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We consider the problem of building online machine-learned
models for detecting auction frauds in e-commence web sites.
Since the emergence of the world wide web, online shop-
ping and online auction have gained more and more pop-
ularity. While people are enjoying the benefits from on-
line trading, criminals are also taking advantages to conduct
fraudulent activities against honest parties to obtain illegal
profit. Hence proactive fraud-detection moderation systems
are commonly applied in practice to detect and prevent such
illegal and fraud activities. Machine-learned models, espe-
cially those that are learned online, are able to catch frauds
more efficiently and quickly than human-tuned rule-based
systems. In this paper, we propose an online probit model
framework which takes online feature selection, coefficient
bounds from human knowledge and multiple instance learn-
ing into account simultaneously. By empirical experiments
on a real-world online auction fraud detection data we show
that this model can potentially detect more frauds and sig-
nificantly reduce customer complaints compared to several
baseline models and the human-tuned rule-based system.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Parameter Learn-
ing ; H.2.8 [Database Management]: Database Applica-
tions—Data Mining

General Terms

Algorithms, Experimentation, Performance

Keywords

Online Auction, Fraud Detection, Online Modeling, Online
Feature Selection, Multiple Instance Learning

1. INTRODUCTION
Since the emergence of the World Wide Web (WWW),

electronic commerce, commonly known as e-commerce, has
become more and more popular. Websites such as eBay
and Amazon allow Internet users to buy and sell products
and services online, which benefits everyone in terms of con-
venience and profitability. The traditional online shopping
business model allows sellers to sell a product or service at
a preset price, where buyers can choose to purchase if they
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find it to be a good deal. Online auction however is a dif-
ferent business model by which items are sold through price
bidding. There is often a starting price and expiration time
specified by the sellers. Once the auction starts, potential
buyers bid against each other, and the winner gets the item
with their highest winning bid.

Similar to any platform supporting financial transactions,
online auction attracts criminals to commit fraud. The vary-
ing types of auction fraud are as follows. Products purchased
by the buyer are not delivered by the seller. The delivered
products do not match the descriptions that were posted by
sellers. Malicious sellers may even post non-existing items
with false description to deceive buyers, and request pay-
ments to be wired directly to them via bank-to-bank wire
transfer. Furthermore, some criminals apply phishing tech-
niques to steal high-rated seller’s accounts so that potential
buyers can be easily deceived due to their good rating. Vic-
tims of fraud transactions usually lose their money and in
most cases are not recoverable. As a result, the reputation of
the online auction services is hurt significantly due to fraud
crimes.

To provide some assurance against fraud, E-commerce
sites often provide insurance to fraud victims to cover their
loss up to a certain amount. To reduce the amount of
such compensations and improve their online reputation, e-
commerce providers often adopt the following approaches
to control and prevent fraud. The identifies of registered
users are validated through email, SMS, or phone verifica-
tions. A rating system where buyers provide feedbacks is
commonly used in e-commerce sites so that fraudulent sellers
can be caught immediately after the first wave of buyer com-
plaints. In addition, proactive moderation systems are built
to allow human experts to manually investigate suspicious
sellers or buyers. Even though e-commerce sites spend a
large budget to fight frauds with a moderation system, there
are still many outstanding and challenging cases. Criminals
and fraudulent sellers frequently change their accounts and
IP addresses to avoid being caught. Also, it is usually infea-
sible for human experts to investigate every buyer and seller
to determine if they are committing fraud, especially when
the e-commerce site attracts a lot of traffic. The patterns of
fraudulent sellers often change constantly to take advantage
of temporal trends. For instance, fraudulent sellers tend to
sell the “hottest” products at the time to attract more po-
tential victims. Also, whenever they find a loophole in the
fraud detection system, they will immediately leverage the
weakness.

In this paper, we consider the application of a proactive
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moderation system for fraud detection in a major Asian on-
line auction site, where hundreds of thousands of new auc-
tion cases are created everyday. Due to the limited expert
resources, only 20%-40% of the cases can be reviewed and
labeled. Therefore, it is necessary to develop an automatic
pre-screening moderation system that only directs suspicious
cases for expert inspection, and passes the rest as clean cases.
The moderation system for this site extracts rule-based fea-
tures to make decisions. The rules are created by experts to
represent the suspiciousness of sellers on fraudulence, and
the resulting features are often binary.1 For instance, we
can create a binary feature (rule) from the ratings of sellers,
i.e. the feature value is 1 if the rating of a seller is lower
than a threshold (i.e. a new account without many previous
buyers); otherwise it is 0. The final moderation decision is
based on the fraud score of each case, which is the linear
weighted sum of those features, where the weights can be
set by either human experts or machine-learned models. By
deploying such a moderation system, we are capable of se-
lecting a subset of highly suspicious cases for further expert
investigation while keeping their workload at a reasonable
level.

The moderation system using machine-learned models is
proven to improve fraud detection significantly over the human-
tuned weights [38]. In [38] the authors considered the sce-
nario of building offline models by using the previous 30
days data to serve the next day. Since the response is bi-
nary (fraud or non-fraud) and the scoring function has to be
linear, logistic regression is used. The authors have shown
that applying expert knowledge, such as bounding the rule-
based feature weights to be positive and multiple-instance
learning, can significantly improve the performance in terms
of detecting more frauds and reducing customer complaints
given the same workload from human experts. However, of-
fline models often meet the following challenges: (a) Since
the auction fraud rate is generally very low (< 1%), the data
becomes quite imbalanced and it is well-known that in such
scenario even fitting simple logistic regression becomes a dif-
ficult problem [27]. Therefore, unless we use a large amount
of historical training data, offline models tend to be fairly
unstable. For example, in [38], 30 days of training data with
around 5 million samples are used for the daily update of
the model. Hence it practically adds a lot of computation
and memory load for each batch update, compared to online
models. (b) Since the fraudulent sellers change their pattern
very fast, it requires the model to also evolve dynamically.
However, for offline models it is often non-trivial to address
such needs.

