
OPAL: Automated Form Understanding for the Deep Web∗

Tim Furche, Georg Gottlob, Giovanni Grasso, Xiaonan Guo, Giorgio Orsi, Christian Schallhart
Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk

ABSTRACT
Forms are our gates to the web. They enable us to access the deep
content of web sites. Automatic form understanding unlocks this
content for applications ranging from crawlers to meta-search en-
gines and is essential for improving usability and accessibility of
the web. Form understanding has received surprisingly little at-
tention other than as component in specific applications such as
crawlers. No comprehensive approach to form understanding exists
and previous works disagree even in the definition of the problem.

In this paper, we present OPAL, the first comprehensive approach
to form understanding. We identify form labeling and form inter-
pretation as the two main tasks involved in form understanding. On
both problems OPAL pushes the state of the art: For form labeling,
it combines signals from the text, structure, and visual rendering
of a web page, yielding robust characterisations of common design
patterns. In extensive experiments on the ICQ and TEL-8 bench-
marks and a set of 200 modern web forms OPAL outperforms previ-
ous approaches by a significant margin. For form interpretation, we
introduce a template language to describe frequent form patterns.
These two parts of OPAL combined yield form understanding with
near perfect accuracy (> 98%).

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line Information
Services—Web-based services

General Terms
Languages, Experimentation

Keywords
form understanding, web interfaces, deep web

1. INTRODUCTION
Are you looking for a house? Are you tired of filling registra-

tion forms with your search criteria on the websites of hundreds of
local agencies? You fear to miss the site with the very best offer?
Wouldn’t you wish to automatize these tiresome tasks? Web forms

∗The research leading to these results has received funding from the
European Research Council under the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) / ERC grant agree-
ment DIADEM no. 246858. Giorgio Orsi has been supported by
the Oxford Martin School, Institute for the Future of Computing.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

are the gates of all these websites. Gates designed for human ad-
mission, leaving programs in the conundrum of web design ambi-
guity: Even web forms within a single domain denote search crite-
ria differently, e.g., “address”, “city”, “town”, and “neighborhood”
all refer to locations, while other terms denote different criteria am-
biguously, e.g., “tenure” might refer to the choice either between
“freehold” vs. “leasehold” or between “buy” vs. “rent”. Moreover,
web forms present their criteria in different manners, e.g., for a
choice among several options, a form may contain either a drop-
down lists or a set of radiobuttons. Automatically understanding
these variants is key for programs to pass these gates as needed
by a broad range of applications: crawling and surfacing the deep
web [14, 10, 5], classifying the domain of web databases [2] for
web site classification, sampling the contents of web databases [11,
1], and matching interfaces across domains [4, 15]. In web engi-
neering, automated form understanding contributes e.g. to web ac-
cessibility and usability [7], web source integration [6], automated
testing on form-related web applications.

Form understanding has attracted a number of approaches [16,
15, 6, 13, 8], for a recent survey see [9]. These approaches turn
observations on common features of web forms (in general, across
domains) into specifically tailored algorithms and heuristics, but
generally suffer from three major limitations:

(1) Most approaches are domain independent and thus limited to
observations that hold for forms across all domains. This limitation
is acknowledged in [16, 13, 8], but addressed only through domain
specific training data, if at all. Our evaluation supports [8] in that
a set of generic design rules underlies all domains, but that spe-
cific domains parameterise or adapt these design patterns in ways
uncommon to other domains.

(2) Most approaches are limited in the classes of features they
use in their heuristics and often based on a single sophisticated
heuristics based on one class of features, e.g., only visual features
[6] or textual and field type features in [8].

(3) Heuristics are translated into monolithic algorithms limiting
maintainability and adaptability. For example, [15] and [13] en-
code specific assumptions on the spatial distance and alignment of
fields and labels, [8] employs hard-coded token classes for certain
concepts such as “min”, “from” vs. “max”, “to”.

To overcome these limitations, we present OPAL (ontology based
web pattern analysis with logic), a domain-aware form understand-
ing system that combines visual, textual, and structural features
with a thin layer of domain knowledge. The visual, textual, and
structural features are used in a domain-independent analysis to
produce a highly accurate form labeling. However, for most appli-
cations what is actually needed is a form model consistent with a
given domain schema, where all the fields are associated with given
types. In OPAL, the domain schema is not only used to classify the

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

829



(a) web page (b) form (c) field labeling (d) segment labeling (e) classification

Figure 1: OPAL on Colin Mason

fields and segments of the form model, but also to improve the form
model based on a set of structural constraints that describe typical
fields and their arrangement in forms of the domain, e.g., how price
ranges are presented in forms. To ease the development of these
domain schemata, OPAL extends Datalog, a staple for declarative
ontology and schema specification, with templates to enable reuse
of generic form, e.g., how ranges (of any type) are presented in
forms. With this approach, OPAL achieves nearly perfect analysis
results (> 98% accuracy).

Contributions. OPAL’s main contributions are:
(1) Multi-scope domain-independent analysis (Section 3) that

combines structural, textual, and visual features to associate labels
with fields into a form labeling using three, sequential “scopes”
increasing the size of the neighbourhood from a subtree to every-
thing visually to the left and top of a field. (i) At field scope, we
exploit the structure of the page between fields and labels; (ii) at
segment scope, observations on fields in groups of similar fields,
and (iii) at layout scope, the relative position of fields and texts in
the visual rendering of the page. We impose a strict preference
on these scopes to disambiguate competing labelings and to reduce
the number of fields considered in later scopes, as the complexity of
the analysis increases from earlier to latter scopes (though overall
bounded by O(n2) where n is the page size).

(2) Domain awareness. (Section 4) OPAL is domain-aware while
being as domain-independent as possible without sacrificing ac-
curacy. This is based on the observation that generic rules con-
tribute significantly to form understanding, but nearly perfect accu-
racy is only achievable through a thin layer of domain knowledge.
To this end, we add an optional, domain-dependent classification
and form model repair stage after the domain-independent analy-
sis. Driven by a domain schema OPAL classifies form fields based
on textual annotations of their labels and values assigned in the
domain-independent form labeling, as well as the structure of that
form labeling. This classification is often imperfect due to miss-
ing or misunderstood labels. OPAL addresses this in a repair step,
where structural constraints on the domain types, such as price, are
used to disambiguate and complete the classification and reshape
the form segmentation.

(3) Template Language OPAL-TL. (Section 4.1) To specify a do-
main schema, we introduce OPAL-TL. It extends Datalog to express
common patterns as parameterizable templates, e.g., describing a

group consisting of a minimum and maximum field for some do-
main type. Together with some convenience features for annota-
tion queries and access to the field labeling, OPAL-TL allows for
very compact, declarative specification of domain schemata. We
also provide a template library of common phenomena, such that
the adaption to new domains often requires only instantiating these
templates with domain specific types. OPAL-TL preserves the poly-
nomial data complexity of Datalog.

(4) Extensive Evaluation. (Section 5) In an evaluation on over
700 forms of four different datasets, we show that OPAL achieves
highly accurate (>93%) form labelings for any domain and, with a
suitable domain schema, near perfect accuracy in form classifica-
tion (> 98%). To compare with existing approaches (which only
perform form labeling), we show that OPAL’s domain-independent
analysis achieves 94− 100% accuracy on the ICQ benchmark and
92−97% on TEL-8. Thus, even without domain knowledge OPAL
outperforms existing approaches by at least 5%.

At [17], we presented a preliminary version of OPAL, only demon-
strating the relevance of the domain awareness, for a single domain
with a limited ontology, not only lacking OPAL-TL but also missing
the visual analysis, and the extensive evaluation we provide now.

