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ABSTRACT

Often an interesting true value such as a stock price, sports
score, or current temperature is only available via the obser-
vations of noisy and potentially conflicting sources. Several
techniques have been proposed to reconcile these conflicts
by computing a weighted consensus based on source relia-
bilities, but these techniques focus on static values. When
the real-world entity evolves over time, the noisy sources
can delay, or even miss, reporting some of the real-world up-
dates. This temporal aspect introduces two key challenges
for consensus-based approaches: (i) due to delays, the map-
ping between a source’s noisy observation and the real-world
update it observes is unknown, and (ii) missed updates may
translate to missing values for the consensus problem, even
if the mapping is known.

To overcome these challenges, we propose a formal ap-
proach that models the history of updates of the real-world
entity as a hidden semi-Markovian process (HSMM). The
noisy sources are modeled as observations of the hidden
state, but the mapping between a hidden state (i.e. real-
world update) and the observation (i.e. source value) is un-
known. We propose algorithms based on Gibbs Sampling
and EM to jointly infer both the history of real-world up-
dates as well as the unknown mapping between them and the
source values. We demonstrate using experiments on real-
world datasets how our history-based techniques improve
upon history-agnostic consensus-based approaches.
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1. INTRODUCTION

While integrating “opinions” from multiple sources, a sys-
tem is often required to resolve conflicts. This arises in a
variety of settings, but one common setting is that of an
information integration system, in which multiple sources
provide information about the same real-world entity. If
different, incompatible values are provided for the same at-
tribute, the sources are said to conflict, and the process of
resolving the conflict to assign a value is referred to as “cor-
roboration” or “truth finding”. This task is frequently chal-
lenging, as illustrated by the following example. Consider
a restaurant aggregator that seeks to compile a database of
restaurants from three feeds, s1, s2, and s3. Let e be phone
attribute of one business, “Truya Sushi”. For example, both
sources s1 and s2 might report that the current value of e
is “555-1234”, while source s3 reports the current value as
“555-4444”. However, suppose a single value must be chosen
to show first for “Truya Sushi”.

There exist two broad classes of opinion aggregation tech-
niques — (a) meta-learning approaches [2, 14|, which would
employ classification/regression with the values provided by
each source as covariates, and (b) graph propagation ap-
proaches [6, 15], which propagate object properties to source
properties and vice-versa via incident edges. Most graph
propagation approaches assume source independence, but
recently, the source-independence assumption was relaxed
by [1] which considered copying between sources, and by [3]
which considered internal dependence between data items.
However, all work of which we are aware of has ignored an
exceptionally important factor in estimating the value of an
unknown variable from conflicting sources, the history of up-
dates, as we now illustrate.

Temporal Information Example: Consider two histories
for e shown in Table 1 and 2. Each scenario shows the values
given for e by si — s3 at two times in the past, ¢1 and t».
Sources need not report values at the same time, this is for
simplicity of presentation. We now turn to the additional
inferences that can be made. The main idea is to change
from modeling a single opinion to try to ascertain the latest
true update to e. To illustrate this idea, consider the first
scenario, in which source s3 has steadily asserted the “555-
4444” number, while source s; started with “555-4444” and
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Source t1 to t3 = now
s1 555-4444 | 555-8566 | 555-1234
S92 555-8566 | 555-1234 | 555-1234
S3 555-4444 | 555-4444 | 555-4444

Table 1: Scenario 1

Source t1 to ts =now
s1 555-8566 | 555-1233 | 555-1234
S2 555-8566 | 555-1234 | 555-1234
s3 555-8566 | 555-1234 | 555-4444

Table 2: Scenario 2

s2 started with “555-8566”, but then both s; and s2 evolved
to “555-1234". In this scenario, given the greater accuracy
scores for sources s1 and sz, it is reasonable to output “555-
1234” as the value of e. In addition, there is some chance
that “555-4444” is an old value and ss has never updated.
However, consider scenario two. In this scenario, at previous
time slices, s3 agreed with s1 and s2. In this case, we argue
that much more weight should be given to s3’s opinion, since
it has either received a new update not yet seen by s; and s2
or has accepted an update from a wildly inaccurate source.
This illustrates the need to consider what is the last true
update, rather than the majority alone.

Other uses of history integration include tracking mobile
units [17], determining the rate of change of a variable or at-
tribute, estimating the typical lag introduced by each source
s, etc. In this paper, however, we focus on the estimation of
Z, and leave these applications to future work.

Challenges: The history aggregation problem is hard due

to three main challenges:

1. Missing updates: Streams can miss updates about the
entities. E.g. a restaurant changes its phone number,
but a stream retained its old phone number.

2. Independent error: Streams can send noisy data. E.g.
arestaurant changes its street name to Picasso street, but
a stream’s update read Pic. st..

3. Arbitrary lag: Streams can send updates after an ar-
bitrary time. E.g. one stream sent the update within
minutes of actual change, while other stream sent an up-
date after a week.

The above three challenges occur in practice due to the
fact that the information streams are manually updated and
may be reformatted.

Contributions: To our knowledge, this paper is the first to
consider the implications of a value update history for truth
corroboration.

1. Our first contribution is a formal generative model of
corroboration as determining the value of an unknown
history of real-world updates Z, based on the observa-
tion streams Sy, for several sources k = 1,...,n. In our
model, we assume that updates in a stream Sy are noisy
versions of an update in the real world from the past,
and this is modeled using a latent mapping vector Ok.
Furthermore, we model the fact that streams can miss or
repeat the same real world update by imposing a Marko-
vian structure on the mapping vectors.

