
Creating a Large-Scale Searchable Digital Collection from
Printed Music Materials

Andrew Hankinson
andrew.hankinson@mail.mcgill.ca

John Ashley Burgoyne
john.ashley.burgoyne@mail.mcgill.ca

Gabriel Vigliensoni
gabriel@music.mcgill.ca

Ichiro Fujinaga
ich@music.mcgill.ca

Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT)
Schulich School of Music, McGill University, Montréal, QC, Canada

ABSTRACT
In this paper we present our work towards developing a large-
scale web application for digitizing, recognizing (via optical
music recognition), correcting, displaying, and searching printed
music texts. We present the results of a recently completed
prototype implementation of our workflow process, from
document capture to presentation on the web. We discuss a
number of lessons learned from this prototype. Finally, we present
some open-source Web 2.0 tools developed to provide essential
infrastructure components for making searchable printed music
collections available online. Our hope is that these experiences
and tools will help in creating next-generation globally accessible
digital music libraries.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Systems

Keywords
Optical music recognition, music notation, music score searching,
web applications.

1.   INTRODUCTION1

Document digitization is now operating at an industrial scale
within libraries and archives. Every year, millions of books are
digitized and placed online. Increasingly sophisticated methods of
searching, browsing, analyzing, and retrieving the textual content
of these books are being developed to allow users to navigate
these texts. Initiatives like Google Books [1], the HathiTrust [2],
and OpenLibrary [3] have been digitizing, recognizing, and
indexing large amounts of textual material. The IMPACT project
[4] has focused exclusively on developing tools, technologies and
best practices for analyzing historical texts, further advancing the
state of the art of computational tools that work with older,
degraded, or complex layouts and typefaces. Optical character
recognition (OCR) is the central technology in all of these

1. In this paper we discuss a number of software packages. To
assist the reader in distinguishing between literature citations and
software, we will reference and cite them separately. Literature
references are cited numerically, while software references are
cited alphabetically.

projects, transforming page images into text that can then be
stored and indexed. No similar initiatives for musical materials
exist at this scale and scope. Most optical music recognition
(OMR) software is not designed to process large volumes of page
images. Digital music document libraries still rely on human-
supplied metadata (book titles, for example) as the primary means
of navigating large document image collections. The same modes
of search and navigation that are available in the large textual
digitization projects—allow users to search every book in a
collection at the page level in a matter of seconds—are
unavailable for musical materials.

To address this discrepancy, we introduce the Single Interface
for Music Score Searching and Analysis (SIMSSA) project [5], a
recently funded initiative to investigate the creation of a fully
searchable digital musical document collection, including
document digitization, high-volume OMR, large-scale symbolic
search systems, and digital document display. Here, we report the
results of our initial investigations for scaling musical document
processing to accommodate large volumes of page images as well
as some of the techniques and software tools we have developed
to meet the unique challenges this process presents. Finally we
discuss future directions for the SIMSSA project and how we
think this project will change the ways people interact with digital
musical documents.

2.   BACKGROUND
Prior to the large-scale digital document initiatives, both OCR and
OMR technologies were primarily used as a method of document
transcription: A page image was supplied, the words or music
notation was extracted, and the original image was then discarded.
The user was left with the content of the page in an editable
format that could be opened in word processing or notation
editing software. Automatic transcription of page images was an
alternative to entering the content into the computer by hand, an
arduous task for documents of any appreciable length.

With book digitization projects, however, the use of OCR
changed. It was no longer used primarily as a means of making a
text editable, but as a means of making a collection of images
navigable. This shift meant that it became very important to
maintain in situ image and text correspondence—that is, to
preserve the pixel locations on the image for every word
recognized with OCR. Search systems then indexed this text and
location data. Users looking for a particular query term could be
taken directly to the pages of books where that query term
appeared, with their result highlighted on the image of the page.
The use of the original page image is critical to providing users
with access to the original document, because even the most
sophisticated OCR software will make mistakes in the
transcription process. Providing the recognized text as an
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“invisible layer” on top of the original page image allows the user
to navigate the book using query terms, but then to read the book
from the image in its original form. This small shift in the use of
OCR from transcription to navigation has opened up the
unprecedented ability to navigate millions of books in an instant; a
task that would have taken a lifetime of manual labour.

