, we establish that the Markovian model
(and by corollary the zeroth order model) is too simplistic to cap-
ture the behavior of Web users. Our data includes browser trails on
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large networks including Yahoo! as well data from user behavior
within a page, using mouse- and eye-tracking. In other words, user
behavior on the Web is rather more intricate than the simple models
underlying the most commonly used algorithms on the Web.

Given a set of hyperlinked Web pages, we may view each page
as a state in a Markov chain [12]. Each hyperlink is a potential
transition of the Markov chain modeling a user following that hy-
perlink. The transition probabilities of the Markov chain represent
the probabilities of the user following each hyperlink, if she is at
the page containing that link. In some of the settings we study, we
will naturally model a slot within a page as a state, when consider-
ing user actions within the page. In these settings we study the drift
of the user’s mouse or eyes over the page as transitions between
states. Here too (as we will detail) one could naturally model the
user’s behavior using a Markov model.

Given this view of pages visited as states in a Markov chain, we
next extend the notion of a Markov chain (in a manner routine in
probability theory) to a richer class of user models that includes as
special cases the Markovian and zeroth order models. Consider the
probability that a user at stage (page) i goes next to page j. If for
all j, the transition probability is independent of i, then we say the
user model is zeroth order. If instead it is uniquely determined by
i then we say the user model is Markovian; we will sometimes re-
fer to this as the first order model. Thus in the Markovian model,
the probability of going from i to j varies with i, but depends only
on i and not on how the user arrived at state i. More generally for
k > 1 we say the user model is of order k if it is the smallest in-
teger such that the probability of going to page j is determined by
the sequence sk, sk−1, . . . , s2, i of the last k states (pages) visited
by the user. Thus in a second order user model, the transition prob-
abilities depend on the current page i as well as the previous page
the user visited prior to arriving at i.

Intuitively the larger k is, the greater the influence of the user’s
historical trail on her behavior. The zeroth order model even ig-
nores which pages are linked to which others; it simply views the
user’s next page as drawn from a fixed probability distribution inde-
pendent of her current position. The (first order) Markovian model
does take into account the user’s current state (page) i and thus can
take into account the links out of i; it ignores states visited prior
to i and in this sense may be considered memoryless. Classic Web
algorithms such as PageRank use this model. Some prior work
[20, 14] offers weak evidence in support of users’ behavior being
Markovian. We know of no prior work that has examined whether
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Web users’ behavior is in fact truly Markovian, thereby justifying
the assumption implicit in PageRank and other algorithms. Aside
from these applications, we believe the question “how memoryless
are users’ browsing habits” is of interest in its own right, as an im-
portant step in understanding user behavior.

We bring together two ingredients in addressing this question.
First, we study a number of data sets each consisting of a large
number of user trails; in some of these data sets the user trails visit
Web pages. In others, each trail follows the user through other
discrete steps abstracted as states. Second we appeal to a powerful
result from statistics that considers the error in a model’s power to
explain given data as a function of increasing k. Informally the
result [16] asserts that the magnitude of the error undergoes a sharp
drop from order k−1 to the true order k. This enables us to ask the
question: what is the smallest k at which a given set of user trails
is adequately explained by the model?

The rest of the paper is organized as follows. In Section 3 we
introduce our notation and the basics of Markov chains. We prove
that several natural questions are computationally or information-
theoretically hard to answer in Sections 4.1 and 5.2. The descrip-
tion of our novel algorithms for optimally estimating higher order
Markov chains is given in Section 4. Finally we present our ex-
tensive experimental study using a diverse collection of large scale
Web data sets in Sections 7 and 8.

2. RELATED WORK
Estimating the order of a Markov chain has been extensively

studied by the statistics community [7, 16]. Multiple order esti-
mators that are asymptotically consistent as the data size tends to
infinity are known [7]; however, to the best of our knowledge, their
finite sample convergence has not been investigated carefully. In
fact, in Section 4.1 we show that the number of samples required for
distinguishing between order 1 and order k Markov chains grows
extremely rapidly in the worst case.

Variable order Markov chains (VOMC) were introduced in [4]
though similar ideas were considered earlier in context-dependent
data compression by Rissanen [18]. Ron et al. [19] gave a poly-
nomial time algorithm that learns a VOMC such that the probabil-
ity distribution of the emitted state sequences has small Kullback–
Leibler divergence from those generated by the true source. Dalevi
et al. [8] extended the recent order estimation algorithm of Peres
and Shields [16] to VOMCs and conducted experiments with DNA
sequences comparing the accuracy of several algorithms.

There has been some work on empirically modeling user brows-
ing patterns with first [20, 14], second [22, 21], and higher or-
der [17] Markov chains. Borges [3] fit VOMC to session logs and
Deshpande and Karypis [10] studied the compression and pruning
of higher order Markov models. However experimental evaluation
has generally been limited to web access logs of a few relatively
small web sites, e.g., a computer science department’s or a mer-
chant’s web site, raising issues with the homogeneity, representa-
tiveness, and insufficient scale of the data. For a thorough overview
of sequence prediction algorithms applied to learning web request
patterns we refer the reader to the excellent survey of Davison [9].