1.1 Motivating Example
We present the OPAL approach to form understanding using the

form from the UK real estate agency Colin Mason (cmea.co.uk/
properties.asp). Figure 1a presents the web page with its sim-
plified CSS box model. The page contains two forms: one for de-
tailed search and the other for quick search. OPAL is able to iden-
tify, separate, label, and classify both forms correctly yielding two
real-estate form models. The following discussion focuses on the
detailed search form (Figure 1b), in which each of the components
(1)-(10), each of the fields (3)-(7) and the two groups of checkboxes
in (2) are enclosed in a table, tr, or td element. Labels for each
of the components such as “Bedrooms:” appear in separate tr’s.

Field scope. (Section 3.1) OPAL starts by analysing individual
fields assigning labels that explicit reference the field (using the
for attribute) or have a common ancestor that has no other fields
as descendant. In our example, no explicit references occur, but the
second approach correctly labels all fields except the checkboxes
in (2). In Figure 1c we show this initial form labeling using same
color for fields and their labels.

Segment scope. (Section 3.2) We increase the scope of the anal-

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

830



ysis from the elements to groups of similar elements, called seg-
ments. OPAL constructs these segments from the HTML structure,
but eliminates segments that likely have no semantic relevance and
are only introduced, e.g., for formatting reasons. This elimination
is primarily based on similarity between elements approximated
via semantic attributes such as class and visual similarity. In our
example, components (2)-(7) become segments, with (2) further di-
vided into two segments for each of the vertical checkbox groups.

In each of the segments, OPAL identifies repeated patterns of in-
terleaving fields and texts. Here, each check box in (2) is labeled
with the text appearing after it as shown in Figure 1d. OPAL also
associates text nodes to segments to create segment labels. Seg-
ment labels can be useful to verify the form model and to classify
fields that have no labels otherwise. In this example, OPAL assigns
the text in bold face appearing atop each segment as the label, e.g.,
“Price:” becomes the label for (4).

Layout scope. (Section 3.3) In the layout scope, OPAL further
enlarges the scope of the analysis to all fields visually to the left and
above a field. The primary challenge in this scope is “overshadow-
ing”, i.e., if other fields appear to in the quadrants to the left and
above a field. In this example the layout scope is not needed.

The result of the layout scope is the form labeling derived with-
out using domain knowledge.

Domain scope. If a classification and semantic grouping of
the form fields is desired, the final step in OPAL produces a form
model that is consistent with a given domain schema. It uses do-
main knowledge to classify and verify the labeling and segmenta-
tion from the form labeling. In the classification step, OPAL an-
notates fields and segments with types based on annotation on the
text labels. The verification step repairs and verifies the domain
model if needed. For both steps, OPAL uses constraints specified
in OPAL-TL. These constraints model typical patterns of forms in
the domain. E.g., the first field in (4) is classified as MIN_PRICE as
we recognise this segment as an instance of a price range pattern.
These constraints also disambiguate between multiple annotations,
e.g., fields in (6) are annotated with order_by and price, but the price
annotation is disregarded due to the group label. Even without the
group label, price would be disregarded as the domain schema give
precedence to order_by over price due to the observation that if both
occur as labels of a field, that field will likely be about the order
of the returned results rather than about the actual price. In this
case, only one repair is performed: We collapse the two checkbox
segments in (2) as they are the only children of their parent seg-
ment and both of the same type. Figure 1e shows the final field
classification as produced by OPAL.

2. THE OPAL APPROACH
OPAL constructs a conceptual model of a form consistent with

a domain schema. A domain schema describes the form patterns
occurring in a given domain, such as the UK real estate domain.
OPAL divides the general form understanding problem into form la-
beling and form interpretation. The form labeling identifies forms
and their fields, arranges the fields into a tree, and labels the found
fields, segments, and forms with text nodes from the page. The
form interpretation aligns a form labeling with the given domain
schema and thereby classifies the form fields based on their labels.

2.1 Problem Definition
Form Labeling. A web page is a DOM tree P =

(
(U)U∈Unary,

Rchild,Rnext-sibl,Rattribute
)

where (U)U∈Unary are unary type and label
relations, Rchild is the parent-child, Rnext-sibl the direct next sibling,
and Rattribute the attribute relation. Further XPath relations (such as

descendant) are derived from these basic relations as usual [3]. U
contains relations for types as in XPath (element, text, attribute,
etc.) and two kinds of label relations, namely labell for text nodes
containing string l, and boxb for elements with bounding box b in
the canonical rendering of the page. To normalize the representa-
tion of textual content, we represent the value of an attribute as text
child node of the attribute (thus, labell also applies to attributes).

DEFINITION 1. A form labeling of a web page P is a tree F
with mappings φ and ψ , such that φ maps the nodes of F into
P. Leafs in F are mapped to form fields and inner nodes to form
segments, that is an element grouping a set of fields. Each node n
in F is also mapped to a set ψ(n) of text nodes, the labels of n.

A node can be labeled with no, one, or many labels. The form
labeling contains a representative for each form. A representative
contains all fields (and segments) of that form. This allows us to
distinguish multiple forms on a single page, even if no form ele-
ment is present or multiple forms occur in a single form element.

DEFINITION 2. Given a DOM tree P, the form labeling prob-
lem (or schema-less form understanding problem) asks for a form
labeling F where for each form f in P (i) there is a node r ∈ F such
that φ(r) is a suitable representative of f and (ii) for each field e in
f , there exists a leaf node ne ∈ F such that ne is a descendant of r
and φ(ne) = e where ψ(ne) is a suitable label set for e.

We call a form labeling complete for a web page, if, for all e,
ψ(ne) contains all text nodes suitable as labels for e and define the
corresponding complete form labeling problem.

The suitability of a form representative φ(r) and a label set ψ(ne)
cannot be defined formally, but needs to be evaluated by human
annotators. Our evaluation (Section 5) shows that OPAL produces
form labelings Ff that match the gold standard in nearly all cases
(> 95% without using any domain knowledge).

Form Interpretation. To define the form interpretation prob-
lem, we formalize the notion of schema and introduce a form model
as a form labeling extended with type information consistent with
a given domain schema. First, we define an annotation schema that
provides the necessary knowledge to interpret text nodes.

DEFINITION 3. An annotation schema Λ=
(
A,<,≺,(isLabela,

isValuea : a ∈A)
)

defines a set A of annotation types, a transitive,
reflexive subclass relation <, a transitive, irreflexive, antisymmet-
ric precedence relation≺, and two characteristic functions isLabela
and isValuea on text nodes for each a ∈A.

For each annotation type a ∈ A, we distinguish proper labels
and values, with isLabela and isValuea as corresponding character-
istic functions. Proper labels are text nodes, such as “Price:”,
describing the field type, values, such as “more than £500”, con-
tain possible values of the field. Hence isLabelprice(“Price:”) and
isValueprice(“more than £500”) hold.

The < relation holds for subtypes, e.g., postcode < location, and
the ≺ relation defines precedence on annotation types used to dis-
ambiguate competing annotations. For example, an unlabeled se-
lect box with options “Choose sorting order”, “By price”, and
“By postcode” is annotated with order-by , price, and postcode. If
order-by ≺ price and order-by ≺ postcode, we pick order-by .

DEFINITION 4. A domain schema Σ = (Λ,T ,CT ,CΛ) defines
an annotation schema Λ, a set of domain types T , and CT and CΛ

that map domain types to classification and structural constraints.