This shift has not been reflected in OMR systems, however.
Most OMR software available today is used primarily as
transcription tools for circumventing manual entry into a notation
editor. They are largely based around a graphical user interface
(GUI), designed for a single user on a single workstation. The
export formats they use are suitable for import into a music
notation editor but discard any information about the location of
the notation on the original page image. To bring document image
navigation using automatic transcription into a musical context,
OMR software must be re-designed to focus on methods of high-
volume image throughput, and on document output formats
designed to maintain fine-grained correspondence between images
and their transcriptions.

Our initial investigations into scaling OMR have involved
deconstructing the traditional OMR process into separable tasks
that together form a workflow, with the hopes of identifying
places where the entire process can be made more efficient.
Dissecting the OMR process allows each task to be identified and
analyzed for any potential gains in workflow throughput, either by
completely automating the task or by identifying places where
automation could be used in conjunction with human supervision.

The human supervision component of any digitization and
recognition workflow is always the most expensive step. Humans
require salaries and workspace, and do not perform as well as a
computer when performing tasks that are easily automated. They
typically get tired, bored, and sloppy if presented with a task that
requires too much repetition and concentration, and can only work
for a certain number of hours per day. However, humans are
critical components for performing quality control in the process,
correcting the inevitable errors that automated systems make and
ensuring these errors do not compound themselves in subsequent
workflow steps. By focusing human intervention on only the tasks
that a computer cannot do, or cannot do well, we reduce the
amount of error in the final product while maintaining a level of
quality and efficiency beyond simple automatic recognition. We
have identified three broad strategies for optimizing human
intervention:

• Use adaptive systems that learn
• Distribute the tasks across many humans
• Optimize the task for efficient performance

Adaptive Optical Music Recognition (AOMR)[6] has been
proposed as a means of dealing with the large number and varying
styles of music notation symbols. However, it has recently been
recognized as a means of reducing costs in a digitization
workflow [7]. By employing constantly learning software, the
computer system requires less human intervention as it is given
more exemplar pages.

As mentioned earlier, current OMR software is designed for a
single user on a single workstation. This severely limits the
number of people that can work on a given document at any time.
Decoupling the software from the workstation and placing it on a
remote server opens the door for many optimizations. Users can
log in and perform their OMR tasks from any computer equipped
with a modern web browser. Distributed proofreading and
correction techniques, such as those employed by the IMPACT
project [4], can be potentially performed by anyone, anywhere in

the world. While libraries and archives may choose to still employ
people to perform this work, the tasks may be distributed among
specialists, and any member of a given pool of workers may
perform a given task.

Finally, web-based software and distributed proofreading
opens up the possibility of optimizing the actual tasks. While
many users may be hesitant at the prospect of re-editing an entire
score, it may be possible to “chunk” up correction or verification
tasks into much smaller units of work which can then be
distributed over a large number of users. The ReCAPTCHA
project [8] has used this to great effect, asking a user to transcribe
two OCR words to prove they are human as a mechanism for
preventing automated spam bots. Other initiatives, like
MajorMinor [9], have turned large-scale data collection and
verification into a game where participants are rewarded points
for their work. By examining the task and creating a highly
optimized method of performing it, we may achieve acceptable
overall throughput while still maintaining a level of quality
control better than that of purely automated recognition.

There have been several previous attempts at building large-
scale search and retrieval systems from OMR sources. We will
examine these projects in the following section.

3.   PREVIOUS WORK
The PROBADO Music Project [10,11] is perhaps the largest and
longest-running project incorporating large-scale OMR for use in
search systems. This project seeks to provide a unified interface
for retrieving symbolic and audio representations of music pieces.
As of October 2010 their dataset consisted of 50,000 pages from
292 books [12]. The content of their dataset is music printed in
common Western notation in a variety of genres and
instrumentations, including opera, symphonic works, and
Classical and Romantic piano music.

The primary goal of the PROBADO project is to allow
symbolic and audio synchronization, providing users with the
ability to navigate a score and hear the audio, or navigate the
audio and jump to its corresponding position in the score. For this
use case, they have demonstrated that their OMR results do not
need to be highly accurate to produce acceptable results. Their
technique generates MIDI files from OMR, which are then
rendered to an audio representation. This audio representation is
then aligned with different instrumental recordings of the work.
Despite the noisy nature of the underlying recognition, there is
still enough information in the rendered MIDI audio to accurately
align them. In [13] the authors states that they have systems in
place to correct errors that most negatively affect synchronization,
but make no mention of the extent to which all recognition errors
are corrected.