First order Markov chains [2, 6] and variable order hidden Markov
models [5] have often been applied to context-aware search, docu-
ment re-ranking, and query suggestion as well.

3. PRELIMINARIES
In this section we describe the background material necessary

for understanding higher order Markov chains. First we define a

general kth order Markov chain. Let v1, . . . , vn be the elements of
the state space S.

DEFINITION 1 (ORDER k MARKOV CHAIN). A Markov chain
of order k is a process (Xi)

∞
i=1 such that for each t ≥ k and

vk+1, . . . , v1, it holds that

Pr [Xk+1 = vk+1 | Xk = vk, . . . , X1 = v1] =

Pr [Xt+1 = vk+1 | Xt = vk, . . . , Xt−k+1 = v1].

In other words, the next state in a kth order Markov chain de-
pends on the identity of the k states leading up to the current state.
Note that the traditional Markov chain is order 1 according to this
definition since the next state depends only on the current state.
Along similar lines, one can also define a zeroth order Markov
chain where the next state distribution is independent of the cur-
rent state. Next, we define the order of an element.

DEFINITION 2. Let u be an element of a Markov chain of any
order. Then u has order k if for each t ≥ k + 1 and vk+1, . . . , v1,
it holds that

Pr [Xt+1 = vt+1 | Xt = u,Xt−1 = vt−1, . . . , X1 = v1] =

Pr [Xt+1 = vt+1 | Xt = u,Xt−1 = vt−1,

. . . , Xt−k+1 = vt−k+1].

Observe that if a higher order Markov chain has elements v1, . . . , vn
respectively of orders k1, . . . , kn, then the Markov chain can be
represented by

∑n
i=1

∑ki
j=1 n

j−1 probability vectors: for each ele-
ment vi, and for each possible sequence of length at most ki leading
to vi, store the probability vector representing the next transition to
be taken in the chain.

Now, given a set of paths where each path (sometimes called a
trail) is a sequence of states, a natural computational question is:
what is the order of the underlying stochastic process that generates
these paths, or more specifically, what is the order of a generic
element vi? This is the Markov chain order estimation problem.

Note that a kth order Markov chain on a state space S can be seen
as a first Markov chain on the larger state space S′ =

⋃k
i=1 S

i.
Also, a sequence of traces generated by M can be interpreted as a
sequence of traces generated by M ′: a trace (a1, . . . , ai) on M ,
can be seen as a trace

((a1), . . . , (a1, . . . , ak), (a2, . . . , ak+1), . . . , (ai−k+1, . . . , ai))

on M ′.

4. MAXIMUM LIKELIHOOD ESTIMATION
Given an integer k ≥ 1 and a set T = {T1, . . . , Tt} of traces,

we wish to compute the kth order Markov chain that maximizes the
probability of observing T ; such a Markov chain is called a Maxi-
mum Likelihood Estimate (MLE) for T . Without loss of generality
we assume that all trails start and end with a special reset state R
that represents the unobservable components of the users’ trails.

We will continue the discussion assuming k = 1, and at the end
we will show how the k ≥ 2 case reduces to the k = 1 case.

An easy algorithm to compute the Maximum Likelihood Markov
chain (of order 1) is the following. For each sequence of the form
Ti =

(
xi,1, xi,2, . . . , xi,|Ti|

)
, increase each of the counters

Cxi,1→xi,2 , Cxi,2→xi,3 , . . . , Cxi,|Ti|−1→xi,|Ti|
.

Each of the counters starts at 0. Observe that if there are n states
x1, . . . , xn plus the special reset state R, then the number of coun-
ters will be (n+ 1)2.
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The transition probabilities will be chosen as

Ma→b =
Ca→b∑

states c Ca→c
. (1)

Observe that the ratio is well-defined iff at least one trace passes
through state a. We will consider M to be a matrix whose rows are
indexed by the source states and the columns are indexed by the
destination states. The reset state R will index the first row and the
first column.

Equation (1) can be easily extended to the higher order case us-
ing our observation from Section 3.

LEMMA 3. The Markov chain M given by (1) is a Maximum
Likelihood Estimate.

PROOF. We prove for first order Markov chains; the proof easily
extends to higher order Markov chains using the observation from
Section 3.

Let N be the MLE Markov chain for traces T1, . . . , Tt, with
Ti =

(
xi,1, xi,2, . . . , xi,|Ti|

)
. Let Ca→b be the number of times

that the states a and b were consecutive in a trace.
The probability of observing the traces T1, . . . , Tn with Markov

chain N is given by

P =

t∏
i=1

|Ti|−1∏
j=1

(
Nxi,j→xi,j+1

)
=
∏
xi

∏
xj

(
Nxi→xj

)Cxi→xj .

Take any state a and consider its productPa =
∏
xj

(
Na→xj

)Ca→xj .

We have P =
∏
a Pa. Observe that Pa is the likelihood of a multi-

nomial distribution. We conclude the proof by stating the following
fact:

FACT 4. Let n1, . . . , nk be positive integers, and consider the
function

f(p1, . . . , pn) = pn1
1 · p

n2
2 · · · · · p

nk
k .

