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ABSTRACT

This paper presents a novel method for enabling fast devel-
opment and easy customization of interactive data-intensive
web applications. Our approach is based on a high-level
hierarchical programming model that results in both a very
clean semantics of the application while at the same time cre-
ating well-defined interfaces for customization of application
components. A prototypical implementation of a conference
management system shows the efficacy of our approach.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—FEztensibility; D.2.7 [Software
Engineering]: Design Tools and Techniques—Computer-
aided software engineering (CASE).

General Terms

Design, Languages, Security.

Keywords

Customization, Software-as-a-Service, Data Management.

1. INTRODUCTION

More and more software is delivered through the web, fol-
lowing today’s cloud idea of delivering Software as a Service
(SaaS). The code of such rich internet applications (RIAs) is
split into client and server code, where the server code is run
at the service provider and the client accesses the application
through a web browser [6]. In data-driven web applications,
the state of the application resides in a database system (or
in a key-value store), and users interact with this persistent
state through web clients. In this paper, we propose a frame-
work for personalizing such data-driven web applications [9].
By personalization we mean that a user has the capability
of customizing the functionality of an RIA to fit her unique
application needs.

As a first example, consider Facebook user Mark, who
no longer likes a single news feed for all of his contacts;
Mark wants to split the news feed into two columns, one for
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his friends and one for his business contacts. Today, Mark
would have to wait (and hope) for Facebook to create this
functionality as part of an upgrade of its interface. We en-
vision a world where Mark could take the initiative himself;
he could directly “program” this extension and integrate it
for himself into the running Facebook application. Mark
could also provide this extension as an “App” to other users
who desire the same functionality. Note that this is not a
“Facebook Application” as enabled by the Facebook API,
but it is a customization of the core user-facing Facebook
functionality through a user-defined extension.

As a second example, consider a conference management
system such as Microsoft’s Conference Management Tool
(CMT). From time to time, the team behind CMT intro-
duces a new feature that has been long requested by the
community (see, for example, the features currently marked
“(new!)” on the CMT website [15]). None of these extensions
is difficult to build, but today any changes are only within
the realm of the CMT developers. In addition, due to limited
resources, the team only incorporates extensions requested
by the majority of users and thus forgoes the opportunity
to serve the long tail. For example, consider Surajit who
wants to run his conference with shepherding of borderline
papers. Currently, Surajit has to wait and hope that the
CMT team considers his functionality important enough to
release it as part of its next upgrade. However, we believe
that innovation and integration of such new functionality
can be significantly increased if Surajit could directly take
initiative, program the extension himself, and then share it
with others in the research community who desire similar
functionality. Thus we want custom extensions to be built
by any member of the community instead of being left only
to the CMT team.

In both of these examples, personalization of an existing
data-driven web application by a third party who was not
the developer of the original application is the key to success.
Note that personalization not only benefits the user who
programmed it; an extension could later on be shared with
other users, making the application automatically an “ex-
tension app store” where users can (1) run the RIA directly
as provided, (2) personalize it with any set of extensions
developed and provided by the community, (3) personalize
it themselves through easy and well-defined user interfaces,
and then (4) share or sell their extensions to the community.

The tremendous benefits of personalization also come with
huge challenges. First, the often organic growth of today’s
RIAs makes it hard to keep track of the diversity of locations
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to which code has to be integrated, thereby obeying vari-
ous security and safety constraints regarding, for instance,
namespaces and assertions. This dispersion of code “all over
the place,” which is exacerbated by the integration of differ-
ent programming models and languages for the client and
server, makes it hard to bundle functionality for replace-
ment through personalization. But since developers cannot
anticipate all possible ways of extending an application, how
do we design a web application such that future extensions
are easy to integrate? Second, the code of the extensions will
have to be activated, it may have to pass data back and forth
with other application components, and it requires access to
the state of the application in the database. How do we
address the security concerns of integrating such untrusted
code into a running web application?

In this paper, we propose SAFE, a framework for the de-
sign of data-driven web applications. Let us give a brief
overview of SAFE and its features.

Design for Personalization

SAFE structures data-driven web applications into a hierar-
chical programming model inspired by Hilda [19} [18]. Func-
tionality is clustered into so-called f-units that contain all
the relevant code to implement a component of the applica-
tion. The control flow of the application has a clean hierar-
chical semantics: An f-unit is activated by its parent f-unit
and becomes its child resulting in a tree of activated f-units.
This so-called activation tree naturally corresponds to the
hierarchical DOM structure of an HTML page. There are
two well-defined points of information flow for an f-unit: Its
activation call, through which the f-unit was activated by its
parent f-unit, and queries to the database where the state
of the application is stored. Thus a user who would like to
personalize an application simply has to replace an existing
f-unit with a new f-unit of her choice or design. Such cus-
tomizations are dynamic in that f-units are registered and
activated without stopping the running system. These dy-
namic software updates (DSU) avoid costly unavailabilities
of the running system [17] |8].

SAFE has a security model that is tailored towards the in-
tegration of untrusted code by splitting the code of an f-unit
automatically between client and server. Database queries
specified by a programmer will never appear in the client
code, sanitization of query values to prevent SQL injection
attacks automatically occurs on the server, and event han-
dlers for asynchronous update request end up in the client.
SAFE also contains a reference monitor which takes care of
all low-level details such as secure registration of f-units, ac-
cess control, and verification of user actions and requests
received from the client.