Viro [14] describes a system used to perform OMR on the
digitized scores held by the International Music Score Library
Project (IMSLP), also known as the Petrucci Music Library. His
project, Peachnote, uses off-the-shelf commercial and open-source
OMR software to produce searchable representations of more than
one million page images from 65,000 scores contained in IMSLP.
These were then indexed as n-grams and made available for
analysis via the Google n-grams viewer.

Finally, Choudhury et al. [15,16] report on developing a
system at Johns Hopkins University for performing OMR on the
entire Lester S. Levy Sheet Music Collection. The papers describe
in how a large-scale OMR system might be implemented, but no
workable prototype of their workflow system was produced.
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4.   THE LIBER USUALIS PROTOTYPE
To begin our investigations, we chose to build a complete
prototype system; developing tools and processes necessary to
bring a single large document from the point of image capture
through to a basic search web application. We used the Liber
Usualis [17], a service book produced by the Roman Catholic
church and an important source of chant notation, as the basis for
our first large-scale production. The Liber Usualis fits a number
of criteria. It is a large book (2,340 page images), which makes it
suitable for observing inefficiencies that might not be noticeable
with fewer pages. It has been produced mechanically (i.e.,
printed), and so the layout and symbols are uniform across the
whole book (unlike hand-produced sources). It contains a mixture
of text (lyrics, readings, instructions, etc.) and music notation,
which provides a real-world example of a mixed-content source in
which the software must identify and separate the musical content
from non-musical content. Finally, the music is monophonic
(single-voiced) and uses only a very small set of articulation
marks, which reduces the complexity of the musical notation and
resulting digital representation.

Perhaps the most notable feature of the Liber Usualis is the
system of music notation it uses. The music is expressed using
square-note neume notation, an ancient system dating back to
around the 12th Century. There are many similarities to modern
notation. It uses a staff with lines (although it uses only four staff
lines, and not the modern five), and has clefs that specify which
pitch a line represents (“C” and “F” clefs are used). However, it
differs from modern notation in that it combines notes into
groups, called neumes. Since this type of music is used for
chanting liturgical texts, these groupings are used as guides for
syllabification, where a single syllable may get two, three, or
more pitches. There are a number of standard neumes, each with
their own name, but custom groupings of neumes may also be
formed and fall under the general “compound” neume type. Some
examples of these are given in Figure 1.

Figure 1: Selected neume shapes and names

4.1   Image Processing
The original source for the Liber Usualis was a PDF file [18]
made available by the Canons Regular of St. John Cantius. The
page images were exported from PDF using Adobe Acrobat
Professional as 500dpi TIFFs, resulting in 2,340 image files. The
source file had been previously processed for OCR using ABBYY
FineReader [A], and so the resulting image files were pre-
binarized using the built-in ABBYY binarization tools.

Figure 2: Layout analysis in Aruspix

4.2   Layout Analysis
Once the images were exported, we performed automated page
layout analysis on them using a modified version of Aruspix [B],
an OMR system designed for early music. This layout analysis
detects five different types of page elements: music, titles, lyrics,
ornate letters, and other text elements. A sixth option, “blank,” is
generally used for image artifacts like borders and creases that
may appear as black pixels on the image but are not part of the
content of the page. We wrote a Python script to run Aruspix on
every image without human intervention. After all the pages were
automatically segmented we had a human confirm and correct any
errors in the layout analysis. The median correction time per page
was 77 seconds, with the majority of pages taking between 30 and
130 seconds. The result was an image that could be segmented
into separate layers containing textual or musical content
exclusively (Figure 2). The layers containing musical notation
were sent to OMR software, while the text layers were sent to
OCR software.

Figure 3: The Gamera classifier interface

4.3   OMR
We used the Gamera [19, C] software framework for performing
OMR in this stage of the workflow. Images containing only music
notation were processed to remove the staff lines using the
Gamera Musicstaves toolkit [D]. The result was an image that had
only neume shapes on it (Figure 3). These shapes were then
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automatically classified using a pre-trained Gamera classifier. The
automated classification for each page was then verified and
corrected by musicians familiar with square-note notation. The
median correction time per page was 11 minutes, with the
majority of pages taking between 7 and 16 minutes.

4.4   OCR
Page images with only textual content were sent to a separate
recognition process using the OCRopus OCR software [E]. As a
proof-of-concept we applied only minimal effort to create an
accurate transcription of the text. The raw recognized text was
processed through an automatic spelling corrector trained on a
dictionary of liturgical Latin words. For lyrics, syllables with
dashes between them were automatically joined to form a single
word. Much like the OMR stage, the OCR output for each line of
text was correlated with a region on the image in order to allow us
to highlight search results in situ.

