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ABSTRACT

We consider the problem of identifying the most respected,
authoritative members of a large-scale online social network
(OSN) by constructing a global ranked list of its members.
The problem is distinct from the problem of identifying in-
fluencers: we are interested in identifying members who are
influential in the real world, even when not necessarily so
on the OSN. We focus on two sources for information about
user authority: (a) invitations to connect, which are usually
sent to people whom the inviter respects, and (b) members’
browsing behavior, as profiles of more important people are
viewed more often than others’. We construct two directed
graphs over the same set of nodes (representing member
profiles): the invitation graph and the navigation graph re-
spectively. We show that the standard PageRank algorithm,
a baseline in web page ranking, is not effective in people
ranking, and develop a social capital based model, called
the fair bets model, as a viable solution. We then propose
a novel approach, called bimodal fair bets, for combining
information from two (or more) endorsement graphs drawn
from the same OSN, by simultaneously using the authority
scores of nodes in one graph to inform the other, and vice
versa, in a mutually reinforcing fashion. We evaluate the
ranking results on the LinkedIn social network using this
model, where members who have Wikipedia profiles are as-
sumed to be authoritative. Experimental results show that
our approach outperforms the baseline approach by a large
margin.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms

Algorithms, Experimentation

Keywords
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1. INTRODUCTION

An online social network (OSN) is an imperfect represen-
tation of real-world social interactions, as only a fraction of
people’s real-world activities are reflected online. It can be

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2012, April 16-20, 2012, Lyon, France.

ACM 978-1-4503-1229-5/12/04.

709

Ron Bekkerman
LinkedIn Corporation, USA

rbekkerman@linkedin.com

compared to a still camera capturing snapshots of modern
society: it cannot see reality from all possible angles, how-
ever it often manages to capture the essence. This raises
a fascinating question: can we use the structure of an on-
line social network (OSN) to infer real-world social status
hierarchy, in general; and — in particular — can we identify
who the most well respected, prominent members of the so-
ciety are? In this paper, we attempt to construct an inferred
global rank of members of an OSN, according to the level of
recognition they have achieved in the real world. Our model
is applied to the LinkedIn professional network, which is
large enough (over 100M professionals) to yield statistically
meaningful results.

We distinguish between the tasks of identifying authorities
and identifying influencers (as, for example, in [9]). Usu-
ally, influence is measured in terms of the degree to which
a user’s behavior affects her peers, as observed on the OSN.
In order to influence many people, a member needs to be
more than just active on an OSN. Maintaining an influen-
tial online presence can be extremely competitive, and many
respected people may not be willing to invest such a high de-
gree of time and effort. Another potential reason could be
that they represent a demographic group not yet engaged
by the OSN, or the online world in general. Moreover, so-
cial media influencers might not be authoritative in the real
world: Khrabov et. al. [I3] observed that the most influen-
tial Twitter users are relatively, if not completely, unknown
outside their online circles. In contrast, we are interested in
authority identification: inferring influence a user has in the
real world, even if this influence is not highly notable online.

Since the global authority information is not directly ob-
tainable, we build our model over two basic actions most
OSN members perform, both of which can be viewed as a
local endorsement from a user A to a user B: (a) user A in-
vites user B to connect, and (b) user A views user B’s profile.
Our assumption is that users on a social network are more
likely to send invitations to users that they respect, or at
least do not disrespect. Similarly, browsing through another
user’s profile can be seen as a sign of interest. Obviously,
the local signal is weak and noisy: there are many reasons
why a user could send an invitation to another user, or view
their profile. However, the signal distills with the volume: if
thousands of users wish to connect with a particular person,
or her profile is viewed by millions, it is a strong indication
that the person is an authority outside the OSN. The sig-
nal becomes even stronger when aggregated over the entire
OSN data. If user A wishes to connect with user B, and user
B wishes to connect with user C, there is a certain amount
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of implicit endorsement that goes from user A to user C.
Aggregating billions of invites and profile views, the OSN
produces a stream of endorsement that is directed towards
a few users who may rarely send invites or view profiles, but
are getting constantly approached by others who are con-
stantly approached by others etc. The real-world influence
of people on the very top of this pyramid is indubitable.

We notice that the text on a user profile is an insufficient
and sometimes misleading proxy to the the real-world status
of a particular OSN member. Some member profiles are too
short and do not contain enough information to perform an
accurate inference. Some are too verbose and may be exag-
gerated for marketing or search engine optimization (SEO)
purposes. We do not use profile information to fit our model,
however, we rely on user profiles in our model’s evaluation.

The goal of this work is to answer the question “Who are
the most respected (...) on LinkedIn?”, rather than “Is user
A more respected than user B?”. Despite that we build a
global ranked list of LinkedIn users, it would be irresponsible
for us to infer that the user ranked 30M on that list is more
respected than the user ranked 31M, because the signal is
too noisy. However, we’d like to be confident that the top 1%
of users in the list are highly respected by many people. For
example, we can infer that T. Boone Pickend] is among the
most respected financiers on LinkedIn — he ended up being
the first financier in the constructed ranked list. By creating
one global ranked list that consists of many millions of users,
we guarantee that the resulting pool of authoritative users
(say, the top 1% of users in the ranked list) is large and
representative enough such that it can be further refined by
a specific request (“Who are the most respected financiers
on LinkedIn?” or “Who are the most respected people from
Japan on LinkedIn?”