2. We give algorithms to jointly infer the hidden variables:
(i) mappings Oy corresponding to stream Sy, and (ii)
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true stream Z. We show that when Z is known, then
mappings can be optimally estimated using dynamic pro-
gramming approach. We also show that when Oy is
known then Z can be estimated using particle filtering
method (and exact inference is possible under some nat-
ural functional assumptions). Based on this we give two
inference algorithms, (i) EMA that alternates inference
of the two hidden variables by fixing one and optimizing
the other, converging to a local optima, and (ii) Gibbs
that samples a set of possible mapping vectors, and infers
the best Z for the sampled set.

3. Finally, we demonstrate, using three real world tasks (in-
cluding one of estimating NFL scores via Twitter), the
performance of our joint inference algorithms, and show
that our model outperforms existing consensus based ap-
proaches that are either history-agnostic, or use history
in a naive way.

Outline: Rest of the paper is organized as follows. We de-
scribe the history integration problem in Sec. 2. We present
our model in Sec. 3 and the inference algorithms in Sec. 4
and 5. Experimental evaluation is discussed in Sec. 6 and 7.
Finally we conclude by discussing related work in Sec. 8.

2. HISTORY INTEGRATION PROBLEM

The state changes that occur in any real-world entity can
be succinctly described through a temporal sequence. We
define a “temporal sequence” as follows.

DEFINITION 1 (TEMPORAL SEQUENCE). A temporal se-
quence ® is a sequence of pairs [(vi,t1),. .., (Vm,tm)], such
that the following constraints hold:

Vi € [1,m),vi # vig1
Vi€ [1,m),t; < tit1

(1)
(2)
We use the following notations: (i) ® (i) = v; is the i
value in the sequence, (ii) ®T (i) = t; is the time correspond-
ing to the i'" wvalue, (iii) |®| (= m) is the number of entries
n @, and (iv) ®(1 : 1) is all the entries of ® starting from
the first pair onwards to the i*" pair.

Let Z = [(v1,t1),...,(Um,tm)] be the temporal sequence
that represents the state changes of an entity. Note that
since Z captures the changes in the entity value, consecu-
tive values ZV (i) and ZY (i + 1) are different. We call Z as
an entity sequence. Let n streams make independent obser-
vations of Z and publish their views in the form of temporal
sequences Sti,...,59,. We call them as stream sequences.
The stream sequence S can have errors w.r.t Z obtained by
applying one or more of the following four operations on Z.

OP:1 Missing updates: Stream S may not report some of the
updates in Z.

OP2 Noisy/Erroneous observations: A stream S may report
a value S(j) that is different from the observed value

Z(i).

OP3 Duplicate observations: Stream S may report differ-
ent noisy observations of the same value Z(i) multiple

times (as say, S(j) and S(j + 1)).

OP4 Lagged observations: Stream S may report an obser-
vation Z(i) that occurred in the past (i.e., Z7(i) <
ST (4)). Nevertheless, we assume that updates in Z

are reported in the same order by S.
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DEFINITION 2
S can be obtained from another sequence Z by the (possi-
bly repeated) applications of one or more of the operations
{OP\,...,OPs}, then we call the pair (Z,S) as feasible.

Example: For instance, suppose entity sequence Z is [(Pi-
casso Street, 5/11/11), (Seurat Ave., 7/7/11), (Rembrandt
Lane, 10/21/11)]. A stream S could have updates: [(Pic.
St., 5/31/11), (Picasso Street, 7/5/11), (Rembrant Road,
11/21/11)]. Notice that, Z(1) has been reported twice, both
times with some lag (20 days and 2 months respectively).
S(1) and S(3) have mistakes in the reported value. And Z(2)
is completely missed by S. Suppose the streams only modify
values by making spelling mistakes (small edit distance to
Z(4)) and abbreviations. Then a stream S’ having updates
[(Pic. St., 5/31/11), (Van Gogh Straat, 7/5/11), (Rembrant
Road, 9/21/11)] is non-feasible because Van Gogh Straat
never appears in Z and the last update was reported by S
before it was observed in the real world (in Z).

Next we define the history integration problem formally
as below.

PROBLEM 1  (HISTORY INTEGRATION PROBLEM).
Given a set of stream sequences S = {S1,...,Sn}, construct
an entity sequence Z*, s.t., Vk,(Z*,Sy) is feasible, and the
following holds:

VAR argmgx{P(S, Z)} (3)
where P is a joint probability distribution of the real ob-
served updates in Z and reported values in the streams S.
In the next section, we explicitly model P by assuming a
generative model for the streams.

3. OUR MODEL

We assume a first-order semi-Markovian prior over the
true updates Z, where P(Z(i+ 1)|Z(¢)) represents the tran-
sition probability for the value and the time of the (i + 1)t"
update given the value and the time of the " update, in-
dependent of the first ¢ — 1 updates. Note that this is semi-
Markovian since the probability for the duration Z7 (i+1) —
Z" (i) of update i can be a general distribution, rather than
a geometric distribution.

We would like to note that our prior can capture domain
knowledge about the true updates. For instance, one can
encode the fact that the score of an NFL game typically does
not decrease, and usually changes in increments of 3 and 7
(and less frequently by 6 and 8), using a transition model
that assigns very small probability to a score transition of
ZV(G+1) — ZV(i) = 6, when § is not 0, 3, 6, 7, or 8.
We use such a prior in our experiments. Similarly one can
encode the domain knowledge that the temperature at a
place seldom drops by 20 degrees in a minute. As a final
example, businesses are either open or closed, and typically,
an open business may close but the reverse does not happen.
This can be encoded using a two state Markov model, where
the close to open transition probability is very small.

In order to model feasible streams that may miss/repeat
true updates, and report updates with lag, we propose the
concept of a mapping vector.