Note that even only achieving modularity when designing
data-driven web applications is nearly impossible. The f-
units in SAFE can be thought of as classes in object-oriented
programming. For web applications, however, there are sev-
eral different languages (for example, HTML, PHP, Java,
JavaScript, SQL, CSS) providing different data models for
the different application layers (e.g., the relational model
for databases, Java objects for the application logic, hy-
perlinks for website structure, and form variables for web
pages). This variety makes it hard to achieve modularity
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since fragments of different languages are in different parts
of the source tree. Usually, a single JavaScript command
like include(’moduleA’) is not sufficient. Assume, as an
example, moduleA is responsible for displaying some <div>
elements which are supposed to appear only two seconds af-
ter the main HTML page has been loaded. In this case, an
event handler for onload events of the document has to be
modified accordingly. Typically, such an event handler is
a named JavaScript function, referenced in the <body> tag
of the main HTML page: <body onload=’pageLoaded()’>.
The JavaScript function pageLoaded() is uniquely declared
at some other location, most likely in the <head> area of the
HTML page. This declaration has to be updated if moduleA
needs some actions to be performed when the page has been
loaded; some lines of JavaScript code have to be added to
the body of the function. For a different language, for ex-
ample for PHP, the integration of new functionality again is
different. Another difficulty in the integration of new func-
tionality is to ensure that namespaces of different pieces of
code do not interfere. Assume that we have two code frag-
ments A and B which each have an HTML element with
id studentList and corresponding CSS specifications. A
namespace concept would separate the CSS for A from the
CSS of B, and we have to add this manually in order to
resolve this conflict. As part of its hierarchical program-
ming model, SAFE provides solutions to address all these
problems.

Client-Server Consistency

Modern interactive web applications give the user a feeling
of locally executing a fully-fledged software binary by com-
municating with the server asynchronously. The typical way
of implementing this is through client-side event-driven pro-
gramming. One challenge when writing this client-side code
is that the state of the application at the client can be dif-
ferent from the state at the server, since other clients simul-
taneously connect to the same application and may modify
the state of the system at the server, for example when one
user updates a data item that another user is currently dis-
playing. To avoid such inconsistent updates, the program-
mer would have to manually include all kinds of consistency
checks, which is error-prone and cumbersome. SAFE allevi-
ates the developer from this burden by making consistency
checks a first-class citizen in the model, providing an easy
to use SQL-based declarative state monitoring interface that
automatically derives the necessary checks. SAFE automat-
ically compiles the developer code to safe state transitions
which cleanly abstracts out concurrent updates into stan-
dard serialization semantics known from interacting with a
database.

Ease of Development

SAFE also includes many different mechanisms to minimiz-
ing the amount of low-level code that a developer has to
write. (1) Programs in SAFE are written in SFW, a high-
level programming language that abstracts away many low-
level code fragments through appropriate high-level state-
ments. For example, it is often cumbersome to specify ex-
plicit loops and to iterate over the objects of a particular
data structure thereby struggling with implementation de-
tails like counters, pointers or break conditions of that par-
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ticular loop. SFW contains high-level constructs for many
of these commonly re-occurring patterns. (2) One of the
design principles of SFW is that we did not invent a new
language, but rather create a framework that encompasses
ezisting languages. Our framework provides the full expres-
siveness of languages like HTML, PHP, SQL, and Javascript,
but allows for shorter, yet semantically precise shortcuts that
significantly reduce the amount of code a developer has to
write. (3) Note that application developers may have to
know about other elements in the DOM tree in order to en-
sure that all elements have pairwise unique IDs, and other
elements are correctly addressed, e.g., whether an element
has the innerHTML property or the value property. SAFE’s
modularization fosters local understanding because it auto-
matically ensures that IDs are unique and that the developer
only needs to locally care about the elements of the corre-
sponding f-unit. (4) Today a lot of similar event-driven code
for asynchronous server requests has to be written. How-
ever, the code for the update of an exam grade in a course
management system is not much different from the code of
updating matriculation number of a student. In the spirit
of DRY (Don’t Repeat Yourself), as in Ruby on Rails ,
SAFE requires the developer to specify information and code
at most once. For example, the code for the initial rendering
of an f-unit is also used later to provide partial updates of
modified data. No complicated event handlers have to be
specified to rebuild certain elements in the browser’s DOM
tree. Another feature to reduce the amount of hand-written
code is the paradigm of convention over configuration: SAFE
decreases the number of decisions a developer has to make
by establishing useful conventions on parameters and names
of variables.

Structure of the Paper. The remainder of the paper
is structured as follows. Section [2l describes our novel hi-
erarchical programming model and shows how it achieves
client-server consistency, personalization, and security. In
Section [3] we describe some of the interesting aspects of the
implementation of SAFE. We outline our initial experiences
with SAFE and discuss future work in Section[d We discuss
related work in Section [§ and conclude in Section

2. SAFE

This section introduces the Safe Activation Framework for
Extensibility (SAFE). SAFE provides automatic application
state consistency and safe extensibility. We first introduce
our application model (Section [2.1), then we show how to
handle updates to the application state (Section , how
to model extensibility (Section , and how to achieve se-
curity (Section . Each of these sections concludes with
a small example showing how the described functionality
is specified using SAFE. Additional information is available
online at http://www.safe-activation.org.

2.1 Application Model

SAFE provides a hierarchical programming model which nat-
urally builds upon the hierarchical DOM structure of web
pages. The most constitutive components in SAFE are its
so called f-units, see Figure [T for an illustration. An f-unit
clusters all code fragments for a specific functionality within
a web page, including the business logic, the visual appear-
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Figure 1: Integration of an f-unit.