The function f , given the constraints pi ≥ 0, for i = 1 . . . , k,
and

∑k
i=1 pi = 1, is uniquely maximized at pi = ni∑k

j=1 nj
, for

i = 1, . . . , k.

By Fact 4, the maximum likelihood is attained by settingNa→b =
Ca→b∑
c Ca→c

. Therefore, M = N .

4.1 Learning the Markov chain
While the Maximum Likelihood Estimate is easy to compute, we

now show that it is impossible to reconstruct the unknown Markov
chain to any good approximation, unless we are given a very large
number of samples.

We will start by showing that learning a kth order Markov chain
is not feasible even just (i) in an approximate fashion, (ii) at sta-
tionarity, and (iii) if states are chosen uniformly at random out of
an arbitrary support. That is, (i) if we allow some slack in learning
the transition probabilities, and (ii) if the slack is not worst-case but,
rather, it is averaged over states in a way that mimics how the user
travels around the Markov chain, and finally (iii) even if the transi-
tion probabilities are uniform (as opposed to chosen so to make life
harder for an algorithm) — the number of samples needed to learn
the Markov chain grows exponentially in k.

The next construction also shows that making any guess on the
order of the Markov chain (even allowing the three relaxations
above) is impossible unless we are given a very large number of
samples.

LEMMA 5. There exists a Markov chainM of order k = O(1),
satisfying point (iii) above, for which the average expected `1 dis-
tance of the best guess of the next step distribution is Ω(1), unless
Ω
(
nk
)

steps of the Markov chain have been observed.
Furthermore, guessing whether the order of the Markov chain is

k or k − 1 with probability Ω(1) is impossible unless Ω
(
n

k−1
2

)
steps are observed.

PROOF. Let n−3 be a multiple of k, and create a Markov chain
with k layers with (n − 3)/k states each, plus three extra states.
Let Li be the set of states of the ith layer, i = 1, . . . , n−3

k
, and let

the three extra states be R (the reset state), A, and B.
The transition probabilities are defined as follows:

• if we are at nodeR, the next node to be visited will be chosen
uniformly at random in L1;
• from each node v ∈ Li, i ∈ {1, 2, . . . , k − 2, k − 1}, the

next node to be visited will be chose uniformly at random
from Li+1;
• if we are at a node vk ∈ Lk, and the history up to that point

is (v1, v2, . . . , vk), the next node will be f(v1, . . . , vk) with
probability 1, where f is a function chosen uniformly at ran-
dom (when constructing the Markov chain) between those
with domain L1 × L2 × · · · × Lk and codomain {A,B};
• finally, if we are at either A or B, the next state will be the

reset state R with probability 1.

Observe that, given that f is chosen uniformly at random, if we
happen to be at a node vk ∈ Lk, with a history (v1, . . . , vk), for the
first time, it will be impossible for us to guess whether the distribu-
tion of the next node is degenerate in favor of A or B. Therefore,
regardless of which distribution we guess for the next step, it will
have average `1-distance to the actual one of at least 1.

LetH = {(v1, . . . , vk) | vi ∈ Li, i = 1, . . . , k}.
Now, if we only observe o

(
k ·
(
n
k

)k) steps in the Markov chain,

there will be a fraction of 1 − o(1) histories in H that we will not
have seen. Since each such history is equally likely, if we only
observe o

(
k ·
(
n
k

)k) steps, our best guess to the distribution of
the next step, if we are at a state vk ∈ Lk, will have an average
`1-distance to the actual one of at least 1 − o(1). The main claim
then follows by observing that any walk will be in a state of Lk a
fraction Θ(k−1) = Θ(1) of the time.

For the second claim, suppose that an adversary chooses f either
(a) uniformly at random from the set of functions L1×L2× · · · ×
Lk → {A,B}, or (b) uniformly at random from the functions of
that set that satisfy f(x, v2, v3, . . . , vk) = f(y, v2, v3, . . . , vk),
for each x, y ∈ L1, and for each vi ∈ Li, i = 2, . . . , k.

Observe that, with high probability (over the random choice of
f ), choice (a) produces a Markov chain of order k, and choice (b)
produces a Markov chain of order at most k − 1.

Now, unless a sub-walk v2, . . . , vk, vi ∈ Li, i = 2, . . . k, is
repeated twice, it will be impossible for the algorithm to distinguish
between choices (a) and (b). The probability that one such sub-
walk is repeated at least twice is at most o(1), if the number of

observed steps is o
(√

nk−1
)

.

The above result shows that learning Markov chains (and their or-
der) is quite costly in terms of how many steps are needed, even un-
der assumption (iii), i.e., the transition probabilities of the Markov
chain are not very small.

We show that, if we drop assumption (iii), then there is no func-
tion of n and k that upper bounds the number of steps needed to dis-
tinguish between n-states Markov chains of order k and a Markov
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chain of order 1. That is, the order estimation problem becomes so
hard that it cannot be solved with a number of steps upper bounded
by any finite function of n and k.