DEFINITION 3 (MAPPING VECTOR). For a given stream
S, the mapping vector O is a vector having entry O[j] = i,
iff the update S(j) observes Z(i). More formally, we say

(FEASIBLE STREAM). If a stream sequence
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Figure 1: Probabilistic Model for the History Inte-
gration Problem. The prior on Z, the true updates,
is semi-Markovian. The streams are generated by
first creating a mapping vector O, and then sam-
pling noisy values according to Z(O(j)).

that SV (j) is conditionally independent of all other variables
given ZV (O[j]), and write

S|

P(s¥|2,0) = [T P(s" (5)12" (Oli])

=1

(4)

From its definition, O has to obey the following constraints:

1. |O| = |S|; i.e., the length of the mapping vector is same
as the length of the stream.

2. V4,1 < O[j] < |Z|; i.e., mapping vector maps updates
in S to updates in Z.

3. V4,Vk, st., j < k = O[j] < O[k], i.e., streams
report updates in the same order as observed in Z.

4. ¥5,87(5) > ZT(0lj)); i.e., a stream can not publish
an update that has not yet occurred in Z.

Note that the above mapping vector constraints ensures the
feasibility condition (see Defn. 2) for the streams. We con-
sider a set of mapping vectors, O = {O1,...,0,}, one for
each stream.

Generative model for S. Next we describe our model of
how the streams S are generated for a entity sequence Z.
First, we assume that the streams are conditionally inde-
pendent given Z, so we can describe the generative model
for Sx € S independent of the other streams for the given
Z. Second we assume that S and S} are independent of
each other given Z and Oy, (i.e. random noise and lags are
independent of each other). Finally, as explained in Eq. 4,
we assume that S,Y(j) is conditionally independent of all
other variables given ZV (Ox[j]). Under these assumptions,
to generate Sy from Z, first the mapping vector Oy is gen-
erated, and then the 7" update in Sy, is generated using the
Ok [j]™" update in Z, as explained in the following steps.

1. Modeling misses/repeats: The 7t entry of Oy, is
generated using the (j —1)" entry and Z. Thus proba-
bility distribution over Og[j] depends only on Ox[j —1]
and Z, and is denoted as P(Ox[j]|Oklj — 1], Z2).
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2. Modeling lags: Time of j* update in Sy is gener-
ated using the (j — 1)** update and the time of O[;]*"
update of Z. Thus probability distribution over Sy (5)
depends only on S{ (j — 1) and Z7(O4[4]), and is de-
noted as P(Sg ()| Sk (7 — 1), 2" (Ok[4]))-

3. Modeling noise: Value of j*" update in Sy is gen-
erated using the value of O[j]*" update of Z. Thus
probability distribution over S} (j) depends only on
ZV (Ox]j]), and is denoted as P(SY (4)|Z" (Ox[4])).

Figure 1 illustrates this generative probabilistic model pic-
torially. Given this generative process for S, we can write
the joint probability distribution of P(S, Z) as follows.

ZP
Z[P(Z)

(o]

P(S,Z) P(Ox|2)P(S{ 10k, Z)P(SY |0k, Z)  (5)

(domain knowledge)

n |Skl
x [T TT P(Orlj)IOkl — 11, 2)  (miss/repeat)
k=1 j=1

n |Sk

|
< [T TT PSTGDISTG - 1), 2T (Ox[4)) (lag)

k=1 j=1
n Skl

XHHPSk

k=1 j=1

DIZY (Ok[iD)] (noise)

The key assumptions made in our generative model and
equation 5 is that given the complete history of the entity
(Z) and the mapping of observed variables to Z (essentially
0), the stream update values (SV) are independent of each
other. This is true in most, but not all, practical scenarios.
For eg., some sources might be copying each other (see [3]),
and hence be correlated, but we assume, for the model’s
simplicity, that copying sources have been detected, and re-
moved from the analysis.

4. GENERAL INFERENCE ALGORITHM

Recall that the history integration problem is to compute
Z* = argmaxz{P(S, Z)}, where P(S, Z) is given by Equa-
tion 5. Here we describe our inference techniques to com-
pute Z*. This involves finding the set of updates Z" as well
as the times when these updates occurred ZT. We start
this section by describing a special case, where the mapping
vector O is known. Then using the solution for the spe-
cial case, we develop two approximate inference algorithms
for the entire problem — Gibbs, an approach based on Gibbs
Sampling [4], and EMA, an approach based on Expectation-
Maximization. In all approaches, the overall idea is to it-
eratively find a mapping vector O (that represents miss-
ing/repeat updates) based on the current estimates of Z,
and then conditioned on the current O optimize for ZV and
ZT (accounting for lags and noise).

4.1 Mapping Vector is Known

Assume that we know the set of mapping vectors O then
the problem is to maximize P(Z|S, O), where Z (i) forms the
hidden state. Furthermore, since each Oy maps the updates
in a stream Sk to the updates in Z, the hidden states in
Z form a HSMM with transitions dictated by the prior on
Z and the emission from Z(i) given by the corresponding
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stream reports Si(j), where Og[j] = i. Note that though
this special case of problem with fixed O is similar to the
one of HSMM inference, it has many distinguishing char-
acteristics. First, not every hidden state Z(¢) emits an ob-
servation; we have to deal with missing values. Moreover,
some hidden states emit multiple observations (when multi-
ple stream updates are mapped to the same Z(7)). Second,
Z (1) values are not discrete — in many of our experiments the
ZV values are modeled using Gaussian distributions, and in
general the transition and emission probabilities can be any
distributions from the exponential family.

We address missing updates by allowing hidden states to
emit a special null observation that has equal probability
of being emitted by each of the hidden states. To address
multiple emissions, we think of the multiple observations as
a single observation emitted with probability equal to the
product of the emission probability of each observation (as
they are conditionally independent given the hidden state).