For example, CΛ(PRICE) requires an annotation price and pro-
hibits order-by annotations for a field to be typed as PRICE. The struc-
tural constraint set CT (PRICE-RANGE) for a PRICE-RANGE segment re-
quires a MIN-PRICE and MAX-PRICE field or a PRICE-RANGE field. We

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

831



Form Labeling Form Model

DOM tree Segment tree Layout tree Schema tree

Segment Scope
Layout Scope Domain Scope

In
pu

t

Output

Field ScopeField Scope

Figure 2: OPAL Overview

write S |=C, if a constraint set C is satisfied by a set S of annotation
or domain types. The empty constraint set is always satisfied.

Formally, a form interpretation (F,τ) is a form labeling F with
a partial type-of relation τ , relating nodes in F with the types T of
Σ. Given a node n in F , we denote with A(n) = {a ∈ AΛ : ∃l ∈
ψ(n) with isValuea(l) or isLabela(l)} the set of annotation types as-
sociated with n via its labels, and with child-T (n) =

⋃
(n,n′)∈F τ(n′)

the set of domain types of the children of n.

DEFINITION 5. A form interpretation (F,τ) is a form model for
Σ, iff A(n) |= CΛ(t) and child-T (n) |= CT (t) for all n∈ F, t ∈ τ(n).

DEFINITION 6. Given a domain schema Σ and a form labeling
F, the form interpretation problem asks for a form model (F ′,τ)
for Σ such that F ′ differs from F only in inner nodes.

Thus, form representatives, fields, and labels are shared between F
and F ′, but the form segments may be rearranged to conform with
form patterns prescribed by the structural constraints of Σ.

Form Understanding
DEFINITION 7. Given a domain schema Σ and a DOM tree

P, the form understanding (or schema-based form understanding)
problem asks for a form model (F,τ) of P under Σ, such that F is a
solution of the complete form labeling problem for P and for each
form field e in P, there is a leaf node ne in F with φ(ne) = e and
τ(ne) is a suitable concept from Σ for e.

2.2 System Overview
OPAL is divided in two parts, a domain-independent part to ad-

dress the form labeling problem and a domain-dependent part for
form interpretation according to a domain schema.

OPAL produces form labelings in a novel multi-scope approach
that incrementally constructs a form labeling combining textual,
structural, and visual signals (Figure 2). Each of the three labeling
scopes considers signals not considered in prior scopes:

(1) In field scope, we consider only fields and their immediate
neighbourhood and thus use only the DOM tree as input.

(2) In segment scope, we detect and arrange form segments into
a segment tree to interleave the contained text nodes and fields.

(3) In layout scope, we broaden the potential labels of a field by
searching in the layout tree, i.e., the visual rendering of the page,
and assign text nodes to fields, given a strong visual relation.

Each scope builds on the partial form labeling of the previous
scope and uses the information from the additional input to find
labels for previously unlabeled fields (or segments). Only the seg-
ment scope adds nodes, namely form segments, whereas field and
layout scope only add labels.

Algorithm 1: FieldScopeLabelling(DOM P)
1 foreach field f in P do
2 n← f ;
3 while n has a parent do
4 if n is already coloured then colour n red; break;
5 colour n orange;
6 n← parent of n;

7 F ← empty form labeling ;
8 foreach field f in P do
9 n← new leaf node in F ;

10 φ(n)← f ;
11 if ∃l ∈ P with for attribute referencing f then
12 assign all text node descendants of l as labels to n ;

13 p← parent of f ;
14 while p not coloured red do
15 f ← p; p← parent of f ;

16 assign all text node descendants of f as labels to n ;

Finally, in the (4) domain scope (Section 4) we turn the form
labeling produced by the first three scopes into a form model con-
sistent with a given domain schema. (i) The labeling model is ex-
tended with (domain-specific) annotations on the textual content of
proper labels and values. (ii) Fields and segments of the form la-
beling are classified according to classification constraints in the
domain schema. (iii) Finally, violations of structural schema con-
straints are repaired in a top-down fashion.

Types and constraints of the domain schema are specified using
OPAL-TL, an extension of Datalog that combines easy querying of
the form labeling and of annotations with a rich template system.
Datalog rules already ease the reuse of common types and their
constraints, but the template extension enables the formulation of
generic templates for such types and constraints that are instanti-
ated for concrete types of a domain. An example of a type template
is the range template, that describes typical patterns for specifying
range values in forms. In the real estate domain it is instantiated,
e.g., for price and various room ranges. In the used car domain,
we also find ranges for engine size, mileage, tax band, etc. Thus,
creating a domain schema is in many cases as easy as importing
common types and instantiating templates.

3. FORM LABELING
In OPAL, form labeling is split into three scopes. Each scope is

focused on a particular class of input features (e.g., visual, struc-
tural, textual). By combining form labeling approaches for these
different features, OPAL captures the diverse range of form de-
sign patterns and eases extensions, such as the introduction of new
scopes that future web design trends might require. This contrasts
with previous approaches that rely on one or two such feature classes.

The form labeling scopes, field, segment, and layout scope, use
domain-independent labeling techniques to associate form fields
or segments with textual labels, building a form labeling F . If a
domain schema is available, the form labeling is extended to a form
model in the domain-dependent analysis (Section 4).

The form labeling F is constructed bottom-up, applying each
scope’s technique in sequence to yet unlabelled fields. Whenever a
field is labelled at a certain scope level, further scopes do not con-
sider this field again. This application order reflects higher confi-
dence in earlier scopes and addresses competing label assignments.

3.1 Field Scope
Based on the DOM tree of the input page, the field scope assigns

text nodes in unique structural relation to individual fields as labels
to these fields (see Algorithm 1). To that end, OPAL (1) colours

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

832



Algorithm 2: SegmentTree(DOM P), ⊥ 6∼ n for any n
1 P′← P;
2 while ∃n ∈ P′ : n not a field ∧

(
6 ∃d : Rdescendant(d,n) ∈ P′∧d a field

)
do

3 delete n and all incident edges from P′;

4 while ∃n ∈ P′ : |{c ∈ P′ : Rchild(c,n) ∈ P′}|= 1 do
5 delete n from P′ and move its child to the parent of n;

6 foreach inner node n in P′ in bottom-up order do
7 C←{ f : Rchild( f ,n) ∈ P′ ∧ f is a field};
8 C←C∪{Representative(n′) : Rchild(n′,n) ∈ P′}} ;
9 choose r ∈C arbitrarily ;

10 if ∀r′ ∈C : r ∼ r′ then
11 Representative(n)← r;
12 delete all non-field children of n and move their children to n;

13 else Representative(n)←⊥ ;

14 return P′;

(lines 1–6) all nodes in P that are ancestors of a field and do not
have other form fields as descendants in orange. The least ancestor
that violates that condition is coloured red. (2) It identifies (line
7–10) all form fields and initialises the form labeling F with one
leaf node for each such field. (3) It considers (lines 11–12) explicit
HTML label elements with direct reference to a form field. (4) It
labels (lines 13–16) each field f with all text nodes t whose least
common ancestor with f has no other form field as descendant.
This includes all text nodes in the content of f . We find these text
nodes in linear time with the tree colouring. Each value v of a field
f (in select, input, or textarea element) becomes a label for f ,
as the least common ancestor of f and v is f .

3.2 Segment Scope
At segment scope, the labeling analysis expands from individual

fields to form segments, i.e., groups of consecutive fields with a
common parent. These segments are then used to distribute text
nodes to unlabeled fields in that segment.