Once a case is determined as fraudulent, all the cases from
this seller will be suspended immediately. Therefore smart
fraudulent sellers tend to change their patterns quickly to
avoid being caught; hence some features that are effective
today might turn out to be not important tomorrow, or vice
versa. Also, since the training data is from human label-
ing, the high cost makes it almost impossible to obtain a
very large sample. Therefore for such systems (i.e. rela-
tively small sample size with many features with temporal
pattern), online feature selection is often required to pro-
vide good performance. Human experts are also willing to
see the results of online feature selection to monitor the ef-

1Due to the company security policy, we can not reveal any
details of those features.

fectiveness of the current set of features, so that they can
understand the pattern of frauds and further add or remove
some features.

Our contribution. In this paper we study the problem of
building online models for the auction fraud detection mod-
eration system, which essentially evolves dynamically over
time. We propose a Bayesian probit online model frame-
work for the binary response. We apply the stochastic search
variable selection (SSVS) [16], a well-known technique in
statistical literature, to handle the dynamic evolution of the
feature importance in a principled way. Note that we are
not aware of any previous work that tries to embed SSVS
into online modeling. Similar to [38], we consider the expert
knowledge to bound the rule-based coefficients to be posi-
tive. Finally, we consider to combine this online model with
multiple instance learning [30] that gives even better empiri-
cal performance. We report the performance of all the above
models through extensive experiments using fraud detection
datasets from a major online auction website in Asia.

The paper is organized as follows. In Section 2 we first
summarize several specific features of the application and
describe our online modeling framework with fitting details.
We review the related work in literature in Section 3. In
Section 4 we show the experimental results that compare
all the models proposed in this paper and several simple
baselines. Finally, we conclude and discuss future work in
Section 5.

2. OUR METHODOLOGY
Our application is to detect online auction frauds for a

major Asian site where hundreds of thousands of new auc-
tion cases are posted every day. Every new case is sent to the
proactive anti-fraud moderation system for pre-screening to
assess the risk of being fraud. The current system is featured
by:

• Rule-based features: Human experts with years of
experience created many rules to detect whether a user
is fraud or not. An example of such rules is “blacklist”,
i.e. whether the user has been detected or complained
as fraud before. Each rule can be regarded as a binary
feature that indicates the fraud likeliness.

• Linear scoring function: The existing system only
supports linear models. Given a set of coefficients
(weights) on features, the fraud score is computed as
the weighted sum of the feature values.

• Selective labeling: If the fraud score is above a cer-
tain threshold, the case will enter a queue for further
investigation by human experts. Once it is reviewed,
the final result will be labeled as boolean, i.e. fraud or
clean. Cases with higher scores have higher priorities
in the queue to be reviewed. The cases whose fraud
score are below the threshold are determined as clean
by the system without any human judgment.

• Fraud churn: Once one case is labeled as fraud by
human experts, it is very likely that the seller is not
trustable and may be also selling other frauds; hence
all the items submitted by the same seller are labeled
as fraud too. The fraudulent seller along with his/her
cases will be removed from the website immediately
once detected.

WWW 2012 – Session: Security 2 April 16–20, 2012, Lyon, France

670



• User feedback: Buyers can file complaints to claim
loss if they are recently deceived by fraudulent sellers.

Motivated by these specific attributes in the moderation
system for fraud detection, in this section we describe our
Bayesian online modeling framework with details of model
fitting via Gibbs sampling. We start from introducing the
online probit regression model in Section 2.1. In Section 2.2
we apply stochastic search variable selection (SSVS), a well-
known technique in statistics literature, to the online probit
regression framework so that the feature importance can dy-
namically evolve over time. Since it is important to use the
expert knowledge, as in [38], we describe how to bound the
coefficients to be positive in Section 2.3, and finally combine
our model with multiple instance learning in Section 2.4.

2.1 Online Probit Regression
Consider splitting the continuous time into many equal-

size intervals. For each time interval we may observe mul-
tiple expert-labeled cases indicating whether they are fraud
or non-fraud. At time interval t suppose there are nt obser-
vations. Let us denote the i-th binary observation as yit. If
yit = 1, the case is fraud; otherwise it is non-fraud. Let the
feature set of case i at time t be xit. The probit model [3]
can be written as

P [yit = 1|xit,βt] = Φ(x′
itβt), (1)

where Φ(·) is the cumulative distribution function of the
standard normal distributionN(0, 1), and βt is the unknown
regression coefficient vector at time t.

Through data augmentation the probit model can be ex-
pressed in a hierarchical form as follows: For each observa-
tion i at time t assume a latent random variable zit. The
binary response yit can be viewed as an indicator of whether
zit > 0, i.e. yit = 1 if and only if zit > 0. If zit <= 0, then
yit = 0. zit can then be modeled by a linear regression

zit ∼ N(x′
itβt, 1). (2)

In a Bayesian modeling framework it is common practice to
put a Gaussian prior on βt,

βt ∼ N(µt,Σt), (3)

where µt and Σt are prior mean and prior covariance matrix
respectively.