<HTML>

<table id='Root.A'>
<tr id='Root.A.B_1'> ...
<tr id='Root.A.B_2'> ...

</tr>
</tr>

<tr id='Root.A.C'> ...
</table>
<div id='Root.D'>

<div id='Root.D.B'> ...
</div>

</tr>
</div>

</HTML>

Figure 2: Activation tree and its corresponding web page.

ance, and the interaction with users or other f-units. This
clustering provides a clear level of abstraction through well-
defined interfaces for each f-unit. The modularity of an f-
unit relieves the programmer from struggling with variable
scopes and their interference.

As a result, this abstraction provides an elegant way of
composing web pages out of several different f-units. A web
page is modeled as a so called activation tree (inspired by
Hilda ) in which f-units are organized hierarchically.
Figure [2| shows an example of an activation tree with its
corresponding HTML code. A node in the activation tree
corresponds to one or more nodes in the HTML DOM tree.

The integration of an f-unit F in the activation tree is
referred to as activation of F (Fig. |1} step 2). More precisely,
an f-unit is activated by its parent f-unit and thereby receives
activation data through well-defined interfaces. The f-unit
can use the activation data or data obtained directly from
the database through queries to display parts of the web
page. An f-unit can also activate other f-units, its child f-
units (Fig. [1] step 3).

Activation comes in two kinds: (1) In the example in Fig-
ure [2| the root f-unit performs static activations of the f-
units A and D. These activations are independent from the
data the root f-unit has. Assume, for instance, that f-unit A
represents a table. The developer might wish to display the
headline of the table independently from whether there are
entries in the table or not. In contrast, (2) f-unit A performs
dynamic activations of f-unit B. The dynamic activation of
child f-units is data-driven in that (a) the number of acti-
vated instances corresponds to the number of items from the
activation source, e.g., from a database query, and (b) the
parameters passed to the i-th activated f-unit contain ex-
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actly the i-th data item from the activation source. For
instance, if the result of a database activation query con-
sists of n rows, then n instances of B will be activated, one
for each row r;. Child f-unit ¢ obtains row r; as activation
parameters. The activation of C in f-unit A is again static.
This f-unit could, for instance, display a row summarizing
properties of the rows above.

Whenever an instance of an f-unit is activated, the corre-
sponding compiled HTML/JS/CSS code is made available
in the activation tree. Eventually, the activation tree is lin-
earized to a single HTML document by transforming sub-
trees to nested HTML elements (Figure . After the ac-
tivation tree has been constructed, the corresponding code
for HTML/JS/CSS is sent to the client (Fig.[I] step 4).

Activation is expressed through activation calls in our
high-level modeling language SFW, which is a straight-
forward extension of HTML: all HTML elements and also
PHP and JavaScript can be used as in traditional web ap-
plication implementations. Activation calls are at the core
of SFW and can as such be used in any HTML context.

Example 1. The static activation of f-unit A in f-unit Root
as shown in Figure [2] is expressed by the activation call

L)/

where initParam; are activation parameters, i.e., values to
flow from Root to A. For this static call, one instance of
A is activated independently from the content of the acti-
vation parameters. The dynamic call for f-unit B, however,
results in activated f-units only if the result of executing the
specified activation query is not empty:

/>

More precisely, for each returned tuple (vi,ve,...,vx), one
instance of f-unit B is activated with the activation pa-
rameters (vi,vs,...,v;). Instead of specifying a database
query, it is also possible to provide an array of key/value
pairs. Each such pair results in one activation with the
particular values. All code for the preparation of an ac-
tivation, e.g., setting up an activation array, is enclosed
in the activation tag: <activate:C array=$tmp> ... ar-
ray_push($tmp,...); </activate>. *

<activate:A(4nitParami, initParams, .

<activate:B query=‘SELECT ..

2.2 Updates

Recall that web pages nowadays are not static pages: they
contain a lot of reactive code for event-driven modifications
of the overall application state. SAFE’s methodology to au-
tomatically handle such updates and to maintain state con-
sistency, also for concurrent updates, is explained in the fol-
lowing.

Assume the client’s browser interacts with the delivered
HTML page and eventually sends some update request back
to the web server (Fig. |1} step 5). The corresponding f-unit
in the activation tree processes this request and generates
a database query ¢, for which SAFE automatically verifies
various safety and security properties. These include checks
for state consistency, access control, and prevention of code
injection. After the query ¢ has been executed, SAFE au-
tomatically triggers all f-units in the activation tree which
have an out-dated state. These f-units are rebuilt and sent
to the client.

SAFE alleviates the developer of an f-unit F from caring
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review.sfw
<funit Review#: >
<form>
<input ... onclick=query(UPDATE..; checkForm)>

<[form>

<[funit>

" sfw compiler
v

Client

review.sfw.php

onclick="javascript: , sfw compiler
if (checkForm(formID)) .

sendForm(formID, 'review.ajax.php’, querylD);"

Q querylD

formValues

v

review.ajax.php
CRM.queryDB(

FUnit Review

Server

queries[querylD],
formValues)

9]

rebuild!

G

formValues query

CRM

g query
verify o

check access control for query
sanitize formValues and insert them in query
send query to DB

execute query
compute difference /\

Figure 3: Update of the application state.

about the freshness of its state while F is updating the ap-
plication state. Moreover, the developer does not have to
provide code for partial updates of any f-units in the tree.
The developer only specifies the update query g that is sup-
posed to be executed for some event attached to an element
in F. Let us explain how this works through the following
example.