Segmentation tree. We observe that the DOM is often a fair
approximation of the semantic form structure, as it reflects the way
the form author grouped fields into segments. Therefore, we start
from the DOM structure to find the form segments, but we elim-
inate all nodes that can be safely identified as superflous: nodes
without field descendants, nodes with only one child, and nodes n
where all fields in n are style-equivalent to the fields in the siblings
of n. Two fields are style-equivalent (∼) if they carry the same
class attribute (used to indicate a formatting or semantic class) or
the same type attribute and CSS style information.

If all field descendants of the parent of an inner node n are style-
equivalent, then n should be eliminated from the segment tree, as it
artificially breaks up the sequence of style-equivalent fields and is
thus referred to as equivalence breaking.

DEFINITION 8. The segment tree P′ of a form page P is the
maximal DOM tree included in P (i.e., obtained by collapsing nodes)
such that the leafs of P′ are all fields and for all its inner nodes n
(1)

∣∣{c ∈ P′ : Rchild(c,n)}
∣∣> 1,

(2) ∃d ∈ P′ : Rdescendant(d,n)∧d is a field, and
(3) n is not equivalence breaking.

As an example, consider the DOM tree on the left of Figure 3,
where diamonds represent fields and style-equivalent fields carry
the same colour. On the right hand side, we show OPAL’s segment
tree for that DOM. Nodes 1 and 3 from the original DOM are elim-
inated as they have only one child, and node 2 as it is equivalence
breaking. Nodes 4 and 5 are retained due to the red field.

THEOREM 1. The segment tree P′ of a DOM tree P can be
computed in O(n×d) where n is the size and d the depth of P.

Segment TreeDOM Tree

1 2 3 4 5

Figure 3: Example DOM and Segment Tree

Algorithm 3: SegmentScopeLabeling(DOM P,Form Labeling F)

1 S← SegmentTree(P) ;
2 foreach inner node s in S in bottom-up order do
3 create a new segment ns in F ;
4 φ(ns)← s;
5 create an edge (ns,cs) in F for every φ(cs) child of s;

6 foreach segment n in F do
7 Nodes,Labels← new List();
8 textGrp← /0 ;
9 foreach c : Rdescendant(c,φ(n)) ∈ P in document order do

10 if ∃ f ∈ F : φ( f ) = c then
11 if textGrp 6= /0 then Labels.add(textGrp); textGrp← /0;
12 Nodes.add(c);
13 skip all descendants of c in the iteration ;

14 else if c is a text node ∧ 6 ∃d ∈ F : c ∈ ψ(d) then
15 textGrp← textGrp∪{c};

16 if textGrp 6= /0 then Labels.add(textGrp); textGrp← /0;
17 if Labels.size() = Nodes.size()+1 then
18 add Labels[0] to ψ(n);
19 delete Labels[0] from Labels;

20 if Labels.size() = Nodes.size() then
21 foreach i do add Labels[i] to ψ(Nodes[i]);

PROOF. Algorithm 2 computes the segment tree P′ for any DOM
tree P. Its leafs are fields (as any non field leafs are eliminated in
line 2–3) and any inner node must have more than 1 child (due to
line 4–5), a field descendant (due to line 2–3), and not be equiv-
alence breaking (due to lines 6–13). In lines 6–13, we compute
a Representative for each inner node in a bottom-up fashion: If all
field children (line 7) and the representatives of all inner children
(line 8) are style-equivalent (line 9–10; since ∼ is an equivalence
relation it suffices to compare a representative to each of the ele-
ments in C), we choose an arbitrary representative and collapse all
inner children of that node. Otherwise, we assign ⊥ as represen-
tative, which is not style-equivalent to any node or to itself. Thus
it prevents this node (and its ancestors) from ever being collapsed.
This can not introduce new violations to condition (1) and (2), as
we never decrease the number of children, turn a leaf into a inner
node, or remove fields. P′ is maximal: Any tree P′′ that includes P′

but is included in P must contain at least one node from P that has
been deleted by one of the above conditions. Such a node, however,
violates at least one of the conditions for a segment tree and thus
P′′ is not a segment tree. This holds because the order of the node
deletions does not affect the nodes deleted. Algorithm 2 runs in
O(n×d): Lines 2–3 are in O(n). Lines 4–5 and lines 6–13 are both
in O(n× d) as they are dominated by the collapsing of the nodes.
In the worst case, we collapse d−2 inner nodes and thereby move
O(n) leafs d−2 times.
Segment Labeling. We extend the existing form labeling F of
the field scope with form segments according to the structure of
the segment tree and distribute labels in regular groups, see Algo-
rithm 3. First (lines 2–5), we create a form segment node s in the
form labeling for each inner node ns in the segment tree and choose

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

833



11

1

2

32

3

4

4

85

5

6

7 876

Figure 4: Example for Segment Scope Labeling

ns as representative for s (φ(s) = ns). For each segment with reg-
ular interleaving of text nodes and field or segment nodes, we use
those text nodes as labels for these nodes, preserving any already
assigned labels and fields (from field scope). In detail, we iterate
over all descendants c of each segment in document order, skip-
ping any nodes that are descendants of another segment or field
itself contained in n (line 13). In the iteration, we collect all field or
segment nodes in Nodes, and all sets of text nodes between field or
segment nodes in Labels, except those text nodes already assigned
as labels in field scope (line 14), as we assume that these are outliers
in the regular structure of the segment. We assign the i-th text node
group to the i-th field, if the two lists have the same size (possibly
using the first text node as labels of the segment, line 17–19).

Figure 4 illustrates the segment scope labeling with triangles
denoting text nodes, diamonds fields, black circles segments, and
white circles DOM nodes not in the segment tree. The numbers in-
dicate which text nodes are assigned as labels to which segments or
fields. E.g., for the left hand segment, we observe a regular struc-
ture of (text node+, field)+ and thus we assign the i-th group of
text nodes to the i-th field. For the right hand segment (4), we find
a subsegment (5) and field 8 that is already labeled with text node
8 in the field scope. Thus 8 is ignored and only one text node re-
mains directly in 4, which becomes the segment label. In 5, we find
one more text node group than fields and thus consider the first text
node group as a segment label. The remaining nodes have a regular
structure (field, text node+)+ and get assigned accordingly.

3.3 Layout Scope
At layout scope, we further refine the form labeling for each

form field not yet labelled in field or segment scope, by exploring
the visible text nodes in the west, north-west, or north quadrant,
if they are not overshadowed by any other field. To this end, OPAL
constructs a layout tree from the CSS box labels of the DOM nodes:

DEFINITION 9. The layout tree of a given DOM P is a tuple
(NP,�,w,nw,n,ne,e,se,s,sw,aligned) where NP is the set of DOM
nodes from P, �,w,nw,n, . . . the “belongs to” (containment), west,
north-west, north, . . . relations from RCR [12], and aligned(x,y)
holds if x and y have the same height and are horizontally aligned.

We call w,nw, . . . the neighbour relations. The layout tree is at
most quadratic in size of a given DOM P and can be computed
in O(|P|2). For convenience, we write, e.g., w-nw-n to denote the
union of the relations w, nw, and n.

In cultures with left-to-right reading direction, we observe a strong
preference for placing labels in the w-nw-n region from a field. How-
ever, forms often have many fields interspersed with field labels and
segment labels. Thus we have to carefully consider overshadowing.
Intuitively, for a field f , a visible text node t is overshadowed by
another field f ′ if t is above f ′ or also visible from, but closer to f ′.
In the particular case of aligned fields, the former would prevent
any labeling for these fields and thus we relax the condition.