Once missing/multiple updates are addressed, in the dis-
crete case, Z can be inferred exactly using standard Viterbi
algorithm for HMM(HSMM) inference. In the continuous
case, one can use the general technique of particle filter-
ing, also known as sequential monte carlo, for inferring the
hidden values of Z. However, it is not possible to perform
exact inference for general prior distributions of Z, and one
can use sequential importance sampling [5] to perform an
approximate inference of Z.

4.2 Gibbs Inference Algorithm

Here we consider the problem when the mapping vectors
O are unknown. In the Gibbs algorithm, we begin by sam-
pling a random O from the prior P(O|Z); this prior de-
pends on the length of Z alone. Since we do not know |Z]|,
we generate sample O’s for various values of |Z| and we
pick the one with the maximum likelihood. Starting with
this initial O, we iteratively find the Z, with the maximum
P(Z|S, O) using techniques from Sec. 4.1 for a fixed O, and
then find a new O by sampling from the posterior distribu-
tion of P(OIS, Z) as follows. For all streams k:

The above sampling distribution can be used to sample Oy
for all streams k. Z can be recomputed from the sampled
O and the process can be repeated either until convergence
or until a maximum number of iterations are performed.

4.3 EMA Inference Algorithm

The Gibbs algorithm can take many steps to converge.
An alternative is to use the Expectation Maximization tech-
nique. When Z is known, we can estimate an optimal O,
such that P(O|S, Z) is maximized. This can be done inde-
pendently for all streams, as P(O|S, Z) is

n |Skl

x 1_[1_[1’:’51c

k=1 j=1

|27 (OkliD) - P(Sk (1)1 2" (Ox[4]))

P(Ok[j]|Ok]j — 1], Z) (7)

where we used equation 5 to get above factorization. We can
use Viterbi algorithm [12] to get the best mapping (see algo-
rithm 1). EstimateMapping algorithm exploits the optimal
sub-structure property and runs in O(m - £%) time, where £
is the length of Z and m denotes the number of updates in
a stream. Oy, = EstimateMapping(Z, Si) gives mapping for
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Algorithm 1 EstimateMapping(Z, S)

Algorithm 2 Estimating Z7

{7, 0 model missing update and ¥ models noise and lag}
Let m(z) = log P(O[1] = i|2)

Let o(j, 1, k) = log P(O[j] = i|O[j — 1] = k, Z)

Let ¢(j,4) = log P(S(4)|Z(4))

L= 1Zl,m =S
for i =1to!l do
e[l ] = m(i) + ¥(1,9)
end for
for j =2 tom do
for i =1to ! do
r =argmaxr{c[j — 1,7] + o(4,4,7) : Vr € [1,4]}
clj,i] = clj — 1,7] + o(4,i,7) + (. 1)
dj,i) =7
end for
end for
O[m] = argmax;{c[m,i] : 1 < i <1}
for j=m—1to1ldo
Oljl =dlj + 1,00 + 1]]
end for
Return O

stream k. The EMA algorithm takes an initial Z and then
alternates between finding O and Z iteratively. These iter-
ations are repeated until a fixed point is reached. The EMA
algorithm works with the intuition that in any iteration, the
perturbations in O would improve the likelihood of the sub-
sequent Z. Note that EMA algorithm aims at finding local
maxima Z, O for the probability distributions P(Z, S, O).
The key problem with the EMA algorithm is that it can get
stuck in a local optima, and its performance is critically de-
pendent on the quality of initial Z. One way to alleviate
this is to choose a good initial Z;,: using Gibbs and then
run the EMA algorithm starting from Z;,:; we denote this
hybrid algorithm as Gibbs + EMA.

S. INFERENCE FOR A NATURAL INSTAN-

TIATION

In this section, we describe an instantiation of our gen-
eral model, where we assume natural functional forms for
the various probabilities. Our choices allow us to tractable
solve the history integration problem. We show in our ex-
periments that this specific model works well on a number of
datasets. We first describe the distributions used to model
domain knowledge, missing/repeat updates, lags and noise
(from Equation 5). We then present tractable algorithms
for estimating the most likely Z* given O as well as for
sampling from the posterior distribution of P(O|S, Z). Fi-
nally we conclude this section with a brief note on parameter
learning for our natural instantiation.

5.1 Instantiation

Domain Knowledge [P(Z)]: We assume that the prior
on Z factorizes such that ZV (i) only depends on Z" (i — 1),
the previous different value in Z, and Z7'(i) only depends
on the time of the previous update Z7 (i — 1). We use the
Exponential distribution to model the intervals between con-
secutive updates: P(Z7 (i) — Z7(i—1) = 7) o« exp(—yz - T).
When ZV values are continuous, we use a Gaussian prior
ZV(i) ~ N(ZV (i — 1),0z). The first element, Z(1), of Z is
considered to have a uniform prior.

Missing/Repeated Updates [P(Ox[j]|Ox[j—1], Z)]: The
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Z7(12]) = min{ST(j) : vk, V), O [j] = 121}
{If no mapping for last element of |Z|, then set |Z| = |Z] — 1
and re-run algorithm}
fori=|Z]|—1to1do
if Vk,Vj, O[j] # ¢ then
{No mapping vector, cant estimate time of update}
ZT@) =ZT(i4+1) — ¢
else
Z7 (i) = min{S[(7) : Vk,Vj, Oxlj] = i}
if ZT (i) > ZT(i + 1) then
ZT@) =ZT(i+1) —¢
end if
end if
end for
Return Z7

difference between consecutive indices of a mapping vector
Ok[j] and Og[j + 1] determine whether an update in Z is
repeated/missed. We model the distance between Oy[j] and
Ok[j + 1], independent of Z, using a Poisson distribution:
P(Ox[j + 1] — Ox[j] = ) < e"*A/x!. This is to model the
fact that a stream typically gets one out of every A update.