We sketch an argument of why this is the case. Consider a
Markov chain on n states such that the probability of transitioning
from any state xi 6= x1, to any state xj , is exactly 1

n
.

The transition from x1 to any other state xi, i ≥ 2, is uniform,
regardless of the history. The adversary makes a single choice:
either

(a) the probability of transitioning from state x1 to itself is
pmin � 1

n
, regardless of the history; or

(b) the probability of transitioning from state x1 to itself is
pmin � 1

n
if the history is not a run of k continuous x1’s,

and 1
2
· pmin otherwise.

Now observe that if the adversary makes choice (a), then the
Markov chain has order 1. If, on the other hand, the adversary
makes choice (b), the order of the Markov chain is k.

To guess whether the choice is (a) or (b) we have to traverse a
(k + 1)-long sequence of x1’s. Since the probability of following
such a trail in the next k + 1 steps is at most 1

n
· pk+1

min , it follows
that if we have less than o

(
n · p−k−1

min

)
steps to learn from we are

not able to distinguish between choices (a) and (b), i.e., we cannot
distinguish between Markov chains of order k and order 1 with
fewer steps. Crucially, the lower bound does not depend on just
n and k, but rather on the minimum non-zero probability in the
Markov chain.

5. STATE COMPRESSION
So far we have only hinted at one issue of higher order Markov

chains: their state space can be quite large. In this section, we deal
with this general issue in two different ways.

First, we consider the variable order Markov chain estimation
problem. We change the MLE problem definition to allow each
state to have a different order, but we insist on finding the MLE of
the Markov chain under the constraint that the sum of the orders of
the states is bounded by some value.

A solution to this problem can be used to obtain a more parsimo-
nious assignment of “memory” to states. As a byproduct, such a
solution can be used to classify states in those that, roughly speak-
ing, benefit from a “deeper” memory, and those that can be rea-
sonably represented with a shorter one. In fact, we present such a
classification in Section 8.3.

Then, we consider a different problem that tackles more directly
the issue of the bit-size of a higher order Markov chain. We start
from the observation that the highest cost in the memory represen-
tation of a Markov chain is not given by the identifiers of the states1,
but rather by the probability distributions that each state has on its
out-neighbors. We therefore define the “compressed MLE” prob-
lem: if we are allowed to keep in memory at most t probability dis-
tributions, what is the maximum likelihood estimate for the higher
order Markov chain?

We show that the variable order Markov chain MLE problem is
solvable efficiently in polynomial time; on the other hand, we show
that the compressed MLE problem is NP-hard.

5.1 The variable order MLE problem
In this section we propose a dynamic programming algorithm

(Algorithm 1) for solving the variable order Markov chain MLE
problem.
1We recall that in a higher order Markov chain each distinct “his-
tory” can be seen as a state.

In the algorithm description, Pk(vi) is the product of the maxi-
mum likelihood probabilities of the trace steps going out of vi, if we
fix at k the order of node vi. Such kth order maximum likelihood
probabilities at vi can be computed exactly as in the uniform-order
MLE algorithm.

Algorithm 1 for solving the variable order Markov chain problem.
1: Let K be the target total order, and let
A[0, . . . ,K], B[0, . . . ,K] be two vectors of size K + 1.

2: Initialize every element of A to 0.
3: A[0]← 1
4: for all states vi do
5: Initialize every element of B to 0.
6: for k = 0, . . . ,K do
7: for j = 0, . . . ,K − k do
8: B[j + k]← max (A[j] · Pk(vi), B[j + k]) .
9: A[j]← B[j], for each j = 0, . . . , k + 1.

10: Let j∗ be an index that maximizes A[j∗].
11: Let i be equal to the number of states.
12: while i ≥ 0 do
13: Let k∗ ≤ j∗ be such that A[k∗] = A[j∗] · Pj∗−k∗ (vi).
14: Choose a history of length j∗ − k∗ for state vi.
15: j∗ ← k∗

16: i← i− 1

The algorithm itself is a modification of classical dynamic pro-
gramming algorithms. Thus, we do not provide a detailed analysis
here and sketch its correctness instead.

After having iterated over states v1, . . . , vi at Line 4, A[j], j =
1, . . . ,K, will contain the maximum product of probabilitiesPj1(v1),
. . ., Pji(vi), with the constraint that j1 + · · ·+ ji = j. A standard
dynamic programming induction can be employed to show that at
Line 10, the value of A[j∗] is the maximum possible likelihood,
given the total order constraint. The last part of the algorithm just
unwinds the computation and reconstructs an order assignment that
guarantees the maximum likelihood A[j∗].

5.2 The compressed MLE problem
Here, we prove that the compressed MLE problem is NP-hard.

Our proof works regardless of the order of the (possibly, variable
order) Markov chain. The NP-hardness proof works as long as each
state in the chain has positive order.

LEMMA 6. The compressed MLE problem, for any order k ≥
1, is NP-hard.

PROOF SKETCH. We reduce from the Edge-Partition into Tri-
angles problem, shown to be NP-hard by Holyer [11]. Given an
undirected graph G = (V,E), the problem asks whether the edge
set E, |E| = m, can be partitioned into m

3
triangles.