Model fitting. Since the posterior π(βt|yt,xt,µt,Σt)
does not have a closed form, this model is fitted by using the
latent vector zt through Gibbs sampling. For each iteration
we first sample (zt|yt,xt,βt) and then sample (βt|zt,yt,µt,Σt).
Specifically, for each observation i at time t, sample

π(zit|yit = 1,xit,βt) ∼ N(x′
itβt, 1), (4)

truncated by 0 as lower bound. And

π(zit|yit = 0,xit,βt) ∼ N(x′
itβt, 1), (5)

truncated by 0 as upper bound. Then sample

π(βt|zt,yt,xt) = (βt|zt,xt) ∼ N(m̂t, V̂t), (6)

where

V̂t = (Σ−1
t + x

′
txt)

−1, m̂t = V̂t(Σ
−1
t µt + x

′
tzt). (7)

By iterative sampling the conditional posterior of zt and
βt for N iterations plus B number of burn-in samples (in our
experiments we letN = 10000 andB = 1000), we can obtain

N posterior samples of βt. We can thus obtain the posterior
sample mean µ̂t and sample covariance Σ̂t, to serve as the
posterior mean and covariance for βt respectively.

Online modeling. At time t, given the prior of βt as
N(µt,Σt) and the observed data, by Gibbs sampling we

obtain the posterior of π(βt|yt,xt,µt,Σt) ∼ N(µ̂t, Σ̂t). At
time t+1, the parameters of the prior of βt+1 can be written
as

µt+1 = µ̂t,Σt+1 = Σ̂t/δ, (8)

where δ ∈ (0, 1] is a tuning parameter that allows the model
to evolve dynamically. When δ = 1, the model updates by
treating all historical observations equally (i.e. no “forget-
ting”). When δ < 1, the influence of the data observed k
batches ago decays in the order of O(δk), i.e. the smaller δ
is, the more dynamic the model becomes. δ can be learned
via cross-validation. This online modeling technique has
been commonly used in literature (see [1] and [37] for ex-
ample). In practice, for simplicity we let Σ0 = σ2

0I and

Σt+1 = diag(Σ̂t)/δ to ignore the covariance among the co-
efficients of βt.

Besides the probit link function used in this paper, an-
other common link function for the binary response is lo-
gistic [26]. Although logistic regression seems more often
used in practice, there does not exist a conjugate prior for
the coefficient βt hence the posterior of βt always does not
have a closed form; therefore approximation is commonly
applied (e.g. [20]). Probit model through data augmenta-
tion, on the other hand, allows us to sample the posterior of
βt through Gibbs sampling without any approximation. It
also allows us to plug-in more complicated techniques such
as SSVS conveniently.

2.2 Online Feature Selection through SSVS
For regression problems with many features, proper shrink-

age on the regression coefficients is usually required to avoid
over-fitting. For instance, two common shrinkage methods
are L2 penalty (ridge regression) and L1 penalty (Lasso)
[33]. Also, experts often want to monitor the importance
of the rules so that they can make appropriate adjustments
(e.g. change rules or add new rules). However, the fraud-
ulent sellers change their behavioral pattern quickly: Some
rule-based feature that does not help today might helps a
lot tomorrow. Therefore it is necessary to build an online
feature selection framework that evolves dynamically to pro-
vide both optimal performance and intuition. In this paper
we embed the stochastic search variable selection (SSVS)
[16] into the online probit regression framework described in
Section 2.1.

At time t, let βjt be the j-th element of the coefficient
vector βt. Instead of putting a Gaussian prior on βjt, the
prior of βjt now is

βjt ∼ p0jt1(βjt = 0) + (1− p0jt)N(µjt, σ
2
jt), (9)

where p0jt is the prior probability of βjt being exactly 0, and
with prior probability 1−p0jt, βjt is drawn from a Gaussian
distribution with mean µjt and variance σ2

jt. Such prior is
called the “spike and slab” prior in the literature [19] but
how to embed it to online modeling has never been explored
before.

Model fitting. Let β−j,t be the vector βt excluding βjt.
The model fitting procedure for this model is again through
Gibbs sampling since the conditional posterior π(zt|yt,xt,βt)
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and π(βjt|β−j,t,zt, yt, p0jt, µjt, σjt) have closed form. Specif-
ically, sampling zit for observation i at time t has the same
formula as in Section 2.1.

π(zit|yit = 1,xit,βt) ∼ N(x′
itβt, 1), (10)

truncated by 0 as lower bound. And

π(zit|yit = 0,xit,βt) ∼ N(x′
itβt, 1), (11)

truncated by 0 as upper bound.
Denote

z̃it = zit −
∑

k 6=j

xiktβkt. (12)

We also let function dnorm(x;m,V ) be the density function
of Gaussian distribution N(m,V ), i.e.

dnorm(x;m,V ) =
1√
2πV

exp(− (x−m)2

2V
). (13)

To sample π(βjt|β−j,t,zt,yt, p0jt, µjt, σjt),

π(βjt|β−j,t,zt,yt, p0jt,µt,Σt) (14)

= π(βjt|β−j,t,zt, p0jt,µt,Σt)

∝ [

nt
∏

i=1

exp(− (z̃it − xijtβjt)
2

2
)]