Lags [P(ST()|ST(j — 1), ZT(0Ok[j]))]: We assume that
SF () is independent of SY (j — 1) and model the lag, i.e.
|SF(5) — Z™ (Ok[4])|, using an Exponential distribution that
penalizes streams with large reporting delays: P(Sg(j) —
ZT(Ok[j]) = 7) o exp(—yi - 7).

Noise [P(SY ()|Z" (Ok[j]))]: There is no one model for
the way values in the stream are mis-reported by streams.
this is very application specific and depends on the kind of
data being reported. We present the following two example
instantiations. When values being reported are continuous
(like in the weather readings or trading volume), one can
use Guassian noise: S (j) ~ N(Z"(Ox[4]),0%). When the
reported values are discrete (like phone numbers, or football
scores), one may use following simple noise model: SV (4)
is the same as ZV (O[j]) with probability px, and different
with probability 1 — py.

5.2 Estimating Z given O

In this section, we provide efficient algorithms to extend
Sec. 4.1 for finding Z given O on the specific distributions
instantiated in the previous section. Since the prior on Z
factorizes into independent terms containing only Z7 and
ZV, we can optimize for the times and values independently.

Finding Z7: When the lag follows an Exponential distri-
bution, i.e. P(SF(j) — ZT(Ok[j]) = 7) o exp(—yk - 7), we
can exactly compute the time of the i*" update in Z, by
solving the following minimization

min{v:(Z27(1Z]) = Z" (W] + > wlSKG) - 27O} (®)
Vi, Vk,Vj
Ok lil=1
Subject to following constraints

ZTi-1) < Z76) < Z7(i+1)

Z" (i) < min{S{ (j) : Vk,Vj, Oxlj] = i}

In general, Algorithm EstimatingZ” provides a valid so-
lution to ZT that satisfies the required constraints. Under
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certain conditions it is provably optimal, i.e. minimizes Eq. 8
as shown in the lemma below.

LEMMA 5.1. Algorithm 2 always returns a feasible solu-
tion to Equation 8, and the solution is guaranteed to be op-
timal when € — 0 and v, < vi, Vk.

If A, > A\ then we can use Z7 as initial solution and sample
Z7¥ (4) uniformly in the range [Z7 (i — 1), Z” (i)] and pick the
solution that minimizes Equation 8.

Finding Z" for continuous values: When Z" follows
an Gaussian distribution, i.e. P(SY (j) — ZV(Ok[j]) = 7)
exp(—Bx - 72), we can exactly compute the values of the i’
update in Z, by solving the following equation.

B:(ZY (i+1) + ZV (1] + D> Be-SK ()

Vk[,?’j

. O [j]=1

zZV (i) = b 9

@) 2B+ vk Bk ©)
Oy [j]=1

where 8 =1/ o2 is the precision of the Gaussian distribution.
Above equation is obtained by taking the Equation 7 on log
scale and taking its derivative w.r.t Z" (i) and equating it
to 0. This is similar to Kalman Filter, and we can estimate
the values in Z using an iterative algorithm.

Finding ZV for discrete values: For discrete values, in
the absence of a prior on Z, estimating Z" (i) corresponds to
ﬁndipg.v such that the probability HOkUL:" P(S,‘c/(j) =v)is
maximized. We can show that v is just the majority update
amongst all the stream updates that map to @

Parameter learning. Given Z and stream observation
Sk, we can compute the error incurred by the stream. The
standard deviation of the error is our new estimate of oy.
Similarly the lag for all the observations can be used to com-
pute most likely v% and the number of missing updates can
be used to compute most likely A;. This falls naturally from
our underlying assumption that stream’s noise, lag and miss-
ing characteristics are independent.

6. DATASET DESCRIPTION

We experimentally evaluate the performance of our model
on four datasets. These datasets from diverse domains ex-
hibit varied stream characteristics and thus validate the wide
applicability of our model.

Twitter Dataset. We used Twitter api to extract all the
tweets posted on Twitter regarding NFL' games, such as,
Jets vs Charger, Raven vs Jaguar, Packers vs Vikings. These
games were played in October, 2011. From the collected
tweets, we removed all the tweets that did not mention the
game score in the format \d+ - \d+. We also discarded
tweets containing words such as “predict” as these tweets
were found to be speculative and were not a representative
of the actual game score. The resulting dataset consists of
tweets from 20 users for Jets vs Chargers game, 37 users
for Raven vs Jaguar game, 23 users for Packers vs Vikings
game. The extracted tweets were of the order of number of
users, as users rarely posted score more than once. Our goal
in the experiment is to construct the game score timeline

"http://www.nfl.com/
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# updates per game 7.3
Num streams (users) per game | 26.67
# tweets per update per game | 2.9
Relevant tweets per game 20

Non-relevant tweets per game 8
Average stream lag (sec) 1388.4
# Missing update per stream 6.67 / 7.3

Table 3: Twitter dataset characteristics aggregated
for all games.

with this dataset. Even thought the dataset looks small,
it is extremely challenging due to fact that the underlying
streams (users in this case) are missing a lot of updates, they
have a large lag and many irrelevant tweets (see Table 3).2

Climate Dataset. We consider the temperature data pro-
vided by Earth System Research Laboratory, USA. The
data, which is available for public download®, consists of
monthly temperature means for all the locations on Earth
from 2001 to 2010. The dataset consists of 10512 gridded
locations (with a grid resolution of 2.5° longitude x 2.5° lat-
itude) and a temperature series of length 120 (one entry per
month).

Our goal here is to estimate the series of mean tempera-
tures for the 120 months between 2001 and 2010 of a given
location based on its neighboring locations. This is a rea-
sonable goal due to high spatial auto-correlation present in
the Earth science data. The neighboring locations can be
viewed as noisy streams with no lag and missing update. We
simiulate missing updates by deleting temperature reading
from all stream at random points in time. Random lags is
simulated by adding Ax * r to the time of the update, i.e.
SF (i) = max{SE (i —1),20 -3} + A * r, where 7 is a random
number between [0, 1] and Ay is set randomly to an integer
in the range [20,100]. Note that this dataset is challenging
as the stream’s noise (unknown to our model) varies due to
several environmental factors such as topology, height, lati-
tude, longitude of the selected locations.

