
Actualization of Query Suggestions using Query Logs

Alisa Strizhevskaya, Alexey Baytin, Irina Galinskaya, Pavel Serdyukov
Yandex

16, Leo Tolstoy str.
Moscow, Russia

{amneziya, baytin, galinskaya, pavser}@yandex-team.ru

ABSTRACT
In this work we are studying actualization techniques for
building an up-to-date query suggestions model using query
logs. The performance of the proposed actualization algo-
rithms was estimated by real query flow of the Yandex search
engine.

Categories and Subject Descriptors:

H.3 [Information Storage and Retrieval]: H.3.3 Information
Search and Retrieval

General Terms:
Algorithms, Measurement, Experimentation.

Keywords:
Query suggestions, Time series, Prediction algorithms.

1. INTRODUCTION.
Search suggestion is a tool that helps a search engines’ user

to type less while formulating a query. In response to the
given user-input a search suggestions mechanism provides a
list of possible prolongations. The aim is to suggest the cor-
rect prolongation by the shortest possible input prefix. On
the other hand, each user query reflects some information in-
tent, and intents are known to change over time. Therefore,
search queries display some temporal dynamics, studied, for
example, in [6]. By queries’ actuality we mean the level of
its interest for todays’ user. For example, the actuality of
the query ”Halloween” grows all over October, drops in the
beginning of November and stays static till next autumn.
Most of the today’s query suggestion models operate with

query logs [1] or static document collections [2]. That means
that they, strictly speaking, build suggest models intended
for todays’ user, using past data, as aggregated query logs
are available with a certain delay and the suggestion model
is built off-line. In this paper a day is meant to be atomic
time unit, but the model may be generalized to any other.
Queries actuality is thought to be constant during the day,
but the logs are available up to the day before. So we have
to predict todays’ queries’ interest, knowing the dynamics of
its interest during the past period. In order to smooth out
that delay we propose to use linear time series prediction
algorithms to actualize our suggestions.
To get a list of suggestions, a suggest server gets all queries

from the dictionary, starting with the given prefix, sorts
them by their frequencies and retrieves top results. In these

Copyright is held by the author/owner(s).
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

terms, the goal of actualization boils down to the time se-
ries prediction: for each query we have a time series of its
frequency during a certain period of time. Using this in-
formation we make a prediction of the query frequency to
eliminate lag in data. However, there is a certain difference
with the classical time series prediction problem. We are
not interested in the precise query frequencies – our main
goal is to obtain a realistic ranking by the predicted query
frequencies. By ideal ranking we imply ranking made by
real frequencies of queries on test day. Therefore, the per-
formance of the algorithms will be evaluated with ranking
metrics.

The contribution of this paper is the following. First, to
the best of our knowledge, this is work is the first start-
ing and addressing the problem of actualization of search
suggestions. Second, we experimented with several time se-
ries prediction algorithms performing on the full production
query stream of Yandex search engine and discovered that
exponential smoothing algorithms are the best for this task.

2. ACTUALIZATION
The statement of the problem is as follows. For each query

is given a time series of its daily frequencies during the cer-
tain period {f1...fN}. We must make a prediction for the
next days’ frequency – yN+1. These predicted frequencies
will be used for ranking of queries for each given prefix.

The web search engine’s day stream (i.e. total amount of
queries asked per day streami =

∑
query freqi(query) ) is

known to change during a week: on weekends it decreases
up to 20%. This effect adds an additional seasonal compo-
nent to frequency time series of queries that is not explained
by changes of actuality. This makes the problem more com-
plicated as long as with changes in actuality we will have
to predict changes in our stream. However, these particu-
lar stream changes are common for all queries and does not
affect their relative relevances. Therefore we will eliminate
stream component by normalizing day frequencies by day
streams: probi(query) = freqi(query)/streami. So, value
probi(query) is a probability of query to be asked on i− th
day. We also smoothed up probabilities by convolving them
with a gaussian (gauss filtering) to eliminate noise in data:

prob(query) = prob(query) ∗ 1√
2πσ2 e

− x2

2σ2 .

We would like to emphasize, that those transformations
are made only for training data (i.e for the first N values).
The evaluated prediction algorithms are:
Mean over the entire period is taken as the baseline
prediction algorithm. We assume that it is well suited for

WWW 2012 – Poster Presentation April 16–20, 2012, Lyon, France

611



Algorithm NDCG@3 AP@3 Prec@3
Brown 0.890(0.96%) 0.576(3.38%) 0.712(2.02%)
Holt 0.887(0.61%) 0.571(2.57%) 0.708(1.45%)
HoltWin 0.886(0.56%) 0.574(2.97%) 0.708(1.46%)
Autocorr 0.883(0.20%) 0.562(0.91%) 0.702(0.58%)
Mean 0.882 0.557 0.698
ARIMA 0.873(-0.93%) 0.548(-1.57%) 0.690(-1.14%)

Table 1: Results on top-3.
stable queries which are the most part of the dictionary, but
fails to make good predictions for the queries that need to
be actualized.
Autocorrelation model. Analysis of sample queries’ be-
havior showed, that a considerable part of user queries is
almost strictly periodical. For example, query ”Raiffaisen
bank” is stable during the week and has frequency dips on
sundays. This model approximates each particular query
time series as a periodical function. For every time series we
calculate autocorrelation function and study its peaks, ex-
cept the zero shift peak. We pick the shift of the peak with
the largest magnitude and consider it to be queries’ period.
predictionN+1 = freqN+1−period