Example 2. Figure [3| shows parts of a conference man-
agement tool. The uppermost code box shows a code frag-
ment of the specification of the f-unit Review in our mod-
eling language SFW. The f-unit contains — among other el-
ements — a form and an input element with an onclick
event. This event is fully specified by a database query
and a Boolean check function checkForm. Loosely speak-
ing, upon a click, SAFE executes the specified query against
the current database state assuming that (1) the execution
of checkForm(formID) evaluates to true, and (2) SAFE has
verified that the query is safe, i.e., the query is not based on
an out-dated state. The formID is an automatically derived
identifier for this form, which is unique in the activation tree
and hence also in the HTML DOM tree. The developer can
specify the check function arbitrarily, or just omit it and
solely specify the query. The technical parts in the transi-
tion of steps 5 to 8 are not relevant for the semantical model,
and hence explained in Section [3] *

SAFE executes the query (step 5 to step 8) and computes
a difference A to the previous database state. Based on this
difference, SAFE automatically triggers the corresponding f-
units in the current activation tree and tells them to update
their state if necessary (step 9). To this end, f-units can
subscribe to database differences: f-unit F can specify a so-
called subscription function subg(A) in order to receive a
notification whenever subr returns non-empty results for A.
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<funit Review#4cf22e5c8d...>
<form> <table>
<tr> <th>Review $@%d</th>
<tr> <td>Submission #</td>

<td></td>
<td>$@submissionId</td>

</tr>
</tr>

<tr> <td>Grade</td> <td><input type='text' name='grade' value='$@grade'></td> </tr>

<tr> <td colspan='2'> <input type=‘buttom*~yvalue='update' name='update
onclick=query(UPDATE reviews SET grade='Sfgrade', ...; checkForm)> </td>
</table> </form>

</funit> Review.funit/review.sfw (a)

</tr>

<funit ReviewStatistics#8a82315c24c0. . .> N

<query (SELECT count(reviews.id) AS empty FROM reviews WHERE commen®s, IS NULL)>
<query (SELECT count(reviews.id) AS accept FROM reviews WHERE grade>0)>

<h2> Statistics: </h2>
empty: $Qempty
accept: $Qaccept

</funit> i istics.funit,

Review 51
Submission # 51
On th

Statistics
empty:

aceept:

1
2
reject: 1
0

border:

preeey screenshots (c)

Figure 4: (a,b) SFW code for two f-units, (c) screenshot of
the representation in a web browser.

We refer to Section [3:2]for more the details on the difference,
in particular for details on concurrent updates.

Example 2 (continued). Assume an f-unit dynamically
activates a list of reviews, each specified as f-unit Review
(Figure [4h). Furthermore, let there be a static activation
of one instance of f-unit ReviewStatistics (Figure [db).
A screenshot of the representation of one such review in a
browser is shown below the SFW code (Figure [if). Most
notably, this example shows the concise and elegant way
of a specification of web application code in the model-
ing language SFW: Values obtained from activation calls
<activate...> or from simple queries <query...> are ac-
cessible with the prefix $@, e.g., $@id , $@submissionId ,
form values are accessible via the prefix $#, e.g., $#tgrade.

The blue arrow highlights the data dependency be-
tween the update query in review.sfw and the se-
lect query in reviewstatistics.sfw. According to
the specified subscription functions of ReviewStatistics,
SAFE automatically triggers the f-unit to refresh when-
ever the subscription functions return a non-empty re-
sult. In this case, an update of a review issued by
Review would cause ReviewStatistics to be refreshed.
(Even if ReviewStatistics has not specified any sub-
scription function, SAFE automatically triggers the f-unit
based on the database columns that have been read upon
ReviewStatistics’s most recent activation.) The simple
subscription functions com and acc for Review as shown
in the last section of the interface in Figure |§| achieve more
fine-grained control: The result of com contains any up-
date that affects the comments ( SELECT comments) of the
reviews (FROM reviews). The result of acc contains any
review information (SELECT #) for updated reviews ( FROM
reviews ) with a negative grade prior to an update ( BEFORE
grade<0 ) and a positive grade afterwards (AFTER grade>0).

We stress that the example shows simplifying syntactic
sugar for SQL queries that are typically more complicated.
SAFE translates the extended SQL syntax to standard SQL
code and creates the corresponding triggers. *
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2.3 Extensibility

Recall that customization refers to the action of modifying
an existing web application (into previously not considered
directions). The extension of the running system might be
provided by an untrusted third party. SAFE implements cus-
tomization by activating an f-unit G instead of an initially
specified f-unit F. In other words, in the activation tree,
the node initially representing F is replaced by a different
node for G. More formally, customization is a substitution
o : Ui — U mapping f-units U in the activation tree 7 to
other f-units Y.

Example 3. Consider the customization o =[A — A’ | D
D’,u — u] as shown in Figure The initial activation
tree (left) is transformed to the customized activation tree
(right): F-unit A is replaced by f-unit A’ which activates
only two instances of B (e.g., because A’ uses a different
activation query for B). Furthermore, f-unit D is replaced
by D’ which additionally activates a single instance of f-
unit E. *

This example demonstrates how new functionality is inte-
grated in a web application. Moreover, it shows that a cus-
tomization does not only affect a single f-unit, but instead
can affect entire subtrees. As an f-unit consists of code for
both business logic and visual appearance, customization is
not restricted to changes in the visualization, e.g., differ-
ent background colors, font-sizes. In an implementation in
practice, users can individually specify customizations and
provide them to other users within a network. The system
provider may approve every such customization once.