Apart from the novelty of the problem being addressed,
the paper makes the following technical contributions:

1. We propose a tournament-based model of user interac-
tions, where users can be visualized as expending and
accumulating social capital while respectively initiat-
ing and accepting links. In other words, user A can be
modeled as making a payment in social capital when
she sends user B an invitation, or views B’s profile.
A’s authority score, in this framework, is the amount
she can afford to pay per interaction initiated by her,
based on the capital she has accumulated from others.
Mathematically, this is represented using a variant of
the fair bets model [B] [20].

2. We present an approach to combining authority-related
information from multiple graphs, where each graph is
constructed over the same set of users, but represents
different aspects/modes of their behavior. This model
is equivalent to simultaneously using the fair bets score
vector of one graph for random restarts of walks on the
other graph, and vice versa.

The algorithms described here, while evaluated only on the
LinkedIn social graph, are easily applicable to other social
networks. Having to combine data from multiple graphs is a
common problem in social network analysis. Some examples
of such datasets are: user ‘follow’ networks and ‘retweeting’
behavior on microblogging sites such as Twitterﬁ, and user

Y. boonepickens.com
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social networks and voting/response behavior on Q&A or
content sharing platforms.

2. BACKGROUND

User interactions on social networks lend themselves nat-
urally to a graph-based representation. Treating each user
as a vertex, we represent the invitation data as a directed
graph, with an edge directed from the inviting user to the
invitee. This graph is referred to as the invitation graph.
Similarly, a navigation graph is constructed, with edges di-
rected from the person who views a profile, to the person
whose profile was viewed. So, in both cases, an endorse-
ment is modeled as ‘lowing’ in the direction of the edge.

Hyperlinked datasets such as the WWW are often repre-
sented as directed graphs [3] [14] for the task of identifying
high-quality pages, with hyperlinks interpreted as endorse-
ment. Similar representations (with invitations, ‘follows’, or
‘retweets’ as directed edges) have been used for identifying
influencers in social networks [ [7] 22]. A variety of link
analysis algorithms [3| [14] exist for identifying important
nodes in such graphs, the most popular one being PageR-
ank [2 [3].

The PageRank algorithm employs a recursive definition of
authority: the authority of a vertex is a weighted sum of the
authority of the vertices that point to it (ignoring, for now,
the random restart aspect). This can distort user authority
estimates in a number of ways:

1. An authoritative user is more likely to accept connec-
tion invitations than to send them out. This is because
many non-authoritative users find a lot of value in con-
necting with authorities, while the opposite is not al-
ways true. More generally, link formation in OSNs is
found to be consistent with a status-based model [18],
where low status nodes link to those of high status.
This observation does not play a part in the PageR-
ank model.

2. While most information on the Web is publicly acces-
sible, social networks such as LinkedIn have a variety
of privacy settings, and sometimes do not allow users
to access profiles more than a few degrees from their
own. As a result, a user’s network size and openness
play a major role in the number of invitations / profile
views they receive.

3. Motivated users can take advantage of behavioral norms.
For example, the norm of reciprocity, i.e., users feeling
obligated to return links with courtesy links, is used
by unscrupulous users to increase their link count, on
both Flickif] and Twitter [16] 22].

4. Older users can become entrenched over time, and have
an indegree disproportionate with their authority level.
This can discourage younger users from participating.
It may not be an issue on professional networks such
as LinkedIn, but is a serious factor [I7] in information
sharing networks such as Twitter and Digﬂ.

In other words, members’ PageRank scores on an OSN
graph depends on two factors: a) their authority, which de-
termines the desirability of a connection with them, and

Ywww. f1ickr. com
4www.digg.com
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Figure 1: Indegree-Total Connections Ratio His-
togram: Users with < 10 Connections

b) their wvisibility on the graph, that is, the likelihood that
they will be noticed by other users. Non-authoritative mem-
bers can improve their PageRank scores by increasing their
visibility, usually through increased activity (engaging other
members via page views), or increased connectivity (by send-
ing more invitations). We use the fair bets model, discussed
next, to take into account this observation.

3. THE FAIR BETS MODEL

The fair bets model was developed [5l 20] to rank play-
ers in round-robin tournaments. The model is based on the
idea that, a player is allowed to bet an amount of money per
game. She forfeits this amount to her opponent if she loses
the game, and if she wins, she is awarded the amount bet
by her opponent. The score assigned to a player is then the
amount she can afford to bet, assuming she has to bet the
same amount against all players. More recently, this model
has been studied by Slutzki et al. [21].