DEFINITION 10. Given a text node t, a field f ′ overshadows
another field f if (1) f and f ′ are unaligned, w-nw-n( f ′, f ), and

F3

F2

T4T2

T3

T1

W E

S

N

SE

NENW

SW

F1

Figure 5: Layout Scope Labeling

w-nw-n-ne-e(t, f ′) or (2) f and f ′ are aligned and (i) w(t, f ′) or
(ii) nw-n(t, f ′) and there is a text node t ′ not overshadowed by an-
other field with ne-e(t ′, f ′) and w-nw-n(t ′, f ).

To illustrate this overshadowing, consider the example in Fig-
ure 5. For field F1, T2 and T4 are overshadowed by F2 and T3 by F3,
only T1 is not overshadowed, as there is no other text node that is
south-east or south from T3 not overshadowed by another field.

The layout scope labeling is then produced as follows: For each
field f , we collect all text nodes t with w-nw-n(t, f ) and add them
as labels to f if they are not overshadowed by another field and not
contained in a segment that is no ancestor of f . The latter prevents
assignment of labels from unrelated form segments.

4. FORM INTERPRETATION
There is no straightforward relationship between form fields for

domain concepts, such as location or price, and their structure within
a form. Even seemingly domain-independent concepts, such as
price, often exhibit domain specific peculiarities, such as “guide
price”, “current offers in excess”, or payment periods in real es-
tate. OPAL’s domain schemata allow us to cover these specifics.
We recall from Section 2 that a form model (F ′,τ) for a schema Σ

is derived from a form labeling F by extending F with types and
restructuring its inner nodes to fit the structural constraints of Σ.

OPAL performs form interpretation of a form labeling F in two
steps: (1) the classification of nodes in F according to the domain
types T to obtain a partial typing τP. This step relies on the anno-
tation schema Λ and its typing of labels in F ; (2) the model repair
where the segmentation structure derived in the segmentation scope
(Section 3.2) is aligned with the structure constraints of Σ.

4.1 Schema Design: OPAL-TL
OPAL provides a template language, OPAL-TL, for easily speci-

fying domain schemata reusing common concepts and their con-
straints as well as concept templates. To implement a new do-
main, we only need to provide (1) a set of annotators implementing
isLabela and isValuea and (2) an OPAL-TL specification of the do-
main types and their classification and structural constraints.

OPAL-TL extends Datalog with templates and predefined predi-
cates for convenient querying of annotations and DOM nodes. An
OPAL-TL program is executed against a form labeling F and a DOM
P. Relations from F and P are mapped in the obvious way to OPAL-
TL. We only use child (descendant, resp.) for the child (descen-
dant, resp.) relation in F . We extend document and sibling order
from P to F : follows(X ,Y ) for X ,Y ∈ F , if Rfollowing(φ(X),φ(Y ))∈
P and no other node in F occurs between X and Y in document or-
der; adjacent(X ,Y ), if Rnext-sibling(φ(X),φ(Y )) ∈ P or vice versa.
Finally, we abbreviate labell(φ(X)) as l(X).

Annotation types and their queries. Annotations (instances
of annotation types) are characterised by an external specification
of the characteristic functions isLabela and isValuea for each a ∈A.
In the current version of OPAL, these functions are implemented
with simple GATE (gate.ac.uk) gazetteers and transducers, that

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

834



A A

AA

B

B

C

3

42

1

Figure 6: Example Form Labeling

are either provided by human domain experts or derived from ex-
ternal sources such as DBPedia and Freebase. The current OPAL
version contains a large set of such artefacts for common domain
types such as price, location, or date.

DEFINITION 11. Given a form labeling F on a DOM P and an
annotation schema Λ, an OPAL-TL annotation query is an expres-
sion of the form: X@A{d, p,e} where X is a first-order variable,
A ∈ A, and d, p, and e are annotation modifiers. An annotation
query X@Aµ with µ ⊆ {d, p,e} holds for all X ∈ JAµ K with

J@Aµ K = {n ∈ P : Allowµ (n)∩Matchµ (A) 6= /0}\Blockµ (A)

with Allowµ (n) set to ψ(n) for d ∈ µ , and ψ(n)∪ψ(parent of n)
otherwise. Matchµ (A) is to {l :

⋃
A′<∗A isLabelA′(l)} for p ∈ µ , and

{l :
⋃

A′<∗A(isLabelA′(l)∨ isValueA′(l))} otherwise. Blockµ (A) equals
{n : ∃A′ ≺A, |Matchµ (A)|< |Matchµ (A′)|} if e∈ µ , and /0 otherwise.

Intuitively, an annotation query X@A returns all nodes labeled
with a label that is annotated with A. If the modifier d (direct) is
not present, we also consider the (direct) segment parents, other-
wise only direct labels are considered. If the modifier p (proper) is
present, only isLabelA is used, otherwise also isValueA. If the modi-
fier e (exclusive) is present, a node that fullfils all other conditions
is still not returned, if there are more labels with annotations of a
type that has precedence over A.

Consider the form labeling of Figure 6 under a schema with
C < B and B ≺ A. Labels are denoted with triangles, fields with
diamonds, segments with circles. Labels are further annotated with
matching annotation types (here always only one). If value labels
are drawn as outlines. Then, X@A{} matches 2,3,4; X@A{e,d}
matches 2,4, but not 3 as 3 has more labels of B (or one of its sub-
classes) than of A and the exclusive modifier e is present; X@A{e, p}
matches 2,3, but not 4 as the proper modifier p prevents the value
labels in white to be considered. The latter matches 3 despite the
presence of e, as we consider also the labels of the parent of 3 (since
the direct modifier d is absent) and thus there are two A labels.

OPAL-TL templates. OPAL-TL extends Datalog¬ (Datalog with
stratified negation) by templates to define reusable patterns for do-
main concepts. Examples of such patterns are basic classification
patterns that derive a domain type from a conjunction of annotation
types or min-max range patterns where we look for multiple fields
with related annotations in a group and some clue that they repre-
sent a range. In general, there are two types of template patterns,
one for classification constraints, one for structural constraints. The
former specify patterns for relationships between domain and an-
notation types, the latter the abstract structure of domain concepts.

DEFINITION 12. An OPAL-TL template is an expression
TEMPLATE N<D1, . . . ,Dk> { p ⇐ expr } where N names the template,
D1, . . . ,Dk are template parameters, p is a template atom, expr
a conjunction of template atoms and annotation queries. A tem-
plate atom p<C1, . . . ,Ck>(X1, . . . ,Xn) consists of first-order predi-
cate name p, template variables C1, . . . ,Ck, and first-order vari-
ables X1, . . . ,Xn.

Multiple rules with the same head express union as usual. For con-
venience, we use ∨ and ¬ over conjunctions, which are translated
to pure Datalog¬ rules as usual (not effecting data complexity).

TEMPLATE basic_concept<C,A> { concept<C>(N)⇐N@A{d,e,p} }
2

TEMPLATE concept_by_segment<C,A> { concept<C>(N)⇐N@A{e,p} }
4

TEMPLATE concept_minmax<C,CM,A> {
6 concept<CM>(N1)⇐child(N1,G),child(N2,G),adjacent(N1,N2),

N1@A{e,d},(concept<C>(N2) ∨ N2@A{e,d})
8 concept<CM>(N2)⇐child(N1,G),child(N2,G),follows(N2,N1),

concept<C>(N1),N2@range_connector{e,d},¬(A1 ≺ A, N2@A1{d})
10 concept<CM>(N1)⇐child(N1,G),child(N2,G),adjacent(N1,N2),

N1@A{e,p},N2@A{e,p},
(
(N1@min{e,p},N2@max{e,p})

12 ∨ (N1@max{e,p},N2@min{e,p})
)

Figure 7: OPAL-TL classification templates

As an example, the following template defines a family of con-
straints that associate the domain type D to a node N whenever N
is labeled by an exclusive direct and proper annotation of type A.