The domain of a customization mapping must address
only the intended f-units in the activation tree: A gen-
eral customization o1(B) = B’ would affect four f-units in
the left activation tree in Figure A more specific cus-
tomization o2(Root.D.B) = B’ would only affect one f-unit.
The domain of customization mappings for a specific f~unit
u € Uy must take into account a (partial) path from the root
f-unit down to u. The reference to u can hence be seen as
an address pattern that has to match a path in 7. The leaf
of the path Root.D.B is matched by the address patterns
B, D.B, and Root.D.B.

All customized f-units uj in a customization o3(u;) = u;
are called with the same activation parameters as the initial
u;, which is necessary for (1) modularity: the activating f-
unit v; shall not have to know whether u; is activated or
u;. SAFE ensures that the intended f-units are activated.
In other words, v; shall not be affected by a customization
of any of its child f-units. (2) Information flow: it is more
accurate to reason about information flow if information is
propagated only in top-down direction in the activation tree.
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1 INPUT:

2 init = ($!reviewerId)

3 activate = {$0id, $0title, $Q@comments, $Qgradel}
4

5 ACTIVATION:

6 FooBar.init = ($!reviewerId)

7 FooBar.activate = {$@id}

8

9 | DATABASE:

10 read = {reviews.id}

11 write = {reviews.comments, reviews.gradel}
12

13 | SUBSCRIPTION:

SELECT comments FROM reviews
SELECT * FROM reviews WHERE
BEFORE grade<O AND
AFTER grade>0

com:
acc:

Figure 6: Sample f-unit interface. The sections INPUT,
ACTIVATION, DATABASE, and SUBSCRIPTION correspond to
the arrows 2, 3, 6, and 9 in the Figures [I] and [3

2.4 Security

There are three ways for an f-unit to send and receive data
which is displayed or used to activate other f-units: (1) An
f-unit can receive data from its parent f-unit upon activation
through the activation parameters. (2) An f-unit can have
direct access to the database for both reading and modifying
data. (3) An f-unit can activate other f-units and thereby
send information to them.

Information Flow

In order to reason about information flow in a web appli-
cation, each f-unit F needs to declare an interface intr. A
sample interface for an f-unit to display a single paper sub-
mission in a conference management system is shown in Fig-
ure[6} Upon activation, the f-unit expects a reviewer ID and
some activation parameters, e.g., the review ID, the submis-
sion title, etc. The f-unit activates one child f-unit, FooBar.
Finally, the f-unit reads the column id of the database ta-
ble reviews and writes updates to the columns review and
grade. The submission title is not updated. The subscrip-
tion functions as introduced in Section [2:3] are also specified
through the interface. SAFE verifies that the queries occur-
ring in subscription functions also obey the access control
constraints, as specified in the DATABASE section of the
interface.

Access Control

SAFE inspects the interface intr at the initial registration of
f-unit F in the web application. The service provider, who
is running the service, has to decide whether the specified
interface is appropriate. If so, cryptographic credentials are
hand out to F (Fig.[I} step 1) and intr is translated to
corresponding access control constraints. From this point
on, F is allowed to read and write the respective database
columns after authenticating using the provided credentials.
The access to any other column is not permitted.

We stress that any user data (e.g., login credentials,
names, and related access control policies) is dynamic in-
formation of a web application. In contrast to f-units, these
first-class citizens are part of the content of the web ap-
plication and therefore stored in the database. SAFE thus
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far only maintains access control on f-units; access control
on user access must be modeled by the developer, as ever
before.

Access Control for Customized F-units

In order to ensure access control for customized f-units, we
define interface intr to be at least as restrictive as interface
inte for funits F and G, denoted by intr < intg, if the
following two conditions hold.

(INPr UDBRy)
(ACTF UDBWr) C

N

(INP¢ UDBRg)
(ACT¢ UDBVW)

The sets INPr, DBRr, DBWr, and ACT represent the corre-
sponding fields in the interface for f-unit F. A customization
o is called safe if Yu € U : int,(y) < intu. SAFE generally
verifies whether customization is safe.

However, in order to add new functionality to a web ap-
plication through customization, o(F) might require more
access than F does, hence int,(ry # ints. Such a special
case is called declassified customization. A declassified cus-
tomization requires special approval by the system provider.

3. IMPLEMENTATION

This section details particular insights about the implemen-
tation. These details are hidden from the developer.

A substantial component in the implementation of SAFE
is its CRM, the Centralized Reference Monitor. The CRM
controls the interaction of f-units with the database and
achieves consistency for concurrent data updates. Moreover,
the CRM maintains the registration and the activation of
f-units. Upon registration of an f-unit F, the CRM hands
out cryptographic credentials (Fig.[I] step 1), which F will
use for authentication at the CRM later. Furthermore, the
CRM derives access control constraints for F (also explained
later). These constraints are maintained by the CRM and
considered dynamically whenever a database query is re-
ceived from F. From this point on, F is registered in the
web application: its functionality can be integrated to a web
page via an activation of F.

In SAFE, all communication between client and server is
based on asynchronous message transfer. It is no longer ap-
propriate to reload the entire web page in case of a (possibly
small) update from the client: The browser would blank out
while waiting for a new page to be computed and delivered
by the server. Any browser state not been sent to the server,
e.g., non-submitted forms, cursor positions, scroll-bar posi-
tions, would be lost. We therefore rely on partial updates.
The entire page is reloaded only if essentially all elements of
a page need to be updated.