[p0jt1(βjt = 0) +
1− p0jt
√

2πσ2
jt

exp(− (βjt − µjt)
2

2σ2
jt

)]

∝ γ̂jt1(βjt = 0) + (1− γ̂jt)N(m̂jt, V̂jt),

where

V̂jt = (σ−2
jt + x

′
jtxjt)

−1, (15)

m̂jt = V̂jt(x
′
jtz̃t +

µjt

σ2
jt

), (16)

γ̂jt =
p0jt

p0jt + (1− p0jt)
dnorm(0;µjt,σ

2

jt
)

dnorm(0;m̂jt,V̂jt)

. (17)

Since the conditional posterior π(βjt|β−j,t,zt,yt, p0jt, µjt, σjt) ∼
γ̂jt1(βjt = 0) + (1− γ̂jt)N(m̂jt, V̂jt), it implies that to sam-
ple βjt we first flip a coin with probability of head equal to
γ̂jt. If it is head, we let βjt = 0; otherwise we sample βjt

from N(m̂jt, V̂jt).
After B burn-in samples for convergence purpose, denote

the collected k-th posterior sample of βjt as β
(k)
jt , k = 1, · · · , N .

We estimate the posterior distribution of π(βjt|yt, p0jt, µjt, σjt)
by

π(βjt|yt, p0jt, µjt, σjt) ∼ p̂jt1(βjt = 0)+(1−p̂jt)N(µ̂jt, σ̂jt
2),

(18)
where

p̂jt =
N
∑

k=1

1(β
(k)
jt = 0)/N, (19)

µ̂jt =
N
∑

k=1

β
(k)
jt /

N
∑

k=1

1(β
(k)
jt 6= 0), (20)

σ̂jt
2 =

N
∑

k=1

1(β
(k)
jt 6= 0)(β

(k)
jt − µ̂jt)

2

N
∑

k=1

1(β
(k)
jt 6= 0)− 1

, (21)

Online modeling. When t = 0, we could set p0j0 = 0.5
for all j, i.e. before observing any data we consider the
probability of the j-th feature coefficient being zero or non-
zero is equal. At time t+ 1, we let

p0j(t+1) = ωp̂jt + 0.5(1 − ω), (22)

µj(t+1) = µ̂jt, σ
2
j(t+1) = σ̂jt

2/δ, (23)

where ω ∈ (0, 1) and δ ∈ (0, 1] are both tuning parameters.
Although it seems more natural to let p0j(t+1) = p̂jt, note
that in practice we often see p̂jt becomes 1 or 0 even though
N is large (say 10000), which implies that there are some
features which are very important (i.e. p̂jt = 1) or can be
excluded from the model to avoid over-fitting (i.e. p̂jt = 0).
In such scenario, simply letting p0j(t+1) = p̂jt will make the
posterior ˆpj(t+1) be 1 or 0 again regardless of what data is
observed at time t + 1, and so for all the latter batches.
Therefore, to allow the feature importance indicator ˆpj(t+1)

to evolve by using both the observed data at time t+1 and
the prior knowledge learned before time t+1, it is important
to let p0j(t+1), the prior probability for time t + 1, to drift
slightly away from p̂jt towards the initial prior belief (i.e.
p0j0 = 0.5). Intuitively, the value of ω controls how much
we “forget” the prior knowledge: the smaller ω is, the more
dynamic the model becomes. In practice we can tune both
ω and δ via cross-validation.

2.3 Coefficient Bounds
Incorporating expert domain knowledge into the model is

often important and has been proved to boost the model per-
formance (see [38] for instance). In our moderation system,
the feature set x is proposed by experts with years of experi-
ence in detecting auction frauds. Most of these features are
in fact “rules”, i.e., any violation of one rule should ideally
increase the probability of the seller being fraud to some
extent. A simple example of such rules is the “blacklist”,
i.e. whether the seller has ever been detected or complained
as fraud before. However, for some of such rules simply
applying probit regression as described in Section 2.1 or lo-
gistic regression as in [38] might give negative coefficients,
because given limited training data the sample size might be
too small for those coefficients to converge to right values,
or it can be because of the high correlation among the fea-
tures. Hence we bound the coefficients of the features that
are in fact binary rules, to force them to be either positive or
equal to 0. Note that this approach couples very well with
the SSVS described in Section 2.2: all the coefficients which
were negative are now pushed towards zero.

Suppose feature j is a binary rule and we wish to bound
its coefficients to be greater than or equal to 0. At time t,
the prior of βjt now becomes

βjt ∼ p0jt1(βjt = 0)+(1−p0jt)N(µjt, σ
2
jt)1(βjt > 0), (24)

where N(µjt, σ
2
jt)1(βjt > 0) means βjt is sampled from

N(µjt, σ
2
jt), truncated by 0 as lower bound.