TEMPLATE basic_concept<D,A> { concept<D>(N) ⇐ N@A{e,d,l} }

A template tpl is instantiated to produce a family of rules where
the formal template variables D1, . . . ,Dk are instantiated using val-
ues vi

1, . . . ,v
i
k from a template instantiation expression of the form

INSTANTIATE tpl<D1, . . . ,Dk> using { <v1
1, . . . ,v

1
k> . . . <vn

1, . . . ,v
n
k> }

For example, the following expression instantiates basic_concept

replacing D with type RADIUS and A with annotation type radius

INSTANTIATE basic_concept<D,A> using {<RADIUS, radius>}

and produces the following instantiated rule:

concept<RADIUS>(N)⇐N@radius{e,d,l}

PROP. 1. OPAL-TL has the same data complexity as Datalog¬.

4.2 Classification
Classification is based on the classification constraints of the do-

main schema. In OPAL these constraints are specified using OPAL-
TL to enable reuse of domain concepts and concept patterns. In the
real estate and used car domains, we identify three patterns that suf-
fice to describe nearly all classification constraints. These patterns
effectively capture very common semantic entities in forms and are
parametrized using domain knowledge. The building blocks are a
domain type (or concept) C and an annotation type A that is used to
define a classification constraint for C. None of these patterns uses
more than one annotation type as template parameter, though many
query additional (but fixed) annotation types in their bodies.

Figure 7 shows the classification templates for real-estate and
used car: (1) Basic concept. The first template captures direct clas-
sification of a node N with type C, if N matches X@A{d,e,p}, i.e.,
has more proper labels of type A than of any other type A′ with
A′ ≺ A. This template is used by far most frequently, primarily for
concepts with unambiguous proper labels. (2) Concept by segment.
The second template relaxes the requirement by considering also
indirect labels (i.e., labels of the parent segment). In the real estate
and used car domains, this template is instantiated primarily for
control fields such as ORDER_BY or DISPLAY_METHOD (grid, list, map)
where the possible values of the field are often misleading (e.g.,
an ORDER_BY field may contain “price”, “location”, etc. as values).
(3) Min-max concept. Web forms often show pairs of fields repre-
senting min-max values for a feature (e.g., the number of bedrooms
of a property). We specify this pattern with three simple rules (line
5–12), that describe three configurations of segments with fields as-
sociated with value labels only (proper labels are captured by the

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

835



TEMPLATE segment<C>{

2 segment<C>(G)⇐outlier<C>(G),child(N1,G),¬
(
child(N2,G),

¬(concept<C>(N2) ∨ segment<C>(N2))
)
}

4

TEMPLATE segment_range<C,CM> {
6 segment<C>(G)⇐outlier<C>(G),concept<CM>(N1),concept<CM>(N2),

N1 6= N2,child(N1,G),child(N2,G) }
8

TEMPLATE segment_with_unique<C,U> {
10 segment<C>(G)⇐outlier<C>(G),child(N1,G), concept<U>(N1,G),

¬
(
child(N2,G),N1 6= N2,¬(concept<C>(N2)∨segment<C>(N2))

)
. }

12

TEMPLATE outlier<C>{
14 outlier<C>(G)⇐root(G)∨child(G,P),child(G′,P),¬(segment<C>(G′)) }

Figure 8: OPAL-TL structural constraints

first two templates). It is the only template with two concept tem-
plate parameters, C and CM where CM <C is the “minmax” variant
of C. The first locates, adjacent pairs of such nodes or a single such
node and one that is already classified as C. The second rule locates
nodes where the second follows directly the first (already classified
with C), has a range_connector (e.g., “from” or “to”), and is not anno-
tated with an annotation type with precedence over A. The last rule
also locates adjacent pairs of such nodes and classifies them with
CM if they carry a combination of min and max annotations.

In addition to these templates, there is also a small number of
specific patterns. In the real estate domain, e.g., we use the follow-
ing rule to describe forms that use a links for submission (rather
than submit buttons). Identifying such a link (without probing and
analysis of Javascript event handlers) is performed based on an an-
notation type for typical content, title (i.e., tooltip), or alt at-
tribute of contained images. This is mostly, but not entirely domain
independent (e.g., in real estate a “rent” link).

concept<LINK_BUTTON>(N1)⇐form(F),descendant(N1,F),link(N1),

N1@LINK_BUTTON{d},¬
(
descendant(N2,F),

(concept<BUTTON>(N2) ∨ follows(N1,N2))
)

4.3 Model Repair
With fields and segments classified, OPAL verifies and repairs

the structure of the form according to structural constraints on the
segments, such that it fits to the patterns prescribed by the domain
schema. As for classification constraints, we use OPAL-TL to spec-
ify the structural constraints. The actual verification and repair is
also implemented in OPAL-TL, but since it is not domain indepen-
dent, it is not exposed to the user for modification. Here, we first
introduce typical structural constraints and their templates and then
outline the model repair algorithm, but omit the OPAL-TL rules.

Structural constraints. The structural constraints and templates
in the real estate and used car domains are shown in Figure 8 (omit-
ting only the instantiation as in the classification case). All segment
templates require that there is an outlier among the siblings of the
segment: outlier<C>(G) holds if at least one of G’s siblings is not
a C segment. (1) Basic segment. A segment is a C segment, if its
children are only other segments or concepts typed with C. This
is the dominant segmentation rules, used, e.g., for ROOM, PRICE, or
PROPERTY_TYPE in the real estate domain. (2) Minmax segment. A
segment is a C segment, if it has at least two field children typed
with CM where CM <C is the minmax type for C. This is used, e.g.,
for PRICE and BEDROOM range segments. (3) Segment with mandatory
unique. A segment is a C segment, if its children are only segments
or concepts typed with C except for one (mandatory) field child
typed with U where U 6< C. This is used for GEOGRAPHY segments
where only one RADIUS may occur.

Repairing form interpretations. The classification yields a
form interpretation F , that is, however, not necessarily a model un-
der Σ, and may contain violations of structural constraints. We
adapt the types of fields and segments and the segment hierarchy
of F with the rewriting rules described below to construct a form
model compliant with Σ. OPAL performs the rewriting in a strati-
fied manner to guarantee termination and introduces at most n new
segments where n is the number of fields in the form.

(1) Under Segmentation: If there is a segment n with type t such
that CT (t) requires additional child segments of type t1, . . . , tk 6∈
child-T (n), we try to partition the children of n into k+1 partitions
P1, . . . ,Pk,Pn such that Pi |= CT (ti) and Pn ∪{t1, . . . , tk} |= CT (t).
For each Pi we add a new segment node as child of n, classify it
with ti, and move all nodes assigned to Pi from n to that segment.
In practice, few cases of multiple under segmentations occur at the
same node and we can limit the search space using a total order
on T . Though in general this would require value invention, the
number of segments is actually bounded by the number of fields in
the form, which is typically between 2–10. Therefore, we provide
a pool of unused segments in the segmentation.

(2) Over Segmentation: If there is a segment n of type t with
children c1, . . . ,ck such that

⋃
child-T (ci)∪

⋃
n′∈C τ(n′) |= CT (t)

where C is the set of children of n without c1 . . .ck, then we move
the children of each ci to n and delete all ci.