NASDAQ Dataset. Our third dataset is NASDAQ’s vol-
ume trading data.® The dataset contains 5 minute updates
of the trading volume that occurred from Jan 2008 to Dec
2010. We generate synthetic stream observations for this
dataset, using Guassian noise, Exponential lag and Poisson
missing/repeated updates as described in Section 5. Stream
generation parameters are not known to our algorithms.

This dataset is interesting for two reasons: (1) It is very
hard to come up with a prior for the volume trading data. As
a result the output of the model is completely dependent on
the stream emissions. (2) Trading data has several changes
with small amplitude. Baseline models can be tempted to
combine several different updates together due to the close
proximity of values. Our model does not suffer from this as
stream observations can have random lags and they are pe-
nalized if two seemingly different updates (in terms of time)
are being grouped together.

2For instance, we saw tweets corresponding to NHL scores
involving a team which have the same name as a NFL team
(Winnipeg Jets and New York Jets).

Shttp:/ /www.estl.noaa.gov/psd/data/
“http:/ /www.eoddata.com/products/historicaldata.aspx
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Synthetic Dataset. We also evaluate our model on a syn-
thetically generated data. We consider Z" [1,2,...,m],
where m is varied from 10 to 100 and consider 5-15 streams.
Unlike NASDAQ and Climate data, the time of updates
(Z7) is randomly initialized to non-regular spaced intervals
(e.g. ZT =11,3,10,38,39,...]). The stream generation pro-
cess is as follows: A stream would pick elements of the Z
vector sequentially and could perform the following three
operations: a) Simulate missing update: Ignore the picked
element and move to the next element with Bernouilli prob-
ability = pmissg, b) Simulate independent error: Add Gaus-
sian noise with precision 8, > 1, ¢) Simulate Lag: Publish
the noisy update after lag governed by Uniform distribution
in the range [1 — 10]. Note that streams for synthetic data
differs from NASDAQ data in terms of the lag and the miss-
ing update distributions.

Dataset Summary. The above four datasets present dif-
ferent challenges to the model. Twitter dataset presents
an interesting aspect of how the model performs for sparse
datasets. On the other hand, the climate dataset presents
challenges since the underlying noise is difficult to model®.
NASDAQ dataset presents challenges due to the small vari-
ability between adjacent updates. Finally, with the syn-
thetic dataset we present more extensive analysis of our
model under several different conditions.

7. RESULTS AND EXPERIMENTS

In this section, we present our results over the four datasets.

The main objective of our experiments is to show that our
model can be adapted to run quite nicely for several dif-
ferent domains and under different conditions. The second
objective is to show that in comparison to an intuitive base-
line model it performs better as it models all the parameters
that a stream can exhibit while reporting the updates.

7.1 Algorithms

We compare our algorithm against three baseline approaches.
Our: We use the hybrid algorithm Gibbs + EMA that is
described in Section 4 which runs a few iterations of Gibbs
to find a Z and then runs EMA.

B1 (P1ckLASTUPDATE): This baseline picks the last update
across all streams as the true state of entity at that time.
This algorithm performs a merge sort of updates based on
ascending time order.

B2 (PICKMAJORITYUPDATE): This algorithm picks the ma-
jority of the stream updates at any given time. In order to
compute the merge stream it uses the following procedure:
Consider that a stream published an update at time ¢t. We
collect the last update for all streams that was published
at time ¢ or before it. The majority value amongst these
updates is set in the merge sequence at time ¢t. This is done
for all ¢.

B3 (OPTIMALALIGNMENT): This algorithm is based on the
intuition presented in [17], where streams can have fixed
lags. The algorithm considers the optimal sequence align-
ment strategy to evaluate all possible alignments and then
fixes O to compute Z that maximizes the joint-likelihood.

5Climate models that are used to extrapolate climate data
over missing points on Earth such as over Oceans, etc are
extremly sophisticated and take into account tens of vari-
ables.
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Precision | Recall | F-measure | # Last correct
Our 0.93 0.68 0.79 3
B3 0.77 0.71 0.74 1
B2 0.49 1 0.66

Table 4: Precision recall of our model vs the best
baseline model averaged over three games.

Baseline 3 performs better than the other two baselines
for the selected datasets and hence for the sake of clarity we
only present results with this baseline.

7.2 Results on Twitter Dataset

We treat each user as an independent stream providing
updates about the game score. For two teams playing a
game, users can post score of team1 first (7-0) or team?2 first
(0-7), hence while computing Z, we consider both permu-
tations of the scores and pick the configuration with least
noise. We used Poisson(A = 5) to model missing updates
and Ezponential(y = 10) to model stream lag. The merg-
ing strategy is to consider the majority element amongst the
stream updates that map to same index in Z (since scores
can be thought of as discrete values). Once the best Z is ob-
tained, model parameters are recomputed and streams with
relatively small likelihood P(S|Z,O) are discarded and Z is
recomputed. This is repeated for 2-3 rounds.

Figure 2 and 3 shows updates computed by our algorithm
along with the corresponding mapping tweets. Even though
dataset was very sparse, with many streams having one or
two updates, it was able to retain the key updates that con-
stitute the real timeline of the game along with an accurate
mapping of the tweets. We also discovered that the model
is able to correctly discard the set of tweets that were not
related to the game score.