Model fitting. For observation i at time t, the sampling
step for zit is the same as Section 2.1 and 2.2. To sample
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π(βjt|β−j,t,zt,yt, p0jt, µjt, σjt),

π(βjt|β−j,t, zt,yt, p0jt,µt,Σt) (25)

∝ [

nt
∏

i=1

exp(− (z̃it − xijtβjt)
2

2
)]

[p0jt1(βjt = 0) +
1− p0jt
√

2πσ2
jt

exp(− (βjt − µjt)
2

2σ2
jt

)1(βjt > 0)]

∝ γ̂jt1(βjt = 0) + (1− γ̂jt)N(m̂jt, V̂jt)1(βjt > 0),

where

V̂jt = (σ−2
jt + x

′
jtxjt)

−1, (26)

m̂jt = V̂jt(x
′
jtz̃t +

µjt

σ2
jt

), (27)

γ̂jt =
p0jt

p0jt + (1− p0jt)
Φ(m̂jt/

√
ˆVjt)

Φ(µjt/σjt)

dnorm(0;µjt,σ
2

jt
)

dnorm(0;m̂jt,V̂jt)

. (28)

After B number of burn-in samples we collect N posterior

samples of βjt. Denote β
(k)
jt as the k-th sample. Similar to

Section 2.2,

π(βjt|yt, p0jt, µjt, σjt) (29)

∼ p̂jt1(βjt = 0) + (1− p̂jt)N(µ̂jt, σ̂jt
2)1(βjt > 0),

where

p̂jt =
N
∑

k=1

1(β
(k)
jt = 0)/N. (30)

The estimated values of µ̂jt and σ̂jt
2 actually can not be

obtained directly from the posterior sample mean and vari-
ance for the non-zero samples. Since it is a truncated normal
distribution and non-symmetric, the mean of the non-zero
posterior samples tends to be higher than the real value of

µ̂jt. Let qjt =
N
∑

k=1

1(β
(k)
jt 6= 0), we find µ̂jt and σ̂jt

2 via

maximizing the density function

L = (2πσ̂jt
2Φ2(µ̂jt/σ̂jt))

−
qjt
2 exp(−

N
∑

k=1

(β
(k)
jt − µ̂jt)

21(β
(k)
jt 6= 0)

2σ̂jt
2 ).

(31)
We find the optimal solution to equation (31) by alterna-

tively fitting (µ̂jt|σ̂jt
2) and (σ̂jt

2|µ̂jt) to maximize the func-
tion using [6].

The online modeling component is the same as that in
Section 2.2.

2.4 Multiple Instance Learning
When we look at the procedure of expert labeling in the

moderation system, we noticed that experts do the labeling
in a “bagged” fashion: i.e. when a new labeling process
starts, an expert picks the most “suspicious” seller in the
queue and looks through all of his/her cases posted in the
current batch (e.g. this day); if the expert determines any
of the cases to be fraud, then all of the cases from this seller
are labeled as fraud. In literature the models to handle such
scenario are called“multiple instance learning” [30]. Suppose
for each seller i at time t there are Kit number of cases. For

all the Kit cases the labels should be identical, hence can
be denoted as yit. For probit link function, through data
augmentation denote the latent variable for the l-th case of
seller i as zilt. the multiple instance learning model can be
written as

yit = 0 iff zilt < 0, ∀l = 1, · · · ,Kit; (32)

otherwise yit = 1, and

zilt ∼ N(x′
iltβt, 1), (33)

where βt can have any types of priors that are described
in Section 2.1 (Gaussian), Section 2.2 (spike and slab), and
Section 2.3 (spike and slab with bounds).

Model fitting. The model fitting procedure via Gibbs
sampling is very similar to those in the previous sections.
While the process of sampling the conditional posterior of
βt remains the same, the process of sampling π(zt|yt,xt,βt)
is different. For seller i at time t,

π(zilt|yit = 0,xilt,βt) ∼ N(x′
iltβt, 1), (34)

truncated by 0 as upper bound for all l = 1, · · · ,Kit. If yit =
1, it implies at least one of the zilt > 0 for all l = 1, · · · ,Kit.
We construct pseudo label ỹilt such that ỹilt = 0 if zilt < 0;
otherwise ỹilt = 1. The density

π(ỹi1t, · · · , ỹiKitt|yit = 1,xit,βt) (35)

=

Kit
∏

l=1

(Φ(x′
iltβt))

ỹilt(1−Φ(x′
iltβt))

1−ỹilt

∑

Kit∑

l=1

ỹilt>0

Kit
∏

l=1

(Φ(x′
iltβt))ỹilt(1− Φ(x′

iltβt))1−ỹilt

.

To sample zilt when yit = 1, we first sample ỹilt for all
l = 1, · · · , Kit using Equation (35). Then we sample zilt by

π(zilt|yit = 1, ỹilt = 1,xilt,βt) ∼ N(x′
iltβt, 1), (36)

truncated by 0 as lower bound. And

π(zilt|yit = 1, ỹilt = 0,xilt,βt) ∼ N(x′
iltβt, 1), (37)

truncated by 0 as upper bound.
The estimation of the posterior of βt and the online mod-

eling component are the same as those in the previous sec-
tions.

3. RELATED WORK
Online auction fraud is always recognized as an important

issue. There are articles on websites to teach people how to
avoid online auction fraud (e.g. [35, 14]). [10] categorizes
auction fraud into several types and proposes strategies to
fight them. Reputation systems are used extensively by web-
sites to detect auction frauds, although many of them use
naive approaches. [31] summarized several key properties
of a good reputation system and also the challenges for the
modern reputation systems to elicit user feedback. Other
representative work connecting reputation systems with on-
line auction fraud detection include [32, 17, 28], where the
last work [28] introduced a Markov random field model with
a belief propagation algorithm for the user reputation.

Other than reputation systems, machine learned models
have been applied to moderation systems for monitoring and
detecting fraud. [7] proposed to train simple decision trees
to select good sets of features and make predictions. [23]
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developed another simple approach that uses social network
analysis and decision trees. [38] proposed an offline logistic
regression modeling framework for the auction fraud detec-
tion moderation system which incorporates domain knowl-
edge such as coefficient bounds and multiple instance learn-
ing.