(3) Under Classification: If there is a segment n of type t with
untyped children c1, . . . ,ck and corresponding types t1, . . . , tk such
that child-T (n)∪{t1, . . . , tk} |= CT (t) and, for each ci, child-T (ci) |=
CT (ti) holds, then we type ci with ti.

(4) Over Classification: If there is a segment node n of type t
with child c typed t1 and t2 such that {t1}∪

⋃
c′∈C τ(c′) |= CT (t)

where C is the set of children of n without c, we drop t2 from τ(c).
(5) Miss Classification: If there is a node n of type t where

child-T (n) 6|= CT (t), then we delete the classification of n as t.

5. EVALUATION
We perform experiments on several domains across four differ-

ent datasets. Two datasets are randomly sampled from the UK real
estate and UK used-car domains, respectively. We compare with
existing approaches via ICQ and TEL-8, two public benchmark
sets, on which we only evaluate OPAL’s form labeling for fair com-
parison to existing approaches, as they only label forms and do not
use domain knowledge. Even with these limitations, OPAL outper-
forms these approaches in most domains by at least 5%. We also
perform an introspective analysis of OPAL to show (1) the impact
of field, segment, layout, and domain scope and (2) OPAL’s perfor-
mance and scalability with increasing page size.

For the evaluation, we evaluate the proper assignment of text
nodes to form fields using precision, recall and F1-score (harmonic
mean F1 = 2PR/(P+R) of precision and recall). Precision P is
defined as the proportion of correctly labeled fields over total la-
beled fields, while recall R is the fraction of correctly labeled fields
over total number of fields. For all considered datasets, we com-
pare the extracted result to a manually constructed gold standard.
We evaluate segmentation through their impact on classification,
see Figure 10b and the improved performance on the two datasets
where we perform form interpretation (UK real estate and used car)
versus the ICQ and TEL-8 datasets.

Datasets. For UK real estate domain, we build a dataset ran-
domly selecting 100 real estate agents from the UK yellow pages
(yell.com). Similarly, we randomly pick 100 used-car dealers
from the UK largest aggregator website autotrader.co.uk. The
forms in these two domains have significantly different characteris-

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

836



1
Precision Recall F-score

0 98

0.99

0.97

0.98

0.96

0.95

0 93

0.94

0.93
UK Real Estate 

(100)
UK Used Car 

(100)
ICQ (98) Tel-8 (436)

(a) OPAL on 734 forms

0.94

0.95

0.96

0.97

0.98

0.99

1
Precision Recall F-score

0.9

0.91

0.92

0.93

0.94

Airfare Auto Book Job US R.E.

(b) ICQ results

0.94

0.95

0.96

0.97

0.98

0.99

1
Precision Recall F-score

0.9

0.91

0.92

0.93

Airfares Auto-
mobiles

Books Car 
Rentals

Hotels Jobs Movies Music 
Records

(c) TEL-8 results
Figure 9: OPAL comparison

tics than the ones in ICQ and TEL-8, mainly due to changes in web
technology and web design practices. The usage of CSS stylesheets
for layout and AJAX features are among the most relevant.

The ICQ and TEL-8 datasets cover several domains. ICQ presents
forms from five domains: air traveling, car dealer, book, job, real
estate. There are 20 web pages for each of the domains, but two of
them are no longer accessible and thus excluded from this evalua-
tion. TEL-8, on the other hand, contains forms of eight domains:
books, car rental, jobs, hotels, airlines, auto, movies and music
records. The dataset amounts to 477 forms, but only 436 of them
are accessible (even in the cached version).

Field Labeling Accuracy. In our first experiment we evaluate
the accuracy of OPAL’s field labeling on all four datasets, but only
in the UK real estate and used car domain we employ the form in-
terpretation to further improve the field labeling. Figure 9a shows
the results. The first two bars are for the random sample datasets.
For the real estate domain, OPAL classifies fields with perfect pre-
cision and 98.6% recall. Overall we obtain a remarkable 99.2%
F-score. The result is similar for the used car domain, where OPAL
obtain 98.2% precision and 99.2% recall, that amount to 98.7% F-
score. OPAL achieves lower precision than recall in the used car
domain due to the fact that web forms in this domain are more in-
teractive: certain fields are enabled only when some other field is
filled properly. However, instead of the HTML attribute disabled,
a placeholder is used with text displaying the original field’s value
label. This introduces noise to field labeling and thus classification.

For the real estate domain, our domain schema consists of a few
dozen element and segment types and about 40 annotation types.
Similarly, in the used car domain, there are about 30 annotation
types. In our experience, creating an initial domain schema (in-
cluding gazetteers and testing) for a domain takes a single person
familiar with the domain and OPAL-TL roughly 1 week.

The other two bars in Figure 9a regard field labeling on ICQ and
TEL-8 datasets. On these, OPAL applies only its domain-independent
scopes (field, segment, scope) as no domain schema is available
for these domains. Nonetheless, OPAL reports very high accuracy
also on these forms, confirming the effectiveness of our domain-
independent analysis. However, not unexpected, OPAL performs
significantly better in presence of domain knowledge.

Cross Domain Comparison. We use ICQ and TEL-8 to com-
pare field labeling in OPAL against existing approaches, on a wide
set of domains. Figure 9b details the result of OPAL on each domain
of the ICQ dataset. It shows perfect F-score values for the jobs do-
main (100%) as well as auto and air travelling (99.3% and 98.3%).
For comparison, [6] reports 92% F-score for labeling on ICQ on
average, which we outperform even in the most difficult domain
(books). [15] reports slightly better precision and recall than [6],
but OPAL still outperforms it by several percents.

 0

 50

 100

 150

 200

 0  2000  4000  6000  8000

To
ta

l C
om

pu
ta

tio
n 

tim
e 

[s
]

Number of nodes

(a) Time
Real-estate Used-car 

0.6 

0.8 

1 

domain  
layout  
segment 
!eld 

(b) Scopes
Figure 10: OPAL evaluation

The results for the TEL-8 dataset are depicted in Figure 9c. Here,
the overall F-score is 96.3%, again mostly affected by the perfor-
mance in the books domain. Note that, especially on TEL-8, OPAL
obtains very high precision compared to recall. Indeed, lower re-
call means OPAL is not able to assign labels to all fields, miss-
ing some of them. For comparison, [6] reports 88− 90% over-
all F-score, which we outperform by a wide margin. [13] reports
F-scores between 89% and 95% for four domains in the TEL-8
dataset. Though they perform slightly better on books, we signifi-
cantly outperform them on the three other domains included in their
results, as well as on average.

Contributions of Scopes. We demonstrate the effectiveness of
combining different types of analysis by measuring to what extent
each of our four scopes contributes to the overall quality of form
understanding. We use again the two domain datasets from the pre-
vious experiment. For both we show the results for recall (though
the picture is similar for precision and F-score). As illustrated in
Figure 10b, for the field labeling in the real-estate dataset, the field
scope already contributes significantly (67%). The Segment scope
increases recall by 18%, page and domain scope add together an-
other 13%. Note that, the contribution of the domain scope is more
significant than that of the layout scope, indicating the importance
of domain knowledge to achieve very high accuracy form under-
standing. In the used car domain, field scope alone is even more
significant 85% (as many of the websites use modern web tech-
nologies and frameworks with reasonable structure).