For each e = {v, w} ∈ E we create two traces (xe, xv) and
(xe, xw). Let T be the set of traces. We ask whether there exists
a Markov chain for T , using at most m

3
+ 2 distinct probability

distributions over the out-neighbors, with likelihood at least p =
(3m)−2m.

First, suppose that a partition of E into triangles exists, i.e., let
S ⊆

(
V
3

)
, |S| = m

3
, and for each e ∈ E there exists s ∈ S

such that e ⊆ s. The out-distribution of the reset state R will be
uniform over {xe | e ∈ E}, i.e., for each e ∈ E, the probability of
transitioning from R to xe will be 1

m
.

Furthermore, for each s ∈ S, and for each e ∈ E such that
e ⊆ s, we assign to xe the uniform out-distribution with support
{xv | v ∈ s}.
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Finally, for each v ∈ V , the state xv will transition to R with
probability 1.

An easy calculation shows that the probability that the above
Markov chain produces the input traces T is exactly p. Also, the
number of distinct out-distributions is 1 + |S|+ 1 = m

3
+ 2.

On the other hand, it can be shown that every Markov chain M
satisfying the requirements and guaranteeing a likelihood of at least
p, must contain exactly m

3
+2 different out-distribution: one having

support {R}, one having support {xv | v ∈ V }, and each of the
remaining m

3
having some support Si ∈

(
V
3

)
. Furthermore, for

each e ∈ E, there must exist exactly one Si containing it; these
properties imply that the Si’s induce a partition into triangles of
the edges of G.

6. THE STATIONARITY OF THE MLE
MARKOV CHAIN

In this section we characterize the stationary distribution of chains
derived from trails and its connection to a prefetching problem.

Again, assume that we are given a sequence of traces T =
{T1, . . . , Tt}, and that we compute via Equation (1) the Maximum
Likelihood Estimate M for T . Let `i be the number of times that
state xi was visited in the input traces. Let `R be the number of
traces. Finally, let L = `R +

∑n
i=1 `i be the total number of visits

to states in the input traces.

LEMMA 7. Let the vector π be π =
(
`R
L
, `1
L
, `2
L
, . . . , `n

L

)
.

Then, πM = π.

PROOF. Observe that `i, i = 1, . . . , n, is equal to

`i = Cxi→R +

n∑
j=1

Cxi→xj = CR→xi +

n∑
j=1

Cxj→xi .

Furthermore, `R is equal to

`R = CR→R +

n∑
j=1

MR→xj = CR→R +

n∑
j=1

Mxj→R.

Therefore,

`R +

n∑
i=1

`i =

t∑
i=1

(|Ti|+ 1)

Let τ = π · M . Consider the xi-coordinate of τ , for i =
1, . . . , n. We have

τxi =
`R
L
·MR→xi +

n∑
k=1

(
`k
L
·Mxk→xi

)
=
`R
L
· CR→xi
CR→R

∑n
j=1 CR→xj

+

n∑
k=1

(
`k
L
· Cxk→xi
Cxk→R +

∑n
j=1 Cxk→xj

)

=
CR→xi
L

+

n∑
k=1

(
Cxk→xi
L

)
=
`i
L

= πxi .

The same derivation gives τR = πR. Therefore, π ·M = τ = π,
and the claim is proved.

We observe that the Markov chain M is irreducible. This will
allow us to claim that the π of Lemma 7 is the only stationary dis-
tribution of M .

OBSERVATION 8. The Markov chain M is irreducible.
PROOF. Since a state is part of M iff it was reached by at least

one input trace starting from R and ending in R, and since each
input trace has positive probability of being followed inM , it holds
that M is irreducible.

COROLLARY 9. The vector π of Lemma 7 is the unique station-
ary distribution of M .

Now consider a Markov chain M of order k on states S =
{x1, . . . , xn}, plus the “reset” stateR. Such a chain can be seen as
a first order Markov chain M ′ on state space S′ = {R} ∪

⋃k
i=1 S

i

A sequence of traces generated by M , can be interpreted as a
sequence of traces generated by M ′. By Corollary 9, there exists a
stationary distribution π′ for M ′.

Recall that π′(σ), for some σ ∈ S′, is the fraction of time that
is spent on the multi-state σ by a random walk. Analogously, if
we let π(xi) =

∑
σ∈S′

the last state of σ is xi
π′(σ), we have that π(xi) is the

fraction of time that is spent on state xi in a random walk over the
kth order Markov chain M .

Let `σ be the number of times that the multi-state σ in the Markov
chain M ′ is visited by the input traces, let L be equal to the sum
of the `σ’s plus the number of traces, and let `i be the number of
times that state xi in M is visited by the input traces. Then∑

σ∈S′
the last state of σ is xi

`σ = `i.

Therefore, we obtain that the fraction of time spent on state xi in
a random walk over the kth order Markov chain M is equal to:

π(xi) =
∑
σ∈S′

last state of σ is xi

π′(σ) =

∑
σ∈S′

last state of σ is xi
`σ

L
=
`i
L
.