SAFE redeems the developer from caring about such
partial updates and from implementing the corresponding
JavaScript event-handlers. The developer simply specifies
the query that is supposed to be executed for a certain
event, e.g., for a click or a keystroke. More precisely, the
specification file review.sfw in Figure [3] is compiled into
the files review.sfw.php and review.ajax.php. The first
file represents client code, while the second file resides on
the server.
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3.1 Updates from the Client

This section shows the implementation details of client up-
dates based on the example shown in Figure|3] To this end,
let U be the set of available f-units, let U< U be the set of
f-units in the current tree T, let DBS be the set of database
states, let DBCols be the set of columns in the database, for
instance, DBCols = { students.sid, students.name, ...,
courses.cid, ...}, let Q be the set of database queries.
Let affCols : DBS x Q — £(DBCols) be the set of database
columns affected by a query for a given database state. Let
readCols : U — R(DBCols) be the set of database columns a
given f-unit reads upon activation.

Now assume an event at the client triggers a specified
update query g € Q for f-unit Review for execution against
the current state of the database. The subsequent steps are
explained in more detail in the following.

5. The client code calls the specified check function
checkForm. Upon success, the client calls SAFE’s
function sendForm which expects the corresponding
formID, a URL where to send the query to, and a
unique identifier queryID for the query. Note that the
query never appears in the client code, but instead an
unforgeable unique cryptographic identifier is inserted
automatically. The query itself occurs only in the
server code, in this case in the file review.ajax.php.
The same holds true for the credentials.

6. The f-unit sends its credentials, the form values,
and the actual query to the CRM. If the CRM is cur-
rently not executing any other request, i.e., the CRM’s
state is idle, the CRM sets its state to busy. Other-
wise the request is refused. Next, the CRM verifies
the authenticity of the f-unit, verifies the access con-
trol constraints for the specified query according to
the constraints derived at registration time. Finally,
the CRM checks whether the query originates from
a sufficiently up-to-date client (details are explained
in Section . Furthermore, the CRM sanitizes all
form values, i.e., special characters such as quotes and
semicolons are escaped. Through instantiation of the
sanitized values, the instantiated query ¢ is obtained
and ready to be executed.

7. The CRM sends the query ¢ to the database where ¢ is
executed at the current state s € DBS. The execution
of G yields a difference A(s,q,s’) from the database,

which transitions to a new state s’ € DBS: s - s'.
8. The CRM obtains the difference A from the database.

9. All f-units f; € Ui that have a subscription to the
difference A are notified by the CRM. More pre-
cisely, f-unit f; is notified when suby, (A) # @. The
notification message consists of the evaluated func-
tion suby, (A). If no explicit subscription function
is declared for an f-unit f;, the function suby, (A) :=
affCols(s,q) n readCols(f;) is used as a default. Fi-
nally, the CRM’s state is set to idle.
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Figure 7: Concurrency clock.

3.2 Concurrent Updates

To overcome the synchronization problem when the CRM
is interacting with several clients, each of which having pos-
sibly out-dated views of the application state, the CRM is
extended by a logical clock to track causality. This clock
is updated whenever an f-unit issues a query to update the
database.

Formally, a clock entry is a tuple (¢, t, A, u), where c € C is
a strictly monotonically increasing integer representing the
clock’s value, and t € TS is a timestamp capturing the time
of update. Additionally, information about the database
difference A is stored, together with the f-unit w € U that
has issued the update queryEI

Assume f-unit F has received its last information at clock
value ¢ = 1 (cf. Figure [7). Due to changes by other users,
the current clock value has increased to k > ¢. Now, assume
F issues a query ¢¥, i.e., a query based on local clock value
¢, but at current CRM clock value k. The CRM checks
whether ¢¥ is clock-safe, which intuitively means that the
query is only built on values that have not been altered since
the creation of the query. More formally, let clockCols(i) be
the set of affected columns by a database update at clock
value 7. Then, cols(Aﬁl) = Uecicer clockCols (1) is the set of
modified database columns for the clock interval (c,c’]. Let
the domain of readCols be lifted to sets of f-units in the
straight-forward way. Let the set F7 contain all f-units in
the activation tree 7 that are on the path from the root node
to F,i.e., FJ is the smallest set satisfying { F }u{pred(u) |
ue F3} ¢ Fi, where pred,(u) is the direct predecessor of
the node corresponding to f-unit v in 7. We say a query 7
is clock-safe if cols(A¥) nreadCols(F%) = @.

If the query is checked to be clock-safe, the CRM creates
a new clock entry with value k + 1 containing the difference
A received from the database, i.e., clockCols(k+1) = A. The
CRM returns to F not only the result of the query, but also
the new clock value ¢’ = k + 1. If the query is not clock-safe,
the query cannot be executed. The calling f-unit F is asked
to retry with a refreshed local state.

'The details on the difference A are strongly
implementation-specific and not relevant here. It is
only necessary that it be feasible to extract from A any
information about the updated database tuples.
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3.3 Customization

We assume a hierarchy of principals as depicted below. A
single service provider (e.g., the IT service of a university)
offers a global software service (e.g., a university-wide course
management system) to be used by a certain set of people
(e.g., the members of the university’s faculties). The ser-
vice is complete in that all basic functionality is deployed
(e.g., adding students, assigning students to courses, updat-
ing grades, etc.). Moreover, we assume that security poli-
cies are implemented correctly (e.g., only eligible staff is al-
lowed to access grades, students cannot learn other students’
grades, etc.).