Mathematically, this model can be represented as follows:
we can construct a graph G, with each player i as a vertex
v;, and assuming each pair of players played a maximum of
one game against another player (this can be generalized),
an edge directed from the loser of the game to the winner.
This graph can then be represented as a matrix V', where
vi; = 1 if there is an edge directed from player ¢ to j in the
graph. Then the fair bets score a; of player j satisfies the
following property:

N N
E Vijai = E VjiQj
i=1 i=1

That is, the amount of money any player j pays out per
game (a;) is the amount she makes in total, divided by the
number of games lost. This can can be written in matrix
form as:

via=ca (1)
where C' is a diagonal matrix such that C;; is equal to the
sum of the ith row of V, that is, Cy; = ij:l vik. A straight-
forward relationship can be established between PageRank
and fair bets scores [B]. For a stochastic matrix P, the
PageRank vector r corresponding to the matrix is given by
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the equation:

PTF="7 2)
Let P = C7'V. That is, P is the stochastic matrix con-
structed by normalizing all the rows of some tournament
matrix V to 1.

Then, equation (2] can be written as:

vicT\i=r= 'V () =07
Setting @ = C~'7 gives:
c'via=a=>Vv'a=cCa

which is the same as equation (). That is, if the PageRank
vector for a stochastic matrix P is given by 7, then the fair
bets vector of the original graph matrix V = CP is given
by @ = C~'#. Thus, mathematically, the fair bets score of
a vertex in a graph is equal to its PageRank score, divided
by its outdegree.

3.1 Fair Bets as Social Capital

In the context of online social networks, fair bets can be
viewed as a model of social capital accumulation and expen-
diture. Users can grow their connection graph in two ways:
either by sending invitations or accepting them. As send-
ing an invitation requires time and effort on a user’s behalf,
and a willingness to make the gesture, users are more likely
to make this investment if they believe the new connection
can help them in achieving social/professional growth. This
growth can take place online: more connections increase the
likelihood that someone will stumble on the person’s profile,
thus increasing the likelihood of invitations. Or both the
original invitation, and subsequent new connections, could
be side-effects of real world activity.

Thus, over time, the initial time and social capital spent
in inviting connections pays off, as the user accumulates in-
vitations in return. In this setup, highly respected users
receive multiple invitations without making a significant ef-
fort, while the payoff for less authoritative users is lower.
The standard fair bets model can then be visualized as fol-
lows: assuming users were paying each other to accept invi-
tations on an OSN, then the fair bets score of a user is the
amount she can afford to pay on average.

4. USER AUTHORITY EVOLUTION

For an OSN graph, the standard fair bets model discussed
above assumes a linear relationship between a vertex’s au-
thority score and its outdegree. The fair bets score a; of a
vertex v; can be written as:

indegree(v;)

i = i

outdegree(v;)
That is, the fair bets authority score of a vertex directly
proportional to a) the mean authority accumulated per in-
cident vertex, u;, and, b) the indegree to outdegree ratio
(i-o ratio). Both factors depend on the stage of evolution of
the vertex. The evolution of user vertices on the invitation
graph can be divided into three stages. The first stage is
that of users with less than 10 connections. A normalized
histogram of the indegree to number of connections (i-t ra-
tio) for this group of users is shown in Figure[Il As can be
seen, a majority of these users have a ratio close to 1.This
is because new users are unlikely to send invitations, due to
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Figure 2: Indegree-Total Connections Ratio His-
togram: Users with 50 to 1000 Connections

being isolated by the small size of their connection graph.
This can give them an artificially high i-o score. To address
the skewness of the i-o ratio of poorly connected users, we
use a Laplace smoothing of the outdegree value in the fair
bets formula, by adding a small constant (equation [3]).

The i-t ratio for users with 50 — 1000 connections is shown
in Figure ‘While there’s still a fair number of users with
an i-t ratio of more than 0.9, the ratio is relatively normally
distributed, with an overwhelming majority in the 0.2-0.6
range.

On the other extreme, for users with more than 3500 con-
nections, the graph is biased once again towards much higher
ratio values, as shown in Figure[3l This is a very small subset
of users, consisting largely of extremely activeﬁ and influen-
tial users. PageRank would rank these users near the top
of the ranked list. Interestingly, a fair bets-based ranking
places these users near the bottom of the list (with rare ex-
ceptions), despite their high indegree-outdegree ratio. This
is because, for users with an extremely large number of in-
coming edges, a majority of these incoming edges have low
values of authority, due to the way authority scores are usu-
ally distributed across the graph (power law). This results
in a lower mean value.

4.1 Log Fair Bets

As a basic validation, we evaluated the relationship be-
tween the fair bets based rank assigned to a user, and his/her
professional seniority level. The seniority level data is pro-
prietary standardized data derived from LinkedIn profiles,
that maps millions of job titles in the LinkedIn dataset to
one of ten levels: from intern (0), to founder (9). A ranking
by authority is more likely to be reliable if users at higher
ranks, on average, hold titles of higher seniority, compared
to lower ranked users. Figure [ shows the evolution of se-
niority with fair bets ranks. The ranks towards the right are
the highest ranks.