Comparison with Baseline models. Next we compare
the timeline predicted by our model with baseline models
B2 and B3 (using the majority merging strategy). We define
precision as the fraction of updates output by the algorithm
that are correct. Similarly, we define recall as the fraction of
actual updates of true timeline that are output by the algo-
rithm. Additionally, we also check whether the last update
output by each algorithm is correct.

Table 4 shows the performance of our model in comparison
with the best baseline model aggregated for all the selected
game datasets. Overall we see that our model has higher
precision and F1 over the best baseline model. We also
observe that the last update of Z presented by our model is
actually correct whereas this is not the case for the baseline.
This happens because after the end of the game, some tweets
mention the number of wins and losses for a team, and the
baseline model would consider that as an update. On the
contrary, our model correctly discards such updates from Z.

7.3 Results on Climate Dataset

We selected several locations randomly for different lati-
tudes and longitudes and considered their temperature se-
ries. For each selected location, we considered 8 adjacent
neighbors to it as 8 streams. Typically locations are roughly
250 kms apart despite being neighbors due to 2.5° reso-
lution. The mean of absolute temperature difference be-
tween 8 neighbors to a location is 1.8 (on average) with a
mean standard deviation of 0.93. Our model is run with
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(13:09) UGH terrible (16:05): WHAT THE HELL (16:45): 27-21 JetsRT
strip, 7-0 hole. Need (14:10): Mark . #Chargers!!! You’re up 21- "@bonniblucakes: What
to score now. #jets Sanchez to Plaxico 10 and now you’re losing 24-21 was the score #jets

Burress for.a 3yd and the #Jets are ready to T

score to bring the score again?? SMH.

#Jets closer to the

#Chargers...14-10
(13:06): Lmaooooo (14:26): (16:17): #Jets blank
dammmmmn Keller (14:09): Sanchez #Chargers (16:47): Sanchez #Chargers in second
coughed up da ball to Burress. #Je?s score 21-10 to Burress again, half, score 17 unan-
#Chargers score thanks score TD but trail 3—yard.score, swered to win, 27-21.
2 Butler 7-0 #chargers #Chargers 14-10. #Jets in front What a game. #NYJ

24-21, 8:41 left
Score 7-0 21-10 21-27

14-10

21-14

Figure 2: Jets vs Chargers game score output by our algorithm along with the corresponding tweets.

(21:16): How

the **** is the (21:23):

score the first

#Jaguars

(23:39):
is 9-07

*%%xk score
What is

(01:58): Just checked

(23:47): the #Ravens score en

timore #Ravens

Bal-

score still 0-0 7 ; this baseball? Need . route to work... 12-7
C’Mon #ravens p?lnts of ?he game more offense #ravens finally score a to JACKSONVILLE?! Are
with the field goal, and #jaquars. This TD. #Jaguars lead you kidding me?! Woe-
up 3-0 over #Ravens is the #NFL -_- cut to 9-7 with ful. Utter disgrace.
with 1:42 left in - 2:02 left.
the first quarter
(21:18): 0-0. (22:51): #Jaguars (00:59): #Jaguars
Ravens hvn’t (21:23)3 #Jaguars up 9-0. 1In ti?s (23:52): 7-9 defeat the #Biltimore
showed up though. score first 3-0 over game, that’s a #Ravens by a score of
Defense got a #Ravens. three-score lead. 12-7 on #MNF! ...
fumble tho.
Score 0-0 0-3 0-9 7-9 7-12

Figure 3: Raven vs Jaguars game score output by our algorithm along with the corresponding tweets.

Gaussian(oc = 1) noise, Exponential(y, = 10) lag, Poisson
(A = 0.1) missing update. We also consider a prior on
length of Z, as we aim to get a update vector of same length
as true Z. Once model computes Z, stream parameters are
re-estimated and few more such rounds of algorithm is run.

We first compare the quality of a Z output by Gibbs +
EMA and baseline B3 with respect to the true tempera-
ture series Z* as the number of missing updates per stream
increases. Quality is computed as the sum of (ZV(m) —
Z*V(m))? over all times (months) m for which Z outputs
an update. Figure 4(a) shows Gibbs+EMA outperforms the
baseline B3.

7.4 Results on NASDAQ Dataset

Figures 4(b) shows the performance of our model in com-
parison with the best baseline B3 over the NASDAQ. We
plot the log of negative log-likelihood due to scale of the
values, and so lower value implies that model has higher
likelihood. The likelihood of the true Z that generated the
data is also plotted for absolute comparisons. We see that
Glibbs + EMA performs statistically significantly better than
the best baseline (paired ttest, p < 0.01, 99% CI). More-
over, the average absolute error for last element of Z (i.e.
current state of the entity) was at least 10 times lower for
Gibbs + EMA compared to the best baseline B3.

7.5 Results on Synthetic Dataset

Figure 4(c) shows the performance of Gibbs + EMA in
comparison to B3 over the synthetic dataset. Like in the
NASDAQ data, we observe that our model performs much
better than B3. We perform further controlled experiments
on the synthetic data to better evaluate our algorithm.
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Comparison between Gibbs vs Gibbs+EMA: Figure 5
shows the model performance of the Gibbs and Gibbs+EMA
algorithms for various values of |Z*|. We see that Gibbs +
EMA slightly improves the performance of the model in com-
parison to stand alone Gibbs.

Effect of variation in length of Z and the number
of streams: Figure 6(a) plots the quality of the Z output
by Gibbs + EMA as the number of streams increases. Each
line corresponds to a true Z* of different lengths. Quality is

measured over the values as Y, {(Z" (i) — Z*V(i))2}%. We
can clearly see that the absolute error in the prediction in-
creases as the length of Z* increases. This intuitively makes
sense as we expect the error to increase for higher length Z
(as more iterations might be required for mixing of O and
inference). We also see that as more streams are added, the
error sharply goes down. This also makes sense as adding
more streams decreases the probability of missing updates.
Additionally, we observe that even though the underlying
streams imperfect their aggregation is quite robust to noise,
lags and missing updates.