Whenever the service shall be Service Provider
tailored to individual require- Customizers
ments, customized functionality Clients
is implemented by the customiz- Users

ers (e.g., the department of phi-
losophy, or the law school). These customizers can either
add new functionality to the system or personalize exist-
ing functionality. We assume that such modifications are
not in the interest of all users of a system, but for a sub-
set of them. The sports department might integrate an
e-commerce shop for their students to purchase corporate
sports clothing, which the law school might not need. But
instead, the law school is running a small library that shall
be integrated in the system.

The clients are devices (e.g., desktop computers, tablet
PCs, smartphones, etc.) that can interact with the original
service or with customizations thereof. Customizations can
be seen as “apps” that can be installed for a client. Fol-
lowing the “software-as-a-service” paradigm, these apps are
not installed on the clients, but are integrated to the main
service on the servers of the service provider.

Finally, users are authenticated clients. For instance, a
student might use a desktop computer of the law school to
check his class schedule. He authenticates with his student
ID, and sees the customized user interface the law school
provides. Customization is hence related to clients rather
than to users. This, however, is not a restriction as cus-
tomization can also be applied to users so that users can
choose customizations themselves.

Our implementing of customization mappings uses cookies
that are stored in the client browser. The cookies do not
store the mappings itself but a reference to the mapping.
The mappings are stored on the application servers. This
provides a simple method to share customizations between
different clients and users.

3.4 Authenticity

In order to ensure that all constraints on the access of
database fields are met, we require that an f-unit F au-
thenticate before communicating to the database. The au-
thenticity of f-unit F is established via the credentials cred r
(Fig.[1] step 1). The credentials depend on some password
p of the CRM and on the name of the corresponding f-unit:

credr = hash(p|| F)

where hash(-) is an unkeyed hash function such as sha256
and || is string concatenation. For state-of-the-art hash func-
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tions, it is believed to be computationally infeasible to find
collisions or a pre-image x given hash(z).

4. DISCUSSION

We first discuss our prototypical implementation, and then
consider future work.

4.1 Implementation

We have implemented a prototype of SAFE in the languages
Perl and PHP. Our current system consists of the SFW com-
piler and the security reference monitor; we are using an
Apache HTTP server, a standard application server, as mid-
dle tier. Our current system consists of roughly 3,000 lines
of code.

SAFE currently works as follows. Our SFW compiler com-
piles each f-unit independently from other f-units and inde-
pendently from the main web application because we want
to give developers the ability to update a web application in-
crementally. Since our goal is to enable personalization, the
code of the main application may in general not be available
to a customizer, i.e., the compiler must be able to translate
f-units separately from other f-units. The compilation of an
f-unit creates a directory which is added to the working di-
rectory of the web server hosting the web application. The
web server must be running in a PHP environment in order
to handle customization dynamically.

The demonstrate the efficacy of our approach, we imple-
mented a simple conference management system. Our sys-
tem implements the full workflow of a basic conference with
paper submission, the review cycle, and notification. How-
ever, the compiled code has over 3.6 times the size of the
code specified by a developer using our framework. This
shows the huge amount of code that developers usually spec-
ify although it is redundant or could be derived automati-
cally.

We defined some customizations which users in the con-
ference management system can choose from. A reference to
the selected customization is stored as a cookie on the client.
It was interesting to see how different browsers on one com-
puter obtain different pages from the server, although both
browsers had the same user logged in.

4.2 Future Work

While we clearly only have a proof of concept so far, we are
excited about the many interesting open directions that our
approach has created. We list a few in the next paragraphs.

Efficiency through Dynamic Code Partitioning. Due
to different operation purposes, the code of an RIA’s busi-
ness logic should be split into client and server code in a
dynamic manner [18, [5|. If, for instance, the client is a
light-weight smartphone, then hard computation tasks shall
better be performed on a powerful web server. However,
sorting a small table shall better be performed locally in or-
der to avoid communication overhead. These optimizations
provide more autonomous and reactive user interfaces, but
on the other hand, they may increase the need for more care-
ful inspection of information flow and data privacy. So far,
SAFE splits code automatically only with respect to secu-
rity aspects. Efficiency and Security through Dynamic
Data Storage. As done for automated code partitioning
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in SAFE and in other approaches |18} 5], also data can be
stored both at the client side and at the server side. A
dynamic selection of the storage location can speed up the
performance of RIAs due to reduced traffic between client
and server.

Access Control. The current implementation of access
control based on database columns per f-unit could become
more fine-grained in that columns can be conditioned on
certain values. Declassified Customization. In cases for
which customization is not safe, the system provider has to
manually approve the customization mapping. There is a
need for an automated methodology to approve such declas-
sified customizations.

Combining Extensions. A user may want to incorporate
more than one extension from the “extension app store.”
What does it mean for two extensions to be “compatible,”
and how can we automatically check for compatibility be-
tween extensions?

Scalability of Concurrent Updates. It might be worth
investigating how the CRM can operate in a distributed
fashion serving thousands of clients at the same time.

Automatic Offline Mode. Even in the absence of the web
server, the client part of an RIA shall be working up to a
certain extend without crashes or major inconveniences.

5. RELATED WORK
Model-Driven Engineering (MDE)

The model-driven engineering approach structures the spec-
ification of an application by the abstract specification of
individual domain models [16]. These formal models are
well-suited for the design of distributed web applications:
as in SAFE, both modularity and the compatibility of mod-
els with each other achieve reusability of code.