In this paper we treat the fraud detection problem as a bi-
nary classification problem. The most frequently used mod-
els for binary classification include logistic regression [26],
probit regression [3], support vector machine (SVM) [12] and
decision trees [29]. Feature selection for regression models is
often done through introducing penalties on the coefficients.
Typical penalties include ridge regression [34] (L2 penalty)
and Lasso [33] (L1 penalty). Compared to ridge regression,
Lasso shrinks the unnecessary coefficients to zero instead of
small values, which provides both intuition and good perfor-
mance. Stochastic search variable selection (SSVS) [16] uses
“spike and slab” prior [19] so that the posterior of the co-
efficients have some probability being 0. Another approach
is to consider the variable selection problem as model selec-
tion, i.e. put priors on models (e.g. a Bernoulli prior on
each coefficient being 0) and compute the marginal poste-
rior probably of the model given data. People then either
use Markov Chain Monte Carlo to sample models from the
model space and apply Bayesian model averaging [36], or
do a stochastic search in the model space to find the pos-
terior mode [18]. Among non-linear models, tree models
usually handles the non-linearity and variable selection si-
multaneously. Representative work includes decision trees
[29], random forests [5], gradient boosting [15] and Bayesian
additive regression trees (BART) [8].

Online modeling (learning) [4] considers the scenario that
the input is given one piece at a time, and when receiving
a batch of input the model has to be updated according
to the data and make predictions and servings for the next
batch. The concept of online modeling has been applied to
many areas, such as stock price forecasting (e.g. [22]), web
content optimization [1], and web spam detection (e.g. [9]).
Compared to offline models, online learning usually requires
much lighter computation and memory load; hence it can
be widely used in real-time systems with continuous sup-
port of inputs. For online feature selection, representative
applied work include [11] for the problem of object track-
ing in computer vision research, and [21] for content-based
image retrieval. Both approaches are simple while in this pa-
per the embedding of SSVS to the online modeling is more
principled.

Multiple instance learning, which handles the training data
with bags of instances that are labeled positive or negative,
is originally proposed by [13]. Many papers has been pub-
lished in the application area of image classification such
as [25, 24]. The logistic regression framework of multiple in-
stance learning is presented in [30], and the SVM framework
is presented in [2].

4. EXPERIMENTS
We conduct our experiments on a real online auction fraud

detection data set collected from a major Asian website. We
consider the following online models:

• ON-PROB is the online probit regression model de-
scribed in Section 2.1.

• ON-SSVSB is the online probit regression model with
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Figure 1: Fraction of bags versus the number of
cases per bag (“bag size”) submitted by fraudulent
and clean sellers respectively. A bag contains all the
cases submitted by a seller in the same day.

“spike and slab” prior on the coefficients, and the coef-
ficients for the binary rule features are bounded to be
positive (see Section 2.2 and 2.3).

• ON-SSVSBMIL is the online probit regression model
with multiple instance learning and “spike and slab”
prior on the coefficients. The coefficients for the binary
rule features are also bounded to be positive (Section
2.4).

For all the above online models we ran 10000 iterations plus
1000 burn-ins to guarantee the convergence of the Gibbs
sampling.

We compare the online models with a set of offline models
that are similar to [38]. For observation i, we denote the
binary response as yi and the feature set as xi. For multiple
instance learning purpose we assume seller i has Ki cases
and denote the feature set for each case l as xil. The offline
models are

• Expert has the human-tuned coefficients set by do-
main experts based on their knowledge and recent fraud-
fighting experience.

• OF-LR is the offline logistic regression model that
minimizes the loss function

L =
∑

i

yi log(1 + exp(−x
′
iβ)) +

(1− yi) log(1 + exp(x′
iβ)) + ρ‖β‖2, (38)

where ρ is the tuning L2 penalty parameter that can
be learned by cross-validation.

• OF-MIL is the offline logistic regression with multiple
instance learning that optimizes the loss function

L =
∑

i

−yi log(1−
Ki
∏

l=1

1

1 + exp(x′
ilβ)

) +

(1− yi)

Ki
∑

l=1

log(1 + exp(x′
ilβ)) + ρ‖β‖2.(39)
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Model Rate of Missed Batch Best
Complaints Size δ

Expert 0.3466 – –
OF-LR 0.4479 – –
OF-MIL 0.3149 – –
OF-BMIL 0.2439 – –
ON-PROB 0.2483 Day 0.7
ON-SSVSB 0.1863 Day 0.7
ON-SSVSBMIL 0.1620 Day 0.7
ON-SSVSBMIL 0.1330 1/2 Day 0.8
ON-SSVSBMIL 0.1508 1/4 Day 0.9
ON-SSVSBMIL 0.1581 1/8 Day 0.95

Table 1: The rates of missed customer complaints
for all the models given 100% workload rate.

• OF-BMIL is the bounded offline logistic regression
with multiple instance learning that optimizes the loss
function in (39) such that β ≥ T , where T is the
pre-specified vector of lower bounds (i.e. for feature
j, Tj = 0 if we force its weight to be non-negative;
otherwise Tj = −∞).

All the above offline models can be fitted via the standard
L-BFGS algorithm [39].