Interestingly, there is a dramatic jump in the seniority of
people at the very top of the ranked list. However, after a
certain point, users’ ranks seem to bear little relationship

®This seems paradoxical, but a user with 10,000 connections
and an i-t ratio of 0.9 has sent out 1000 invitations, a higher
level of activity than most users.
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Figure 3: Indegree-Total Connections Ratio His-
togram: Users with More Than 3500 Connections

to seniority levels. The reason is the over-steep normaliza-
tion: a user with 100 connections will need to have twice the
PageRank score as a user with 50 connections (assuming the
same i-o ratio), to have the same fair bets score. Intuitively,
this seems unlikely. PageRank scores are likely to follow a
power law distribution, so that a few users would contribute
most of a user’s score. Assuming more active users have
higher scores, users are more likely to receive their more
valuable edges sooner rather than later. Also, a user’s con-
nection network grows much faster in the initial stages, as
each connection makes them visible to many new users. At
some point, the law of diminishing returns would set in, as
most connections of a newly added connection are already
part of the user’s network, thus unlikely to lead to more
incoming invitations. The same logic extends to page views.
Based on these observations, the normalization we use,
which we refer to as log fair bets (LFB), is as follows:

indegree(v;)

fi= log (10 + outdegree(v;))

" i (3)
Log fair bets can be interpreted as assuming that the arrival
patterns of incoming links follows a power law distribution
with respect to time (measured by outdegree). That is, the
expected authority value of links received once k invites have
been sent is % This expected value includes both the prob-
ability of receiving a link, and the authority of the link. In
this interpretation, the log k can be seen as approximating
the sum Zle % The value of 10 is the Laplace smoothing
parameter, fixed based on the analysis in the previous sec-
tion. A validation similar to that for fair bets results was
done for log fair bets by comparing ranking results against
standardized seniority data. Figure [ shows the resulting
graph. As can be seen, the log fair bets graph is much
smoother, and the seniority level tracks the ranking much
more closely.

5. COMBINING INVITATION AND NAVI-
GATION GRAPHS

We construct two separate graphs, the invitation graph
and the navigation graph, to represent invitation data and
browsing patterns respectively. The assumption behind this
decision is that the two graphs are complementary: there is
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authority-related information in each graph that is missing
in the other. This is in contrast to a commonly accepted
assumption about user browsing patterns.

According to the the random surfer model interpretation
of the PageRank algorithm for the Web, the PageRank vec-
tor corresponds to the fraction of time a user will spend on a
web page, if she were to start at a random page, and at each
timestep, randomly select an outgoing edge. This posits
an extremely close relationship between link structure and
browsing patterns. The assumption is reasonable for web
pages, but not for social network graphs, for a number of
reasons. For example, while both invitations and browsing
behavior are asymmetric, that is, one user takes the initia-
tive, which reveals a greater involvement on their part than
the other user, the degree of asymmetry is much lesser for
invitation than navigation behavior. For an inviter’s connec-
tion request to be successful, the invitee has to accept the
request. On the other hand, navigation requires no activity
by the person whose profile is being viewed, and is wholly
asymmetric. Thus, invitation requests are more likely to be
directed to people in the inviter’s professional peer group,
while navigation data reflects information about who the
user aspires to know. A user may be more likely to con-
nect to her immediate supervisor, but may browse her com-
pany CEQ’s profile more often. Also, invitation requests are
guided by a number of social norms. For example, a user
may feel obligated to send requests to all the people she
meets at her workplace. Such obligations do not exist for
navigation behavior.

Given two separate graphs over which authority ranks can
be calculated, a combined rank can be arrived at in two
ways:

5.1 Rank Merging via Metasearch

Use a metasearch-based approach to merge the two rank-
ings. Borda voting [I], for example, is a simple but usually
effective approach to merging two ranked lists: the rank of
a user is essentially the mean of their rank in the two lists.

5.2 Bimodal Authority Models

In the random surfer interpretation of the PageRank algo-
rithm, at each timestep, with a certain probability d (usu-
ally set to 0.85), the surfer randomly selects an outgoing
link from the current page. With the remaining probability
1 — d, the surfer gets bored and jumps to a completely new
page. The probability 1 — d is referred to as the teleporta-
tion probability, and the vector the new page is chosen from
is called the teleportation vector. The vector can be uni-
form, or biased to reflect some priorly known information.
For example, the teleportation vector could be personalized
[6] given sufficient information about the surfer, or be bi-
ased towards trusted vertices. Its effect is to bias the overall
scores towards the preferences of the vertices with higher
values in the teleportation vector.

A natural way, then, to inform one graph (say, invitation)
with information from the other (say, navigation) would be
to use the authority vector of one as the teleportation vector
for the other. Following this, the improved results in the
navigation graph can be reused to improve the results in
the invitation graph, and so on till convergence. We refer
to this approach as the bimodal authority approach. The
idea behind this approach is mutual positive reinforcement:
useful information in one graph can be used to improve the
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authority estimates of the other graph, and vice versa. The
teleportation vector could be based on PageRank (bimodal
PR), or log fair bets scores (bimodal LFB).