6.1 The prediction problem
We now use what we have developed so far in this section to

solve the following prediction problem: suppose the user’s browser
is able to ask a content provider which page it should prefetch so to
maximize the probability that, when the user clicks on a new link,
the browser will be able to show the new page without performing
other network operations. Which page should be suggested?

Given a Markov chain, the best page to prefetch is easy: given
the user history up until that point, prefetch the state (page) that has
largest probability of being clicked on (breaking ties arbitrarily).

With the following observation, we obtain the stationary effi-
ciency of the best algorithm with a given stationary Markov chain.
By stationary efficiency we mean the (asymptotic) fraction of times
at which the page that was prefetched happens to be the one that the
user clicked on. Again we state our result in terms of a first order
Markov chain, but, as already noted, the higher order case reduces
to the first order case.

LEMMA 10. If π is the unique stationary distribution of M ,
then the efficiency of the best prefetching algorithm for M is∑

x

(
π(x) ·max

y
M(x, y)

)
.

PROOF. The probability of prefetching the right page, if we are
at state x is exactly maxyM(x, y). At stationarity, we will spend
a fraction π(x) of the time at x. Hence, the statement follows.

We observe that, if M is a maximum likelihood estimate ob-
tained from a set of traces T , then the terms π(x) and M(x, y) can
be computed directly from the traces.
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7. DATA
We use four data sets for our experiments. The first two deal with

user behavior patterns across different pages in a website whereas
the last two deal with user behavior patterns on a single page such
as the search results page (SERP) or a content page. In all our data,
we append a generic reset state to each trail and prepend a se-
quence of length k reset states so that the trails are all connected
to one another, the underlying chain is ergodic, and reset will
help “forget” the history across different trails.

Yahoo. This dataset, called Yahoo, is an anonymized sample of all
user transitions that occurred in all Yahoo! websites. We restrict
our attention to US-generated traffic and to the top 59 Yahoo! sites
including yahoo.com, Mail, News, Sports, Finance, and so on;
we also include a catchall outside state to capture transitions
that leave the Yahoo! websites. The data was collected in July
2009 and consists of a large set of randomly sampled 1.1 billion
cookies. The average length of the trails is around 46. A record
for a cookie is of the form 〈a, t, b〉i=1 where a, b are the names of
the Yahoo! sites and t is the time at which the user left state a and
entered state b, measured in seconds; the information about a was
obtained using the HTTP referrer. We break the record for a cookie
into trails whenever consecutive elements of the record cannot be
pieced together, i.e., bi−1 6= ai or either ai or bi is the outside
state. Note that this can happen due to one of several reasons: the
referrer string was not recorded properly, the user typed a URL into
the browser address location, or a bookmark was used to directly
jump into a website.

New York Times. This dataset, called NYTimes, consists of a
sample of user transitions that occurred in New York Times (nytimes.
com) and recorded using the Yahoo! browser toolbar from Septem-
ber 2011. The data consists of about 25,000 user trails, where each
trail is identified by its anonymized cookie. The average length of
the trails is around 9. A record for a cookie is similar to Yahoo, ex-
cept that a and b are URLs in NYT. We map these URLs into one
of 40 topics, where these topics were manually selected from the
New York Times website and by looking at the URLs themselves.
The topics will be the states of the Markov chain. Example topics
are Science, Politics, Sports, World, etc. We used simple hand-
crafted URL-based mapping rules to map the URLs to one of these
40 topics; by this process, more than 95% of the URLs were suc-
cessfully mapped to a valid topic. The remaining were mapped into
a generic other state. As in Yahoo, we also have an outside
state to capture transitions from or to non-NYT sites.

Mousetracking. This dataset, called MouseTrack, consists of events
such as mouse scroll, focus, and click, captured for a random sam-
ple of users visiting the Yahoo! SERP. This capturing was enabled
by appropriately instrumenting the SERP and using the JavaScript
mouseover and mouseout events on specific DOM elements in the
SERP. The number of states in this dataset is 270 and includes states
such as res::i (the ith search result), logo::logo (the Yahoo! logo),
ads_horiz_bot (the horizontal ads at the bottom), etc. Note that
these states are automatically extracted from the name of the corre-
sponding DOM element in the raw HTML. The data was recorded
for 10 days in August 2011 and consists of about 2.34M trails. The
average length of each trail is around 7. The trail consists of el-
ements of the form 〈te, t`, a〉, where a is the state, and te is the
time when the mouse entered the DOM element an t` is the time
when the mouse left the DOM element (or the DOM element was
clicked). We use the timestamps to construct the actual trail. Note
that unlike the previous two data sets, this dataset captures the user
behavior on a single page. Also, by the construction of SERP, a

majority of the user movements have an orientation (top to bottom)
and mostly self-avoiding (i.e., states are not typically revisited).