4.5   Encoding and Correction
After the music recognition was complete we re-introduced the
staff lines onto the image. We identified the clef shape and
position for each staff, and correlated it with a staff line. The
initial pitch for each neume was identified based on its position
relative to the staff line and the clef, and the neume class name
was used to identify each subsequent pitch in that neume. 

One interesting and novel feature of this project was the use
of class names to assist in recognizing the pitch content of a
neume group (Figure 4). Class names for the shapes were
constructed by using the pitch contour of the neume. For complex
compound neumes, direction information was encoded in the class
name. The result was a set of class names where the specific pitch
contour of a neume could be reconstructed from knowing only its
starting pitch. For example, a three-note torculus belonging to the
torculus.3.2 class and starting on a g would outline the notes g, b,
a. Full details of this work, including performance evaluations,
can be found in [20].

Neume Class Name Shape
neume.torculus.3.2

neume.scandicus.2.2.2.he

neume.compound.u2.u2.d2.u2

Figure 4: Some neume shapes and class names

To store the recognized music notation we used the Music
Encoding Initiative (MEI) format [21]. This format is designed to
provide a common platform for encoding many different types of
music notation, including neume notation. Inspired by the Text
Encoding Initiative (TEI), MEI includes extensive methods for
doing in-depth document description and encoding. Typically,
symbolic music formats focus specifically on encoding one type
of music notation (e.g., common Western notation, mensural, or
neume notation), leading to a fragmented field where some
systems support only certain types of notation. This is true of the
more popular notation encoding types, specifically MusicXML
which only supports common Western notation. Since we are
designing this system with the goal of supporting different types
of notation, we considered MEI to be a more comprehensive

solution, allowing us to build a common set of tools for working
with this format while reducing the number of formats that we
need to support in the future.

For OMR applications, MEI has the ability to store both
neume notation and the pixel-based image location references for
all musical symbols [22]. This allows us to store the output of the
OMR software in a symbolic notation format, while still
maintaining image-to-symbol correspondence. The output of the
Gamera OMR process was encoded using the PyMEI library [F]. 

For a final pitch verification and correction step the MEI and
image files were then re-opened in Aruspix using a custom-
designed graphical neume editor. Upon opening the page, the
human corrector could see the original page image and the
automatically recognized musical output rendered as editable
notation. The human then corrected any mis-recognized pitches
and saved the output again in MEI.

4.6   Search System
To provide a very basic pitch search, the neume pitches in each
MEI document were indexed using simple n-grams, from 2 to 10
grams. We used a variation of the technique presented by Downie
[23], storing absolute value of each n–gram, as well as n–gram
values for contour, interval, and component neume names (Figure
5). By pre-computing these indexes we converted a musical query
to a simple string-matching task—something that most modern
search engines are highly optimized to perform.

contour: “dduurr”
intervals: “d2_d2_u2_u2_r_r”
location: [{'width': 407, 'ulx': 257, 'uly': 
1459, 'height': 65}]
neumes: “punctum_clivis_podatus_punctum_punctum”
pagen: 157
pnames: edcdeee
semitones: -2_-2_2_2_0_0

Figure 5: Sample index entry

We initially used ElasticSearch [G] as our query management
software. This software responded to updates to our CouchDB [H]
databases and automatically updated its index as new content was
added, facilitating very fast lookups over large indexes. While this
setup provided the desired functionality, ElasticSearch crashed
regularly and needed constant monitoring. To remedy these
problems we replaced both the CouchDB and ElasticSearch
components with a Solr [I] instance. Our current Solr instance
indexes 3,006,964 unique n-gram documents in a structure
identical to that originally stored in CouchDB. Solr has provided
us with a simple, stable, and reliable architecture for our search
system. Indexing the Liber corpus was performed with a custom
Python script, and took one hour to complete. Uncached query
times (i.e., queries that are performed after Solr’s query cache has
been flushed) are typically under 10ms.