However, as the next section shows, successive alternate
runs of the two algorithms are not necessary. Instead, a
composite graph can be created, by merging the invitation
and navigation graphs in a certain way. The invitation and
navigation PageRank vectors that would result from the bi-
modal approach, can be obtained from the the PageRank
vector of the composite graph.

5.2.1 Proof Of Equivalence: Bimodal and Compos-
ite Graph Models

We are given two graphs, Ga = (Va,FEa) and Gy
(Vn, En), representing different aspects of user behavior.
Both graphs have the same number of vertices, say, k. For
each vertex v € Vy4 , there is a corresponding twin vertex
v’ € Viy . In our example, the vertex v for a user represents
her invitation behavior, while v’ represents her navigation
behavior. We would like to use the PageRank vector of one
graph as the teleportation vector of the other. That is, the
teleportation probability for v € Va should be equal to the
PageRank score of its twin vertex v € Vi , and vice versa.
To do this efficiently, we prove the following result:

Construct a new graph G = (VaUVy , E = Eq4UEn U
Ean), where Ean is a new set of directed edges, between
all pair of twin vertices, and weighted d. That is, a vertex v
in the invitation graph is connected edge to its twin vertex
v’ in the navigation graph via a directed edge of weight d.
A similar directed edge of weight d connects v’ to v. Then
calculating the PageRank vector for graph G is equivalent
to solving the problem described above.

Proof: Let the transition matrix of V4 be written as Pa
and its (unknown) PageRank vector be r4 . Similarly, let
the transition matrix and PageRank vector of Viy be Py and
rn respectively. Let e be a vector such that e; = 1 for all 4.
Then, by our recursive definition, PageRank vectors of G4
and G satisfy the following equations:

ST\ o ~
((1 —d)Pa+ derN) W =7a (4)

T\ L ~
((l—d)PN+derA) N (5)

Expanding (), we get:

(1 —d) Pa Fatdine 7a =7a = (1 —d) Pa' Fatdin =7a
(6)
since r4 sums to 1.
Similarly, for (&), we get:

(1 — d) PNTFN +dra =7nN

(7)

Let I;;, be an identity matrix of size k. Then equations (6]
and (@) can be written in matrix form as follows:

(1—d)Pa’ dly Fal _ [7a ®)
dly (1—-d)Py"| |Pn| ~ |7N
Let P be a matrix, such that:
[ —d)Pa dl
P= [ dl,  (1—d) Py ©)
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Figure 4: User Fair Bets Rank vs Mean Seniority Level (over consecutive groups of 2000 people)
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Invitation Graph Navigation Graph Hybrid
Metric(in %) PR LFB PR LFB Borda PR Bimodal PR Borda LFB Bimodal LFB
MAP@I000 3.26 | 5.52(69.3%) | 9.22(182.8%) | 12.84(293.9%) | 7.55(131.6%) | 12.16(273.0%) | 13.03(299.7%) | 13.60(317.2%)
MAP@Q@100K 2.45 2.53(3.2%) 1.84(—24.8%) 3.37(37.5%) 2.46(0.4%) 2.30(—6.1%) 3.76(53.4%) 3.93(61.2%)
MAP@Imil 1.23 | 1.36(10.5%) | 0.87(—29.2%) 1.44(17.1%) 1.27(3.2%) 1.08(-12.1%) 1.84(49.6%) 1.88(52.8%)
NDCG@1000 | 1.48 | 3.08(108.1%) | 3.99(169.6%) | 6.80(359.5%) 2.92(97.3%) 4.59(210.1%) 4.78(222.9%) 6.35(329.7%)
NDCGQI100K | 3.84 | 4.48(16.7%) 3.64(—5.2%) 5.91(53.9%) 4.36(13.5%) 4.28(11.4%) 6.10(58.8%) 6.61(72.1%)
NDCG@Imil | 830 | 9.13(10.0%) 7.65(—7.8%) 10.27(23.7%) 8.79(5.9%) 8.73(5.18%) 11.13(34.0%) 11.75(41.6%)

Table 1: MAP and NDCG Results For Invitation Graph, Navigation Graph, and Hybrid PageRank(PR) and
Log Fair Bets (LFB) approaches. The values in parentheses give the percentage improvement over Invitation

Graph PageRank, treated as a baseline approach.

and let 7 = {:ﬁ?] Then equation (§) can be written as
N

PT# = 7. Then, by the definition of the Pagerank vector

[3], 7 is the PageRank vector for P. Hence proved.

5.2.2 Bimodal Log Fair Bets

The matrix P in equation [0 can be modified to use other
authority models instead of PageRank, as the teleportation
vectors. For example, let the identity matrix in the first
row of P be replaced by diagonal matrix R4, whose i-th
diagonal value is m, where o; is the outdegree of
vertex v; in V4. Similarly, replace the identity matrix in the
second row of P with diagonal matrix Ry, with Rx(4,7) =
m, where o; is the outdegree of vertex v§- in V.
After normalizing R4 and Ry each to add to d, this results
in a bimodal model, where the log fair bets vector of each
graph serves as the teleportation vector of the other (the
final results still need to be normalized to get log fair bets
scores). This model, which we call the bimodal log fair bets
model, outperforms other models for authority identification
by a significant margin.