Effect of One Good Stream: In several practical scenar-
ios, there is one (or a few) good stream(s); i.e. streams with
small lag, low error and small miss probability. We simulate
such a scenario by using a goodness criteria (g), such that,
a few good streams miss updates with probability e™ 7, have
lags with parameter e™ Y, and noise with standard deviation
e 9. The rest of the streams are bad — miss updates with
probability picked uniformly between 0 and 1, have lags with
parameter 10 and noise with standard deviation 1. We call
stream goodness to be e™? and as g is increased, streams
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are even better. In this scenario, we run our algorithm and
compute the mean squared error of the output with the true
Z. Figure 6(b) shows the mean squared error on log scale.
For the sake of clarity, we do not plot the performance of the
baseline models as they either perform equivalent or worse
as compared to our model. We observe here that as stream
goodness is increases the error decreases. The result also
indicates that as more streams turns good then the error
further decreases (log-linear).

Effect of One Good Parameter: Another special case
is when one stream is good on only one of the parameters
(noise, lags or missing/repeated updates). To simulate this,
we consider the stream goodness parameter (as discussed in
previous result) and make one stream miss update with a
very small probability, other with a small lag and a third
with small noise. Figure 6(c) shows the performance of the
model in comparison where one stream has all the goodness
parameters. We see that when goodness is low then the
errors are relatively close. But when goodness increases then
the gap between errors increase. This happens because, we
observe that if a stream which is less noisy but misses a
lot of updates, then algorithm relies more on the updates
presented by other stream, whereas a stream which is good
in all the criteria practically dictates the inference of Z.

8. RELATED WORK

The history integration problem is most related to the fol-
lowing three fields — temporal data integration, multiple se-
quence alignment and reconciliation of values in static data.
We review each of these fields.
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Temporal Data Within temporal data integration, per-
haps the work most closely related to ours is [17] that studies
inference for the purpose of mobile location tracking. They
also model the hidden variable (user’s actual location), and
have multiple observations streams, but with fixed (yet un-
known) lags. That model makes sense for the mobile lo-
cation setting, since the lag of sensor’s reading to the real
world would be fixed, but might not be correct for scenarios
discussed in this paper, when a single source may have vary-
ing lags for different observations . Due to the assumption
of fixed lags, their optimization problem is technically sim-
pler, and can be solved by trying out all possible variations
of the fixed lag (i.e. the Or mapping). This strategy would
be too inefficient for our problem as the number of possible
Oy, mapping vectors is exponential in |Sk|, the number of
observations in the source stream. Apart from mobile do-
main, HSMM based models have been used in several major
applications such as speech recognition, handwriting recog-
nition, network traffic modeling, and functional MRI brain
mapping. Zheng et al. [16] presents in detail how inferencing
is done in HSMM (also its variants) and presents a summary
of its applications in several domains.

Temporal data is often aggregated in sensor networks with
two critical differences: (i) Lags for sensor reading are as-
sumed to be known (Oy, is known), and (ii) data is often ag-
gregated (rather than integrated) as the domain for the hid-
den variable (e.g. temperature) is often continuous, e.g. [8].

Finally, a recent paper [7] considers the problem of dedu-
plicating entities from a temporal stream of updates. While
their techniques model the evolution of an entity’s attribute
value, their focus is to cluster the temporal updates corre-
sponding to the same entity, and not compute the correct
value of the entity’s attribute.

Multiple Sequence Alignment The goal of multiple se-
quence alignment [9, 10, 11, 13] is to construct an alignment
of symbols in n sequences by adding gaps between consecu-
tive characters in the sequence. There is a penalty for adding
gaps, and a penalty when two sequences have differing char-
acters at some position; an optimal alignment minimized the
total pairwise penalty across all sequences. While the his-
tory integration problem seems very similar to the alignment
problem (since we are trying to align stream updates to real
world updates using a mapping vector), there are key dif-
ferences between the two. For instance, we explicitly model
time in our problem. One could think of modeling time im-
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Figure 6: Experiments on Synthetic data

plicitly in the alignment problem by discretizing times and
replaying the same value ZV (i) for all times between Z7 (i)
and Z7 (i+1), but this no longer is flexible enough to model
all kinds of missing updates and lags.

Reconciliation of Static Data We also mention here some
of the static techniques that do not look at historical updates
for integration. Thus they cannot directly be applied for his-
tory integration, but we mention them for the sake of com-
pleteness. In his seminal paper, Kleinberg introduced the
hubs and authorities framework (HITS), where each node is
associated with an authority and a hub score [6]. Each di-
rected edge is deemed as an endorsement of authority in one
direction and of connectivity (“hubness”) in the opposite di-
rection. The graph structure is then used to propagate these
scores till an equilibrium is attained.

Recently, Yin et al. [15], proposed the TruthFinder algo-
rithm specifically focused on opinion aggregation for binary
opinions following an approach similar to HITS. However,
unlike HITS, the predicate truth scores are computed by
probabilistic aggregation of agent opinions assuming inde-
pendence as in [2]. This paper also proposes simple heuris-
tics for handling dependencies between predicates and was
shown to be more effective than a simple voting strategy.

9. CONCLUSION

In this paper, we studied the problem of merging histor-
ical information from multiple sources. Unlike prior work,
which assumes explicit mapping between source values and
the real values they observe, we model the mapping as a hid-
den unknown variable. We then perform inference to com-
pute an estimate of the history of true updates, together
with their mapping to the source values. We presented two
approximation algorithms for this inference task, and evalu-
ate their performance against several baseline methods that
either ignore history, or use it in a naive way. These ex-
periments show that our techniques are able to approximate
both the unknown history and the final value significantly
more accurately than baseline techniques.
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