Eyetracking. This dataset, called EyeTrack, consists of eye gaze
movements collected as part of a controlled experiment involving
about 32 participants. In each treatment of the experiment, 8 ran-
dom news articles were rendered on a 2 × 4 grid, where the posi-
tions are numbered row-major from left to right. Each participant
was exposed to about 18 treatments and their task was to click on
one article of their choice to read. All the participant’s activities, in
particular, their eye movements and gaze patterns, were recorded
using a Tobii 1750 Eye Tracker (sampling rate 50Hz, 17” monitor,
1024× 768 display resolution). We parsed the raw eye tracker data
to obtain pauses and abrupt changes in the eye position. We asso-
ciate the eye position with one of the 8 cells in the grid (thus, the
number of states in this dataset is 8). The resulting data consists of
521 trails, where each trail consists of elements of the form similar
to MouseTrack. The average length of the trails is around 68. This
dataset is closer to MouseTrack in the sense that it is derived from
user behavior on a single page, but is different in that there is no
obvious top to bottom or left to right orientation . In fact, as we
will see, the lack of orientation is heavily reflected in the behavior.

8. EXPERIMENTS
In this section we present the results of our various algorithms

and measurements on the four data sets that we discussed in Section
7. First we present the results on the order of the chain representing
browsing behavior across multiple pages and next we present the
results on the order of the chain that captures the behavior within
a single page. Then, we focus on variable order Markov chains
and the effect of representing and compressing the state space. We
then investigate the robustness of findings by subjecting the data to
several natural constraints and modifications. Finally, we conclude
with an application of our methods: to predict the next state visited
by the user.

We implemented the basic algorithm for Markov chain order es-
timation. Recall that this algorithm simply involves maintaining
various counters to count the number of transitions, for a given
length of the history. This algorithm is naturally parallelizable in
Map-Reduce, which is very important for studying large data sets
such as MouseTrack and Yahoo. We present our results by com-
puting the MLE matrix for various order chains and then comput-
ing the log-likelihood of the input for each of these orders. We
use k = 1, . . . , 5 for Yahoo (due to the size of the data) and
k = 1, . . . , 8 for the other three data sets. While reporting the per-
formance, to convey the main idea, we report the relative improve-
ment over the log-likelihood fit at k = 1, i.e., the usual Markov
chain. This way, we can clearly see the value in using a chain of
higher order to describe the observed trails.

8.1 Multi-page browsing behavior
Figure 1 shows the relative log-likelihood improvement for order

k Markov chains over the k = 1 chain. As we can see, the curves
are concave and appear to saturate at k = 3 for Yahoo and k ≈
5 for NYTimes. The relative improvements are around 11% for
Yahoo and ≈ 13% for NYTimes. This suggests that the browsing
behavior across websites is definitely not Markovian but can be
captured reasonably well by a not-too-high order Markov chain.
Thus, the cross-site browsing behavior appears to have limited but
non-trivial history.

If we examine the popular higher-order states in both the data
sets we find that they are quite intuitive. For example, in Yahoo,
the (Mail, Mail) or (yahoo.com, Registration, Mail), or (Mail,
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Figure 1: Log-likelihood fit for user visit patterns on Yahoo.

News) are popular higher-order states that determine the next tran-
sition. Likewise, for NYTimes, popular higher order states include
(Business, Search), (NYregion, US, World), and (Opinion, Blog,
Opinion).

8.2 Single-page browsing behavior
We then turn to the browsing behavior on a single page. To this

end, we use the mousetracking data (MouseTrack) on SERP and
the eyetracking data (EyeTrack) on news articles. Figure 2 shows
the relative improvements in log-likelihood. As we see, unlike Sec-
tion 8.1, the behavior is markedly opposite: the curves are convex
for EyeTrack and convex up to order 6 for MouseTrack. This sug-
gests that the single-page browsing behavior is not only highly non-
Markovian but also cannot be represented by a low-order Markov
chain. Thus, users clearly (perhaps subconsciously) remember their
browsing pattern and the states they have visited.

Even though at a high level both EyeTrack and MouseTrack
exhibit similar behavior, there are subtle differences. The plot for
MouseTrack shows that the improvement is diminishing after k ≈
7. The reason is that users mostly visit the search results (which are
the states) and it is reasonable that mouse movements on about 6 or
7 search results are probably sufficient to determine the user’s next
course of action. In contrast, the EyeTrack plot shows no signs of
flattening. This is due to the inherent two-dimensional browsing
task the users were subjected to. Middle states such as 2, 3, 5, 6
have to be revisited many times in order to move from the left side
to the right side. So, a lot of history might be needed in order to
determine the next course of action by the user.

8.3 Variable order models
In this section we study the performance of the algorithm for

variable order estimation. We ran this algorithm on the four data
sets and Figure 3 shows the results. To make comparison with the
fixed order Markov chain easier, we interpret the x-axis as a frac-
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Figure 2: Log-likelihood fit for mouse movements in Mouse-
Track and eye movement in EyeTrack.

tional order, i.e., it is the sum of the history lengths of all states
divided by the number of states. For completeness, we also include
the range k ∈ (0, 1] and show the performance of the fixed order
Markov chain. Clearly, variable order Markov chains are very pow-
erful and even with very limited total history, they can exceed the
performance of fixed order chains, even with larger total history.
This is only modestly true for EyeTrack, once again suggesting
that the user behavior is more complicated in this case.