6. DATA DESCRIPTION

In May 2011, we were given a subset of about 50M LinkedIn
members, chosen from the entire LinkedIn member base (of
about 100M members) using some product business logic.
We obtained all connection invitations that were sent and
accepted between the members in our subset, resulting in
an invitation graph with billions of directed edges, going
from inviters to invitees. We then constructed the naviga-
tion graph over the same set of vertices as in the invitation
graph: we draw an edge from user A to user B if user A
viewed user B’s profile at least twice within a certain period
of time (one year). Our assumption here is that a single view
of a user’s profile is too weak to count as an endorsement,
so two views is set as a lower bound. Unlike the invitation
graph, where all edges are weighted equally, the navigation
graph edges are weighed by the number of times the profile
was viewed. The outgoing edge weights are normalized for
both invitation and navigation graphs, so that they sum to
one for each vertex.

6.1 Evaluation Dataset Construction

As the ground truth of authoritative people, we decided to
use LinkedIn users who have Wikipedid profiles. Wikipedia
is known to be selective about allowing to create people pro-
files, so that only significant people tend to have Wikipedia

6www.wikipedia. org
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profiles. Obviously, as any manual process, the choice of sig-
nificant people is somewhat subjective. However, most well
known people are likely to have Wikipedia profiles — which
is a reasonable starting point for our model’s evaluation.
The evaluation goal is to test whether most LinkedIn users
with Wikipedia profiles appear on the top of the constructed
ranked list of authorities.

We built a text mining system that maps LinkedIn users
to Wikipedia profiles based on matching the textual data
between LinkedIn and Wikipedia profiles. Our goal was to
optimize for the mapping precision trading off the recall,
therefore we made quite a few assumptions that kept the
resulting precision at a high level. Given a LinkedIn member
li and a person wi who has a dedicated Wikipedia profile,
we assume that P(li = wi|Name;; # Name,;) = 0, that is,
the probability of I¢ and wi to be the same person is zero if
li and wi do not have the same name.

We started with a list of candidate LinkedIn members
whose profiles are dense enough (they contain a profile head-
line, at least one current position, and a reasonable number
of connections). For each name of a candidate LinkedIn
member, we checked if there exists a Wikipedia page with
that name as a title. We extracted the first paragraplﬂ of
each such page, and aggregated all of them into a candidate
Wikipedia profile list. From the resulting list, we filtered out
disambiguation pages as well as pages that are dedicated to
deceased people and to fictional characters.

We represented each LinkedIn member li from the can-
didate list as the Bag-of-Words BOW,; of his/her head-
line and current position information. We represented each
Wikipedia personality wi from the candidate list as the Bag-
of-Words BOW ; of the first paragraph of his/her Wikipedia
profile. We estimate the probability of l¢ and wi to be the
same person as follows:

P(li =wi) o« P(li = wi|Name;; = Namey;) X
P(li = wi|Profile;; N Profile,,;)  (10)
The probability of li and wi being the same person given
that they share their name P(li = wi|Name;; = Name.;)
is inversely proportional to the commonness of the name.
We estimate the name commonness over the list of all mem-
ber names on LinkedIn. The probability of li and wi being
the same person given the overlap in their profiles P(li =
wi|Profile;; N Profile,;) can be approximated by the cosine
similarity between the two profiles, represented as TFIDF

"The first paragraph of a Wikipedia page dedicated to a
person usually contains the most essential biographical in-
formation about that person.
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vectors of their Bags-of-Words. We estimate the IDF scores
of words over the entire collection of LinkedIn member pro-
files.

For every person wi with a Wikipedia profile from the
candidate list, and for every LinkedIn member li with the
same name, we compute the right side of formula ([I0) and
decide that li = wi if the resulting value is above a preset
threshold. After some hand-tuning, the final system yielded
about 30K LinkedIn members who have Wikipedia profiles.
We estimate the mapping’s precision as very high — we spot
checked a couple of hundred mappings and did not see a
single instance of a wrong mapping. We cannot estimate
the mapping’s recall though. For our model’s evaluation
purposes however, the mapping’s recall does not matter.

7. EXPERIMENTAL RESULTS

7.1 Evaluation Measures

We use two widely used measures, the mean average pre-
cision (MAP) score, and the normalized discounted cumu-
lative gain (NDCG) score, to evaluate the quality of our
ranked results.

Given a ranked list and a set of relevant documents (or
in our case, users who have Wikipedia profiles), its Average
Precision (AP) is defined as the mean of the precision scores,
calculated at each rank where a relevant match was found
on the list. MAP is the average of AP scores across multiple
queries. Since, in our case, we are essentially evaluating a
single query, the average precision score serves as the MAP.
Since we are more interested in the quality of the higher
ranks of our results, than the entire list, the MAP scores
are given after cutting off the list at three thresholds: after
1000 ranks (MAP@100), after a hundred thousand ranks
(MAP@100K), and after one million ranks (MAP@I1mil).