A significant disadvantage to this method of pitch search is
that users cannot search on features of the notation that are not
indexed, since they are not querying the MEI files directly. This is
an area we feel is lacking in the current MIR research: How to
perform un-indexed queries on a large corpus of symbolic
notation and have it return a result in a timely fashion. While
some authors have proposed optimizations to the indexing process
[24,25,26], indexing purposefully yet significantly reduces the
number of dimensions available for querying. We hope to address
this problem in future work.
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4.7   Web Application
In order to allow users to interact with the recognized and
encoded Liber Usualis we built a prototype web application [27]
that provides an interface to view the original document images,
as well as to search and browse the recognized content (Figure 6).
The web application serves the HTML and JavaScript front-end to
the users, manages the server-side components for the image
viewer, and functions as a proxy for search requests to our Solr
index. This component was initially implemented using the
Django framework [J], but because Django’s database interface
functionality was not needed it was subsequently ported to the
much simpler Tornado framework [K].

We used a modified version of the Diva.js large document
image viewer software [28,29,L] for providing the web
application front-end to the search system. Using this software,
we display all page images as a single scrollable entity on a page.
The Diva.js viewer optimizes the viewing so that only the portion
of the document that is being displayed in the browser is
downloaded at any given time. This results in a very fast interface
for navigating the document, even over wireless connections.

To provide in situ search results, we used the co-ordinates
stored during the n-gram indexing to highlight the results of a
pitch sequence search on the pages. Highlighting a region on an
image uses HTML block elements for defining the location and
size of the search result, with CSS used to provide colour and
transparency.

Figure 6: Liber Usualis web application interface with a
highlighted search query (“edcdeee”)

5.   DISCUSSION AND FUTURE WORK
Printed music documents contain a wealth of musical information;
indeed, much of the world’s musical output over the last few
centuries can only be found in physical form. While libraries and
archives are diligently digitizing their documents and placing
them online, users must still rely on traditional cataloguing data to
navigate these document collections. To create the next generation
of digital music document libraries, OMR software must be
developed to manage high volumes of music document pages in
an efficient manner though full text and music search.

As part of the SIMSSA project we are developing new
enhancements to the traditional OMR process. We are employing
Web 2.0 technologies to facilitate the creation of an online OMR

web application to further allow the distribution of recognition
and correction tasks to anyone with a web browser and an Internet
connection. By decoupling the OMR process from a physical
location, we hope to leverage the expertise of users around the
world to assist libraries and archives in processing their
collections.

Another benefit of placing the recognition process “in the
cloud” is that we may then use the transcriptions provided by
humans as collections of ground truth data for further improving
adaptive OMR software. Maintaining image and transcription
correspondence for a large number of musical documents will
allow new types of symbol recognition techniques to be tested for
performance and accuracy, and any improvements to the OMR
process may be integrated into the online web application
immediately, without having to distribute updates to all users.

Finally, we are investigating how users may navigate these
document collections. One of the restrictions mentioned earlier is
that the practice of indexing symbolic notation significantly
reduces the types of queries a user can ask a retrieval system. In
most current systems, both the query and the underlying musical
documents need to be reduced to some form of text
representation. This restricts query interfaces to either providing
only very basic string-based matches or requiring a complex
query language to notate musical commonplaces like chords,
dynamics or multiple voices. By integrating sophisticated music
analytical software like music21 [M] and Humdrum [N] with
large search systems, such as Solr, or data processing systems,
such as Hadoop [O], we hope to provide users with more
sophisticated query systems while simultaneously enabling large-
scale corpus analysis. 

6.   CONCLUSION
The technology for providing page-level access to musical
materials is still in its infancy. In this paper we have presented our
work on a prototype system for efficient access. Through this
prototype we are exploring new methods of scaling OMR to meet
the needs of high-throughput applications, new tools, and
interfaces for exploring digital musical documents, and best
practices for libraries and archives interested in making their
collections available online. Our hope is that these experiences
and tools will help in creating next-generation globally accessible
digital music libraries.
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addons/musicstaves/

[E] OCRopus. http://code.google.com/p/ocropus/

[F] PyMEI. https://github.com/ahankinson/pymei

[G] ElasticSearch. http://www.elasticsearch.org/

[H] CouchDB. http://couchdb.apache.org/

[I] Solr. http://lucene.apache.org/solr/

[J] Django. https://www.djangoproject.com/

[K] Tornado. http://www.tornadoweb.org/

[L] Diva.js. http://ddmal.music.mcgill.ca/diva/

[M] Music21. http://mit.edu/music21/

[N] Humdrum. http://www.music-cog.ohio-state.edu/Humdrum/

[O] Hadoop. http://hadoop.apache.org/
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