The MDE approach separates business logic (using plat-
form independent models, PIM) from the technical aspects
(using platform specific models, PSM). Executable code is
derived from a (sub)set of these specified models. The com-
patibility of different such models allows for an efficient
adaptation to different environments: A platform indepen-
dent model for displaying sorted interactive student lists can
be compiled to implementations for powerful server farms,
but also for lightweight smartphones. However, our notion
of customization is not covered by MDE since several mod-
els in MDE would have to change in order to customize a
single module.

On the one hand, it is important to find the right level of
abstraction, which is a key feature of the specified models.
On the other hand, all models need to be formal enough.
For instance, a specification in the unified modeling lan-
guage (UML) is generally not fine-grained enough to auto-
matically generate executable code. SAFE relies on domain-
specific languages (DSL) for the implementation of individ-
ual f-units, but still provides abstraction in terms of f-unit
interfaces.

Unified SQL-Based Approaches

In order to analyze information flow in web applications in
a precise manner, application code has to be clustered to a
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certain number of units, each with a well-defined interface.
The activation framework of Hilda [19] uses a unified SQL-
like language to describe so-called application units. A tree
of activated application units allows for realtime inspection
of information flow and conflict detection. Upon activation
of a child unit C' by its parent unit P, information is propa-
gated from P to C, and also from a database D. Upon some
user action in C', the data associated with the action is re-
turned to P, which processes this data and passes it to its
parent unit, and so on. The root unit uniformly maintains
the overall application state and updates the database.

While Hilda has several attractive features, it has sev-
eral shortcomings. First, while its unifying language is good
for developing semi-static applications, today’s RIAs with
JavaScript for interactivity are outside the scope of Hilda.
Second, while the recursive activation along the tree is good
to understand information flow, it requires that data for an
application unit at the leaf of the activation tree be passed
through all of its ancestors. Thus a simple modification of a
leaf unit that for example displays an additional field from
the database requires modification of all of its parent units in
order to modify the information that is passed along. The
activation framework of SAFE is inspired by Hilda, but it
addresses Hilda’s shortcomings in that SAFE supports tra-
ditional web development languages (and syntactically use-
ful simplifications thereof), and SAFE simplifies information
flow in the activation tree since f-units can directly access
the database and SAFE never propagates data from a child
f-unit to its parent f-unit.

FORWARD (7] is another web application framework,
which — similar to Hilda — removes Java and JavaScript code
fragments and replaces them with an SQL-like language. Al-
though powerful Turing-complete languages accomplish of-
ten simple tasks that also SQL-like languages could accom-
plish, programmers are used to develop web applications
using a certain set of languages different from pure SQL.
Recent work [13] has shown that web developers actually
prefer traditional imperative (scripting) languages such as
PHP, JavaScript, and Java to model web applications as
compared to an all-declarative approach as in FORWARD.

Specification Languages

Programming languages for web application development
are often too low-level, and thus programmers spend too
much effort on unimportant implementation details. A re-
cent study |7] has shown that for one line of SQL code, there
is a modest of 1.5 lines of Java code for business logic and 61
lines of Java code for binding SQL to Java and JavaScript.
Most of this code can clearly be generated automatically.
In addition, having to manually write low-level code intro-
duces more bugs and security vulnerabilities. SAFE’s high-
level specification language SFW abstracts away most im-
plementation details. Such a declarative language lets the
application developer focus on what functionality shall be
achieved, rather than how to achieve it. A carefully de-
signed SEF'W compiler takes care of implementation details
and provides much better code in terms of performance and
security. The SFW language is oriented on what program-
mers have been using for decades. Yet another programming
language would not be accepted by most programmers.
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Other Related Work

There is a big number of frameworks addressing some of
the problems mentioned in this paper. However, none of
them covers the topic of customization. Jazer [2] and Pho-
bos |3| are web development frameworks that use the same
set of Java/JavaScript-based languages for both browser and
server thereby addressing the language heterogeneity prob-
lem. Greasemonkey [12] and NoScript |14] are extensions
that allow the Firefox browser to locally customize the way
a web page is rendered. These browser extensions are re-
stricted to (1) the Firefox browser, to (2) JavaScript opera-
tions and (3) to web pages that are already delivered to the
client. Customizations can only be shared via an external
third channel, not via the web application itself.

In contrast, server-side application development is
achieved by App2You [1], a graphical framework that al-
lows users to create form-oriented web applications by out-
lining the pages of the application. The framework does
not require programming experience or knowledge of web
technologies. Our notion of customization is different from
App2You’s view of creating customized web applications:
applications are derived from templates (App2You) instead
of customized after deployment (SAFE). SproutCore [4] is
a framework for web applications having the business logic
on the client side. SproutCore aims at availability and ef-
ficiency of client code, in particular for mobile devices that
are not connected to an application server. As in SAFE,
updates to HTML and CSS code are performed automat-
ically. Hanus and Koschnicke have recently presented a
framework [11] to support the development of web appli-
cations based on an entity-relationship model. As for SAFE,
this approach ensures application state consistency. Appli-
cations are specified in the declarative modeling language
Curry which provides a strong typing machinery. However,
many programmers consider functional languages such as
Curry cumbersome to use for web application.

6. CONCLUSIONS

We have presented SAFE, a new activation-based CASE
framework for the development of web applications with sup-
port for safe extensibility and concurrency. SAFE not only
eases the development of web applications tremendously, but
also ensures certain security properties by design. We have
implemented a prototypical compiler for SAFE and have
modeled a course management system in SAFE. Our frame-
work shows the efficacy of the first steps into a novel inter-
esting direction.

This material is based upon work supported by the National
Science Foundation under Grant IIS-1012593, the iAd Project
funded by the Research Council of Norway, and a Google Faculty
Award. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors.
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