This section is organized as follows. In Section 4.1 we
first introduce the data and describe the general settings of
the models. In Section 4.2 we describe the evaluation metric
for this experiment: the rate of missed customer complaints.
Finally we show the performance of all the models in Section
4.3 with detailed discussion.

4.1 The Data and Model Setting
Our application is a real fraud moderation and detection

system designed for a major Asian online auction website
that attracts hundreds of thousands of new auction postings
every day. The data consist of around 2M expert labeled
auction cases with ∼ 20K of them labeled as fraud during
September and October 2010. Besides the labeled data we
also have unlabeled cases which passed the“pre-screening”of
the moderation system (using the Expert model). The num-
ber of unlabeled cases in the data is about 6M-10M. For each
observation there is a set of features indicating how “suspi-
cious” it is. To avoid future fraudulent sellers gaming around
our system, the exact number and format of these features
are highly confidential and can not be released. Besides the
expert-labeled binary response, the data also contains a list
of customer complaints every day, filed by the victims of
the fraud. Our data in October 2010 contains a sample of
around 500 customer complaints.

As described in Section 2, human experts often label cases
in a “bagged” way, i.e. at any point of time they select the
current most “suspicious” seller in the system and examine
all of his/her cases posted on that day. If any of these cases
is fraud, all of this seller’s cases will be labeled as fraud.
Therefore we put all the cases submitted by a seller in the
same day into a bag. In Figure 1 we show the distribution
of the bag size posted by fraudulent and clean sellers re-
spectively. From the figure we do see that there are some
proportion of sellers selling more than one item in a day,
and the number of bags (sellers) decays exponentially as the
bag size increases. This indicates that applying multiple

O
F

−
L
R

O
F

−
M

IL

O
F

−
B

M
IL

O
N

−
P

R
O

B

O
N

−
S

V
S

S
B

O
N

−
S

V
S

S
B

M
IL

0.0

0.2

0.4

0.6

0.8

1.0

One Day Batch

R
a

te
 o

f 
m

is
s
e

d
 c

o
m

p
la

in
ts

1
 D

a
y

1
/2

 D
a
y

1
/4

 D
a
y

1
/8

 D
a
y

0.0

0.2

0.4

0.6

0.8

1.0

ON−SSVSBMIL

Figure 2: The boxplots of the rates of missed cus-
tomer complaints on a daily basis for all the offline
and online models. It is obtained given 100% work-
load rate.

instance learning can be useful for this data. It is also inter-
esting to see that the fraudulent sellers tend to post more
auction cases than the clean sellers, since it potentially leads
to higher illegal profit.

We conduct our experiments for the offline models OF-LR,
OF-MIL and OF-BMIL as follows: we train the models us-
ing the data from September and then test the models on the
data from October. For the online models ON-PROB, ON-
SSVSB and ON-SSVSBMIL, we create batches with various
sizes (e.g. one day, 1/2 day, etc.) starting from the begin-
ning of September to the end of October, update the models
for every batch, and test the models on the next batch. To
fairly compare them with the offline models, only the batches
in October are used for evaluation.

4.2 Evaluation Metric
In this paper we adopt an evaluation metric introduced

in [38] that directly reflects how many frauds a model can
catch: the rate of missed complaints, which is the portion
of customer complaints that the model cannot capture as
fraud. Note that in our application, the labeled data was not
created through random sampling, but via a pre-screening
moderation system using the expert-tuned coefficients (the
data were created when only the expert model was deployed).
This in fact introduces biases in the evaluation for the met-
rics which only use the labeled observations but ignore the
unlabeled ones. This rate of missed complaints metric how-
ever covers both labeled and unlabeled data since customers
do not know which cases are labeled, hence it is unbiased
for evaluating the model performance.

Recall that our data were generated as follows: For each
case the moderation system uses a human-tuned linear scor-
ing function to determine whether to send it for expert label-
ing. If so, experts review it and make a fraud or non-fraud
judgment; otherwise it would be determined as clean and
not reviewed by anyone. Although for those cases that are
not labeled we do not immediately know from the system
whether they are fraud or not, the real fraud cases would
still show up from the complaints filed by victims of the
frauds. Therefore, if we want to prove that one machine-
learned model is better than another, we have to make sure
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Figure 3: The rates of missed customer complaints
for workload rates equal to 25%, 50%, 75% and 100%
for all the offline models and online models with
daily batches.

that with the same or even less expert labeling workload,
the former model is able to catch more frauds (i.e. generate
less customer complaints) than the latter one.

For any test batch, we regard the number of labeled cases
as the expected 100% workload N , and for any model we
could re-rank all the cases (labeled and unlabeled) in the
batch and select the first M cases with the highest scores.
We call M/N the “workload rate” in the following text. For
a specific workload rate such as 100%, we could count the
number of reported fraud complaints Cm in the M cases.
Denote the total number of reported fraud complaints in
the test batch as C, we define the rate of missed complaints
as 1−Cm/C given the workload rate M/N . Note that since
in model evaluation we re-rank all the cases including both
labeled and unlabeled data, different models with the same
workload rate (even 100%) usually have different rates of
missed customer complaints. We argue model A is better
than model B if given the same workload rate, the rate of
missed customer complaints for A is lower than B.