The MAP measure treats all users on the Wikipedia list
as equally relevant. The other measure we use, NDCG, en-
ables us to differentiate between users in terms of degrees
of relevance. Given a ranked list, the DCG score of the list
upto n ranks is given by:

mi
log, @

DCG=mi+Y (11)
=2

where m; is the estimated relevance of the it® match. The
NDCG score is given by normalizing this value by the ideal
DCG (IDCG) value, that is, the maximum score that any
ranking can achieve given the relevance scores.

For any user with a Wikipedia profile, we calculate her
relevance score m;, as the log of the mean number of page
views per day received by her profile, based on two months
of Wikipedia page view datd] (May and June 2011). The
relevance score for all users receiving less than three page
views a day is set to 1. This gives us a relevance range
of approximate 1-15, as highly trafficked profile pages on
Wikipedia receive around 10, 000 page views a day.

Based on this, the idea DCG score (IDCG) can be calcu-
lated as follows: sort the Wikipedia users’ list by descending
order of page views, and calculate:

k
log, pi
ID =1 —=2 12
CG =log, p1 + ; Tog, 7 (12)
8The data was collected from the website

http://stats.grok.sel
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where p; is the page views received by the i-th ranked user.
The value of k is the cutoff limit. In our case, the maximum
is approximately 30,000, the number of Wikipedia profiles
we have mapped to LinkedIn users. To ensure that ranks
beyond the first few hundred impact NDCG results, we di-
vide user ranks into buckets of 500. For the first 500 ranks,
i = 2,1 = 3 for the next 500, and so on, in equations (I
and ([I2). Thus, a user with a relevance score m;, placed
in the first 500, would add m; to the DCG score, while the
same user, placed in the 501-1000 range would add logﬁ to
DCG.

Like MAP, we calculate NDCG after 1000 (NDCG@1000),
100,000 (NDCG@100K), and 1 million (NDCG@1mil). The
IDCG score increases in value from NDCG@1000 to NDCG
@100K, but then remains constant till NDCG@1million. For
this reason, the NDCG score falls from the 1000 to 100,000
level, but then increases for the 1 million level.

7.2 Algorithm Comparison

All algorithms were implemented in a map-reduce frame-
work, and run on a set of 100 Hadoop nodes. The open-
source implementation of PageRank in the Pegasus soft-
ware toolkit [12] was used as the original code base, and the
code was modified to incorporate bimodal authority models.
The results are shown in Table[Il The percentage improve-
ments/deterioration, shown in brackets in each case, is based
on treating the invitation graph based PageRank (Invitation
Graph-PR) algorithm as the baseline for comparison. As
can be seen from the table, the log fair bets (Log FB) model
consistently performs better than the PageRank model for
both the invitation and navigation graphs.

Interestingly, among the hybrid models that combine both
invitation and navigation data, the best performing ones are
the log fair bets models (Borda LFB and Bimodal LFB).
The performance of the PageRank-based hybrid models is
around the same as the single graph-based approaches. The
reason for this is the large impact of user activity levels
on the hybrid PageRank models. In the case of bimodal
PageRank, the largest mutual reinforcement is for user who
are most active, as they have higher PageRank scores on
both graphs. A similar effect occurs in Borda voting based
PageRank. Since Borda voting is based on mean scores, the
highest ranked users on both graphs are people ranked highly
on both graphs. These are usually highly active users. In
contrast many authoritative users are not very highly ranked
in one of the two graphs (for example, many people would
view the profile of someone famous like Bill Gates, but very
few would send an invite), and end up being ranked low
on average. As a result, PageRank-based Borda voting is
unable to take advantage of the best information in both
graphs. In contrast, the bimodal log fair bets more (Bimodal
LFB) is the only one actually able to achieve positive mutual
reinforcement, and outperforms all other algorithms by a
significant margin.

The only exception to this is the NDCG@1000 score, where
the bimodal LFB comes in second to navigation graph LFB.
The reason behind this is that there a small number of very
high profile ’celebrity’ users, who garner an extremely large
number of page views both on Wikipedia and LinkedIn.
Their high page views give them large values of m;, which
gives navigation LFB an edge at the 1000 level. This ad-
vantage, however, does not carry beyond the first 1000 or
so members. Even up to the 1000 level, the actual number
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Rank | Name Affiliation
1 Barack Obama President of the USA
2 Bill Gates Founder of Microsoft
3 Jan Peter Balkenende | Former Prime Minister of the Netherlands
4 Sarah Palin 2008 US Vice President Nominee
5 T. Boone Pickens Chairman of BP Capital Management
6 Hillary Clinton US Secretary of State
7 Kevin Bacon Actor, and ‘zero-degree’ of Kevin Bacon
8 Chris Brogan Entrepreneur and Author of “Trust Agents”
9 Marc Benioff Founder of Salesforce
10 John McCain 2008 US President Nominee
11 Michael Dell Founder of Dell
12 Avinash Kaushik Entrepreneur and Author of “Web Analytics”
13 Brian Solis Entrepreneur and Author of “Engage”
14 Reid Hoffman Founder of LinkedIn
15 Lakshmi Narayanan Former CEO of Cognizant
16 Jeffrey Gitomer Author of “The Little Red Book of Selling”

Table 2: Most authoritative LinkedIn users who have Wikipedia profiles.

of members matched with Wikipedia is lesser for naviga-
tion LFB than it is for bimodal LFB, as is suggested by the
higher value of MAP@1000 of the latter, compared to the
former.