In course of building the variable order chains, it is illustrative
to study which states benefit from having a lot of history. For
EyeTrack, we see that the “middle” states 3, 2, 7, 6 benefit a lot
from history. For MouseTrack, the search results (in increasing
order from 1, . . . , 10) benefit from history. For these two cases,
the benefit is more polarized. In the optimal solution, these states
demand a lot of history before other states get some amount of
history. For Yahoo and NYTimes, the situation is quite different.
The history gets spread evenly among the more popular states: e.g.,
Mail, News, Sports in Yahoo and World, US, Blog, Opinion in NY-
Times. This once again suggests a marked behavioral difference
between these two activities.

8.4 Transition table
In this section we study the transition table of a fixed order chain.

First, we focus on the support sizes as a function of the order. Re-
call that an order k Markov chain can have O(nk)-sized support;
hence, it is useful to measure the support size of the kth order chain
as a fraction of this maximum. Figure 4 shows the relative sizes.
Clearly, MouseTrack is quite efficient in terms of support whereas
EyeTrack requires relatively more values in the support. The sup-
port sizes for Yahoo and NYTimes are comparable and lie some-
where in between.

Next, we study the effect of pruning some of the entries in the
transition table. This pruning is done at the counting stage, before
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Figure 3: Best variable order chains obtained by the algorithm for various data sets.
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the transition matrix is normalized. For brevity, we only show the
results for NYTimes; the other are similar. The top panel of Figure
5 shows the performance hit in log-likelihood when entries below a
certain count are removed from the table (e.g., the curve for the leg-
end > 4 denotes normalizing the matrix after removing all counts
of at most 4). The bottom panel of Figure 5 shows the declining
support size after pruning. It is clear from the figures that even ag-
gressive pruning can result in significant space savings while not
compromising adversely on the quality of the representation.

8.5 Robustness analysis
In this section we perform various analysis to study how robust

are our findings.

Train-test split. First, we focus on computing the MLE estimator
on a dataset that is different from the dataset on which the log-
likelihood evaluation is done. We choose the two large data sets
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Figure 5: Effect of pruning on NYTimes.

Yahoo and MouseTrack for this purpose. We split the data into
two equal-sized partitions, train and compute the MLE on one par-
tition, and evaluate it on the other partition. The results are shown
in Figure 6. There is not much change in terms of the relative log-
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Figure 6: Train-test analysis for Yahoo and MouseTrack.

likelihood improvements over k = 1 between the original results
and the new results for Yahoo (and NYTimes) but for Mouse-
Track (and EyeTrack), there was a marked difference for higher
order states. This suggests that page browsing patterns, even at an
aggregate level, are hard to learn and utilize. Exploring this dis-
crepancy further is an interesting direction for future research.

Removing self-loops. Next, we focus on removing self-loops in
the data and see how it would affect the findings. Self-loops are nat-
ural in all the data sets and in some applications, it is important to
consider the process without self-loops since other stochastic mod-
els can be used to capture the dwell time on a particular website.
Figure 7 shows the results. The improvements are almost halved
for NYTimes and nearly unchanged for MouseTrack. The former
is intuitive since users might browse similar categories repeatedly
across different web pages. The latter happens since single-page
browsing is less likely to have too many self-loops and hence the
impact of removing them is minimal.

Removing short trails. Finally, we study the impact of removing
trails that are too short. Note that by including trails that are very
short, we are actually downplaying the performance of higher-order
chains. Hence, if we remove them, we should see an improvement
in their performance. Figure 8 shows the results for NYTimes and
MouseTrack, after removing trails of length at most 5. The effect
of having longer history is quite dramatic suggesting that longer
trails can actually benefit a lot more from them. From a different
point of view, we also study the impact of sessionizing: breaking up
long trails into smaller trails if the consecutive time interval is more
than 30 minutes. Figure 9 shows the effect of such a sessionization
on Yahoo. The effect, as seen, is minimal: trails spanning more
than a session would not have benefited from history in the first
place and hence this is to be expected.
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Figure 7: Fixed order chains with self-loops removed for NY-
Times and MouseTrack.
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Figure 8: Fixed order chains with trails of length at most 5
removed for NYTimes and MouseTrack.

8.6 An application: Prediction
In this section we study a simple application of our findings so

far: how much can the next state of the user be predicted with
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Figure 9: Fixed order chains with sessionized trails for Yahoo.

a higher-order Markov chain. To this end, we use the computed
MLE matrix and the fact we proved about the stationary of the MLE
Markov chain in order to compute the probability of predicting it
accurately. For ease of interpretation, we present the results rela-
tive to the prediction probability for k = 1. Figure 10 shows the
results. The improvements are significant (40% with order 2-3) for
MouseTrack and very minimal for EyeTrack; once again, the two-
dimensional browsing aspect of EyeTrack makes it hard to predict
well. For NYTimes, we get around 10% improvement for k = 3,
but for Yahoo, the behavior seems more intricate. This remains the
subject of future investigation.
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Figure 10: Improvements over prediction with order 1 Markov
chain.
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