Scalability. As discussed in Sections 3 and 4, overall the anal-
ysis of OPAL is bounded by O(n2) due to the layout scope. As
expected actual performance follows a quadratic curve, but with
very low constants. There is a significant amount of outliers, par-
tially due to long page rendering time and partially due to variance
in the depth and sophistication of the HTML structure. Figure 10a
reports OPAL performance on all 534 forms in the combined TEL-8
and ICQ datasets. The highlight area covers 80% of the forms with
2200 nodes. OPAL requires at most 30s for the analysis (including
page rendering) of these forms. Further analysis on the effect of in-

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

837



creasing field or form numbers confirms that these have little effect
and page size is the dominant factor.

6. RELATED WORK
Current approaches to form understanding roughly fall into two

categories: rule and heuristic approaches, such as MetaQuerier [16],
ExQ [15], and SchemaTree [6], and machine learning approaches,
such as LabelEx [13] and HMM [8], cf. [9] for a general survey.

Aside of system design, OPAL primarily differs from these ap-
proaches in two aspects: (1) They mostly incorporate only one or
two of OPAL’s scopes (and feature classes): MetaQuerier,ExQ, and
SchemaTree mostly ignore the HTML structure (and thus field and
segmentation scope) and rely on visual heuristics only; LabelEx ig-
nores field grouping; HMM visual information. (2) None of the ap-
proaches provides a proper form model classifying the form fields
according to a given schema. Furthermore, no domain knowledge
is used to improve the labeling, though LabelEx analyses domain
specific term frequencies of label texts and HMM checks for generic
terms, such as “min”. As evident in our evaluation, each of the
scopes in OPAL considerably affects the quality of the form label-
ing and classification. The fact, that each of these approaches omits
at least one of the domain-independent scopes, explains the signifi-
cant advantage in accuracy OPAL exhibits on Tel-8 and ICQ. Notice
also that not using domain knowledge keeps these approaches out
of reach of the nearly perfect field classification achieved by OPAL.

Rule and heuristic approaches. Most closely related in spirit
to OPAL, though very different in realisation and accuracy, is Meta-
Querier [16]. It is built upon the assumption that web forms follow
a “hidden syntax” which is implicitly codified in common web de-
sign rules. To uncover this hidden syntax, MetaQuerier treats form
understanding as a parsing problem, interpreting the page a se-
quence of “atomic visual elements”, each coming with a number
of attributes, in particular with its bounding box. In a study cov-
ering 150 forms, the authors of MetaQuerier identified 21 common
design patterns. These patterns are captured by production rules in
a 2P grammar. In contrast, the domain independent part of OPAL
achieves nearly perfect accuracy with only 6 generic patterns by
combining visual, structural, and textual features. Metaquerier is not
parameterisable for a specific domain.

ExQ [15] is similarly based primarily on visual features such as
a bias for the top-left located labels comparable to OPAL, but disre-
gards most structural clues, such as explicit for attributes of label
tags and does not allow for any domain specific patterns.

Also [6] uses only visual features (and the tabindex and for

attributes for fields and labels). It follows nine observations on
form design, e.g., that query interfaces are organized top-down and
left-to-right or that fields form semantic groups. It uses a hierar-
chical alignment between fields and text nodes similar to OPAL’s
segment scope and a “schema tree” where the nine observations
are observed. Again no adaptation to a specific domain is possible.

Machine Learning Approaches. In contrast to the above ap-
proaches, the following machine learning approaches can be triv-
ially adapted to a specific domain using domain-specific training
data. The evaluation in [8], however, shows little effect of domain-
specific training data: a training set from the biological domain out-
performs domain-specific training set in four out of five domains.

LabelEx [13] uses limited domain knowledge when considering
the occurrence frequencies of label terms. Domain relevance of the
terms occurring in a label, measured as the occurrence frequency in
previous forms, is one signal used to score field-label candidates.
Field-label candidates are otherwise created primarily using neigh-
bourhood and other visual features, as well as their HTML markup.
However, LabelEx does not consider field groups and thus is unable

to describe segments of semantically related fields or to align fields
and labels based on the group structure and does not use any do-
main knowledge aside of term frequency.

HMM [8] uses predefined knowledge on typical terms in forms,
such as “between”, “min”, or “max”, but does not adapt these for
a specific domain. HMM employs two hidden Markov models to
model an “artificial web designer”. During form analysis, the HMMs
are used to explain the phenomena observed on the page: The state
sequences, that are most likely to produce the given web form, are
considered explanations of the form. Compared to OPAL, HMM uses
no visual features and no domain knowledge.

7. CONCLUSION
As premise of this paper, we assume that form understanding has

been limited by overly generic, domain independent, monolithic al-
gorithms relying on narrow feature sets. With OPAL we present a
system that addresses these limitations without requiring an inordi-
nate effort in domain engineering. This is achieved through a very
accurate domain independent form labeling, exploiting visual, tex-
tual, and structural features, by itself already outperforming exist-
ing approaches. We complement the domain independent part with
a domain dependent form field classification that significantly im-
proves the overall quality of the form understanding in verifying the
labeling, classification, and segmentation with domain constraints.
To minimize the efforts in domain engineering, we provide a tem-
plate language that facilitates compact domain knowledge specifi-
cations and enables significant cross domain reuse.

8. REFERENCES
[1] Z. Bar-Yossef and M. Gurevich. Random Sampling from a Search

Engine’s Index. J. ACM, 55(5), 2008.
[2] L. Barbosa and J. Freire. Combining Classifiers to identify Online

Databases. In WWW, 2007.
[3] M. Benedikt and C. Koch. XPath leashed. CSUR, 2007.
[4] A. Bilke and F. Naumann. Schema Matching using Duplicates. In

ICDE, 2005.
[5] M. J. Cafarella, E. Y. Chang, A. Fikes, A. Y. Halevy, W. C. Hsieh,

A. Lerner, J. Madhavan, and S. Muthukrishnan. Data Management
Projects at Google. SIGMOD Rec., 37(1), 2008.

[6] E. C. Dragut, T. Kabisch, C. Yu, and U. Leser. A Hierarchical
Approach to Model Web Query Interfaces for Web Source
Integration. In VLDB, 2009.

[7] O. Kalijuvee, O. Buyukkokten, H. Garcia-Molina, and A. Paepcke.
Efficient Web Form Entry on PDAs. In WWW, 2001.

[8] R. Khare and Y. An. An Empirical Study on using Hidden Markov
Model for Search Interface Segmentation. In CIKM, 2009.

[9] R. Khare, Y. An, and I.-Y. Song. Understanding Deep Web Search
Interfaces: A Survey. SIGMOD Rec., 39(1), 2010.

[10] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and
A. Halevy. Google’s Deep Web Crawl. In VLDB, 2008.

[11] A. Maiti, A. Dasgupta, N. Zhang, and G. Das. HDSampler:
Revealing Data behind Web Form Interfaces. In SIGMOD, 2009.

[12] I. Navarrete and G. Sciavicco. Spatial Reasoning with Rectangular
Cardinal Direction Relations. In ECAI, 2006.

[13] H. Nguyen, T. Nguyen, and J. Freire. Learning to Extract From
Labels. In VLDB, 2008.

[14] S. Raghavan and H. Garcia-Molina. Crawling the Hidden Web. In
VLDB, 2001.

[15] W. Wu, A. Doan, C. Yu, and W. Meng. Modeling and Extracting
Deep-Web Query Interfaces. In Adv. in Inf. & Intelligent S., 2009.

[16] K. Chang, Z. Zhang, B. He. Understanding Web Query Interfaces:
Best-Effort Parsing with Hidden Syntax. In SIGMOD, 2004.

[17] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, C. Schallhart.
Real understanding of real estate forms. In WIMS ’11, 2011

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

838