Exponential smoothing (Brown’s model). Exponen-
tial smoothing model without trend and seasonality [4].
Holt’s model. Exponential smoothing considering linear
trend [5].
Holt Winters multiplicative model. Exponential smooth-
ing considering seasonality and linear trend. Seasonality pe-
riod will be evaluated in the same way as in Autocorrelation
model [7].
ARIMA(0,2,1). Auto regressive and integrated moving
average model. This particular model configuration per-
forms linear exponential smoothing [3].
Last four algorithms have free parameters that define mod-

els’ sensitivities. We will adjust these parameters for every
particular query’ time series using the training data for that
query. So, for i = 0, 2 we use freq1...freqN−1−i as an input
and tune models’ parameters by minimizing the least aver-
age error between the actual and predicted query frequency
on the dayN−i. We take 3 days for training in order to avoid
overlearning on outliers. Then we use these parameters for
the test predictions on the dayN+1.

3. EXPERIMENTS
We will evaluate the algorithms by ranking metrics. We

cut each query on length(query) − 1 prefixes and thereby
obtain a list of all unique prefixes possible in the dictionary.
For each of these prefixes we compare two posting tops of
the same length: one – ranked by predicted probabilities,
another – ranked by real frequencies. We will evaluate 3
metrics:
Precision and MAP. By relevant suggestions we imply
queries that appear in the posting top, ranked by real fre-
quencies.
NDCG Here the relevance gain of the i − th position will
be equal to its real frequency of the query on this position.
In these terms, the ranking by real frequencies will be ideal
and have maximal DCG.
The experiments will be held on 31 day logs. For the first
30 dates we calculate streami and make prediction for ev-
ery query appeared during the first 30 days more than 10
times. The last, freq31(query), is used to build the ground

truth ranking of queries. After the prediction is performed,
the set of queries is cut on all possible prefixes, and for ev-
ery prefix we form a query posting list, ranked by predicted
probabilities.

By default, Yandex search suggestions display at most 10
queries. On the other hand, an average user does not read
all 10 suggestions and continues typing even if an intended
query has already appeared in the tail of the posting. We
performed an analysis of positions of clicked suggests dur-
ing a week. It appeared that a suggest click was in 51.15%
cases on the first position, in 20.8% on the second posi-
tion, in 10.3% on the third. 17.8% are left for the rest
seven positions. It means that the most important posting
length is 3. Thereby, we will make evaluations on prefixes,
whose full postings lengths are longer or equal to 3. And for
each such prefix we will evaluate AP@3, Precision@3 and
NDCG@3 by comparing top-3 of ideal and predicted post-
ings on this prefix. In our case a set of 10,799,678 queries
produced 83,795,381 unique prefixes, where 5,100,416 pre-
fixes had postings longer than 3. The results are shown in
table Table 1, differences significant to the baseline (p < .05)
are shaded. Brown’s model made better predictions than the
baseline on 80% prefixes.

4. CONCLUSIONS
The results show that exponential smoothing algorithms

lead on all considered metrics. The Brown’s model appeared
to be the best because it averages out data during the en-
tire period and, therefore, performs good on stable queries
that represent the majority among all unique queries. On
the other hand, the exponential weight function makes it
consider recent past in the first place, so it is sensible to
the changes in actuality. The errors revealed that each of
the algorithms has its own range of application. For exam-
ple, ARIMA, performing fine on upper-medium frequency
queries with a trend, fails to make good predictions on low
frequency and periodical queries. Therefore, future work in-
cludes precise determination of these ranges of application of
algorithms and using preliminary classification for queries.
This classification will also be useful for detecting bursty
queries, which appear to be the most problematic class for
all considered algorithms. They may require some special
prediction techniques and optimizations. This will also be a
point of future study.

5. REFERENCES
[1] R. Baeza-yates, C. Hurtado, and M. Mendoza. Query

recommendation using query logs in search engines. In In
International Workshop on Clustering Information over the
Web (ClustWeb, in conjunction with EDBT), Creete, pages
588–596. Springer, 2004.

[2] S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions in the
absence of query logs. SIGIR ’11, pages 795–804, New York, NY,
USA, 2011. ACM.

[3] G. E. P. Box, G. C. Reinsel, and G. M. Jenkins. Time series
analysis : forecasting and control. Prentice-Hall, Englewood
Cliffs, NJ, 1994.

[4] R. Brown. Smoothing, forecasting and prediction of discrete
time series. Prentice-Hall, Englewood Cliffs, NJ, 1963.

[5] C. C. Holt. Forecasting seasonals and trends by exponentially
weighted moving averages. International Journal of
Forecasting, 20(1), 2004.

[6] A. Kulkarni, J. Teevan, K. M. Svore, and S. T. Dumais.
Understanding temporal query dynamics. WSDM ’11, pages
167–176, New York, NY, USA, 2011. ACM.

[7] P. R. Winters. Forecasting sales by exponentially weighted
moving averages. Management Science, 1960.

WWW 2012 – Poster Presentation April 16–20, 2012, Lyon, France

612