Table 2] shows a list of the sixteen highest ranked users
of LinkedIn, who have a Wikipedia profile, based on results
from the bimodal log fair bets model.

8. RELATED WORK

Identifying influencers is a well-studied problem in the so-
cial network research community [4 [7, 1] 22]. Influencers
are usually defined as users who can induce other members
to take certain actions, such as, take interest in some in-
formation they share, etc. Influence is, thus, a measure of
the user’s importance within an OSN, but is not expected
to contain information about their significance in the real
world. This is reflected in the approach taken to empirical
evaluation of the algorithms. For example, Weng et al. [22],
for identifying influential users on Twitter, measure algo-
rithm effectiveness using a measure based on the number of
followers the identified users have. Ghosh and Lerman [7]
measure user influence on Digg by the number of votes the
stories posted by them get. In this paper, we propose an
alternate, but related problem: given data from an OSN,
can we identify people who are important in the real world,
outside the network. The goal is to be able to identify such
users even when they are not highly active on the OSN. To
the best of our knowledge, this is the first paper to address
this problem.

The most common approach [15] 22] to identifying influ-
entials are variations of popular link analysis algorithms [3].
The links are constructed based on actions such as invita-
tions, which usually take place once between a pair of users,
or more dynamic data such as browsing patterns, ‘retweets’,
‘likes’, etc. However, to the best of our knowledge, this is the
first paper to propose a principled approach towards com-
bining these two disparate signals in the context of OSNs.
A number of approaches, however, have been proposed to-
wards combining invitation and browsing data for identi-
fying quality web pages on the Internet. While the tradi-
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tional approach [3] [14] has been based on hyperlink analy-
sis, more recent approaches include Browserank [19] based
on a Markov chain model based on browsing data alone,
and recent work by Gleich et al. [8] for empirically learn-
ing teleportation parameters over the hyperlink graph from
navigation data. However, as discussed in Section [ these
approaches rely on the much closer relationship between hy-
perlink and browsing data present on the Internet. These
assumptions are less true for OSNs, where the differences be-
tween linking and browsing behavior is much greater. Also,
many of these approaches don’t make use of user-specific
browsing data, something which is often available for OSNs,
as opposed to the Web.

Another related problem domain to ours is that of citation
analysis [I0] for evaluating scientific publications. Zhou et
al. [23] proposed a co-ranking based approach towards the
problem of combining publication citation and author social
networks, that has similarities to ours. However, there are
many significant differences. Besides working with a much
smaller dataset in a different problem domain, the paper
does not explore the mathematical implications of its cou-
pled random walk model. This limits the applicability of the
work, particularly towards extensions such as log fair bets.

9. CONCLUSION

This paper investigates a fundamental problem of sociol-
ogy — identifying the most important people of the society —
given the partial observation of the real-world social inter-
actions as represented on a large-scale online social network
(OSN). We note that the most important people, while defi-
nitely being influential in the real world, are not necessarily
active or influential in an OSN. Nevertheless, given implicit
signals of the OSN member endorsement, and aggregating
those signals over the whole network of many million people,
we are able to come up with a large list of authorities.

We can cut off the list at any level, leaving it with 10
people or with 10 million people. However, it is probably
disadvantageous to cut off too early or too late: a short
list (up to, say, a thousand people) can potentially be com-
posed manually as many of the authorities are well known
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both inside and outside the OSN. A long list of 10 million
people or so would be too noisy as its length is comparable
with the size of the OSN. A reasonable cutoff might be at
around a hundred thousand people, based on the guidance
given in Figures[@and B} people’s seniority level drops down
dramatically after the first few hundreds of thousands.

Our model is straightforwardly generalizable to any net-
work with multiple types of endorsements between nodes.
For example, in the social search domain, nodes are Web
pages and edges are hyperlinks between them, while another
type of edges can be the social network of the pages’ cre-
ators. Similarly, for many social networks, users’ invitation
and activity (‘likes’,‘retweets’) behavior can be modeled as
two different graphs.

We note that the implicit signals of endorsement, such as
sending a connection invite, or viewing someone’s profile,
are more useful than explicit signals of endorsement, such
as, for example, writing an online recommendation. The
reason for this is two-fold. First, the explicit data is sig-
nificantly sparser than the implicit data. Second, there are
multiple incentives for people to endorse someone publicly:
for example, this can bring visibility to the endorser. Care-
ful analysis of online users’ behavior, coupled with the large
scale and richness of the raw data, is the key to answering
such sociological questions, that our predecessors have been
trying to answer for hundreds of years.
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