4.3 Model Performance
We ran all of the offline and online models on our real

auction fraud detection data and show the rates of missed
customer complaints given 100% workload rate for Oct 2010
in Table 1. Note that for online models we tried δ (one key
parameter to control how dynamically the model evolves)
for different values (0.6, 0.7, 0.75, 0.8, 0.9, 0.95 and 0.99)
and report the best in the table. For ω we also did sim-
ilar tuning and found that ω = 0.9 seems to be a good
value for all models. From the table it is very obvious
that the online models are generally better than the cor-
responding offline models (e.g. ON-PROB versus OF-LR,
ON-SSVSBMIL versus OF-BMIL), because online models
not only learn from the September training period but also
update for every batch during the October test period. Com-
paring the online models described in this paper, ON-SSVSB
is significantly better than ON-PROB since it considers on-
line feature selection and also bounds coefficients as domain
knowledge. ON-SSVSBMIL further improves slightly over
ON-SSVSB because it considers the “bagged” behavior of
the expert labeling process using multiple instance learning.

δ 0.75 0.8 0.9 0.95 0.99
Rate of Missed 0.1463 0.1330 0.1641 0.1729 0.1973
Complaints

Table 2: The rates of missed customer complaints
for ON-SSVSBMIL (100% workload rate, batch size
equal to 1/2 day and w = 0.9), with different values
of δ.

Finally, almost all the offline and online models, except LR,
are better than the Expert model. This is quite expected
since machine-learned models given sufficient data usually
can beat human-tuned models. In Figure 2 (the left plot)
we show the boxplots of the rates of missed customer com-
plaints for 100% workload on a daily basis for all the offline
and online models (daily batch). In Figure 3 we plot the
rates of missed customer complaints versus different work-
load rates for all models with daily batches. From both fig-
ures we can obtain very similar conclusions as those drawn
in Table 1.

Impact of different batch sizes. For our best model
ON-SSVSBMIL we tried different batch sizes, i.e. 1 day, 1/2
day, 1/4 day and 1/8 day, and tuned δ for each batch size.
The overall model performance is shown in Table 1, and
Figure 2 (the right plot) shows the boxplots of the model
performance for different batch sizes on a daily basis. It is
interesting to observe that batch size equal to 1/2 day gives
the best performance. In fact, although using small batch
sizes allows the online models to update more frequently to
respond to the fast-changing pattern of the fraudulent sell-
ers, large batch sizes often provide better model fitting than
small batch sizes in online learning. This brings a trade-off
in performance between the adaptivity and stability of the
model. From Table 1 and Figure 2 we can clearly see this
trade-off and it turns out that 1/2 day becomes the opti-
mal batch size for our application. From the table we also
observe that as the batch size becomes smaller, the best δ
becomes larger, which is quite expected and reasonable.

Tuning δ. In Table 2, we show the impact of choosing
different values of δ for ON-SSVSBMIL with 100% workload
rate, batch size equal to 1/2 day and w = 0.9. Intuitively
small δ implies that the model is more dynamic and puts
more weight on the most recent data, while large δ means
the model is more stable. When δ = 0.99, it means that the
model treats all of the historical observations almost equally.
From the table it is obvious to see that δ has a significant
impact on the model performance, and the optimal value
δ = 0.8 implies that the fraudulent sellers do have a dynamic
pattern of generating frauds.

Changing patterns of feature values and impor-
tance. Embedding SSVS into the online modeling not only
helps the fraud detection performance, but also provides a
lot of insights of the feature importance. In Figure 4 for
ON-SSVSBMIL with daily batches, δ = 0.7 and ω = 0.9 we
selected a set of features to show how their posterior proba-
bilities of being 0 (i.e. p̂jt) evolve over time. From the figure
we observe four types of features: The “always important”
features are the ones that have p̂jt close to 0 consistently.
The “always non-useful” features are the ones that have p̂jt
always close to 1. There are also several features with p̂jt
close to the prior probability 0.5, which implies that we do
not have much data to determine whether they are useful
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Figure 4: For ON-SSVSBMIL with daily batches,
δ = 0.7 and ω = 0.9, the posterior probability of βjt =
0 (j is the feature index) over time for a selected set
of features.
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Figure 5: For ON-SSVSBMIL with daily batches,
δ = 0.7 and ω = 0.9, the posterior mean of βjt (j is
the feature index) over time for a selected set of
features.

or not (i.e. the appearance rates of these features are quite
low in the data). Finally, the most interesting set of fea-
tures are the ones that have a large variation of p̂jt day over
day. One important reason to use online feature selection in
our application is to capture the dynamics of those unsta-
ble features. In Figure 5 we show the posterior mean of a
randomly selected set of features. It is obvious that while
some feature coefficients are always close to 0 (unimportant
features), there are also many features with large variation
of the coefficient values.

5. CONCLUSION AND FUTURE WORK
In this paper we build online models for the auction fraud

moderation and detection system designed for a major Asian
online auction website. By empirical experiments on a real-
word online auction fraud detection data, we show that our
proposed online probit model framework, which combines
online feature selection, bounding coefficients from expert
knowledge and multiple instance learning, can significantly

improve over baselines and the human-tuned model. Note
that this online modeling framework can be easily extended
to many other applications, such as web spam detection,
content optimization and so forth.

Regarding to future work, one direction is to include the
adjustment of the selection bias in the online model training
process. It has been proven to be very effective for offline
models in [38]. The main idea there is to assume all the
unlabeled samples have response equal to 0 with a very small
weight. Since the unlabeled samples are obtained from an
effective moderation system, it is reasonable to assume that
with high probabilities they are non-fraud. Another future
work is to deploy the online models described in this paper
to the real production system, and also other applications.
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