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ABSTRACT

The problem we tackle in this work is, given a present news
event, to generate a plausible future event that can be caused
by the given event. We present a new methodology for mod-
eling and predicting such future news events using machine
learning and data mining techniques. Our Pundit algorithm
generalizes examples of causality pairs to infer a causality
predictor. To obtain precise labeled causality examples, we
mine 150 years of news articles, and apply semantic nat-
ural language modeling techniques to titles containing cer-
tain predefined causality patterns. For generalization, the
model uses a vast amount of world knowledge ontologies
mined from LinkedData, containing 200 datasets with ap-
proximately 20 billion relations. Empirical evaluation on
real news articles shows that our Pundit algorithm reaches
a human-level performance.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Knowledge acquisition; 1.2.1
[Artificial Intelligence]: Applications and Expert Sys-
tems

General Terms

Algorithms, Experimentation

Keywords

News prediction, Future prediction, Web knowledge for fu-
ture prediction

1. INTRODUCTION

When an agent, situated in a complex environment, plans
its actions, it reasons about future changes to the environ-
ment. Some of the changes are a result of its own actions,
but many others are a result of various chains of events not
necessarily related to the agent. The process of observing an
event, and reasoning about future events potentially caused
by it, is called causal reasoning.

In the past, such complex environments were not acces-
sible to computerized agents due to the limitation of their
perceptive capabilities. The proliferation of the World Wide
Web, however, changed all these. An intelligent agent can
act in the virtual world of the Web, perceiving the state
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of the world through extensive sources of textual informa-
tion, including Web pages, tweets, news reports, and online
encyclopedias, and performing various tasks such as search-
ing, organizing and generating information. To act intelli-
gently in such a complex virtual environment, an agent must
be able to perceive the current state, and reason about fu-
ture states through causal reasoning. Such reasoning ability
can be extremely helpful in conducting complex tasks such
as identifying political unrest, detecting and tracking social
trends, and generally support decision making by politicians,
business people, and individual users.

While many works have been devoted to extracting in-
formation from text [3, 6], little has been done in the area
of causality extraction [18, 19, 13, 12]. Furthermore, the
algorithms developed for causality extraction are aimed at
detection of causality pairs and cannot be used for causality
prediction, i.e., given an event, generating new events that
it can cause. The goal of the research presented in this pa-
per is to provide algorithms that perform causal reasoning
in textually represented unrestricted environments.

Our Pundit system, given an event represented in natural
language, predicts future events it can potentially cause. To
achieve this, we train the system with examples of causality
relations automatically extracted from the Web. We first
collect news reports from the last 150 years. We then use
textual causality patterns (such as “X because Y7, “X causes
Y”, etc.) to identify pairs of structured events that are sup-
posedly related by causality (we do not rely on time cor-
relation). The result is a semantically-structured causality
graph of 300 million fact nodes connected by more than one
billion edges. Our learning algorithm then uses large on-
tologies to generalize over the causality pairs and to predict
causality of unseen cases. To evaluate our methods we test
it on a news archive from 2010, which was not used during
training. The results are judged by human evaluators.

To gain some intuition about the type of predictions the
algorithm issues, we present here two examples. The algo-
rithm, given the event “Magnitude 6.5 earthquake rocks the
Solomon Islands”; predicted that “Tsunami-warning will be
issued in the Pacific Ocean”. It learnt this based on past ex-
amples it was trained on, one of which was “Tsunami warn-
ing issued for Indian Ocean” after “7.6 earthquake strikes
island near India”. The predictive template inferred by Pun-
dit was: if an earthquake occurs next to an Island, a tsunami
warning will be issued for its nearest ocean. An additional
example of a prediction issued by Pundit, is given the event
“Cocaine found at Kennedy Space Center”, it outputted the
following predictions: “few people will be arrested”, as the
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past event “police found cocaine in lab” caused the event “2
people arrested”. Such predictions provide evidence for the
system ability to reason under changing conditions and issue
logical predictions.

The contributions of this work are threefold: First, we
present novel and scalable algorithms for generalizing causal-
ity pairs to causality rules. Second, we provide a new method
for using casualty rules for predicting new events. Finally,
we perform an empirical study on realistic problems judged
by human raters. We make the extracted causality informa-
tion publicly available for further research in the field *.

2. RELATED WORK

We are not aware of any work that attempts to perform
the task we face: receive arbitrary news event in natural
language representation and predict events that it can cause.
There are, however, several works that deal with related
tasks. In computational linguistics, many studies deal with
extraction of causality relations from text using causality
patterns. These patterns are either manually crafted [18, 19,
13, 12], or automatically generated using machine learning
techniques [5, 36, 32, 33, 1, 24, 9]. In textual entailment
[14], the task is to identify texts that logically follow one
another.

Another related task in natural language processing is the
task of temporal information extraction — predicting the
temporal order of events or time expressions described in
text. Most of those approaches [25, 27, 21, 8, 39, 41] learn
classifiers that predict a temporal order of a pair of events
based on predefined pair’s features. Shahaf and Guestrin
[35] essentially detect a whole causality chain — given two
news articles, they provide a coherent small number of news
items connecting them. Similarly, some works in topic track-
ing [2], try to identify coherent story lines from news. More
recently, some works [16, 16, 29] have explored the usage of
large text mining techniques, applied on temporal corpus,
such as news and books. These works focus mainly on how
the culture develops, and what people’s expectations and
memories are from those times.

The above works, along with the works that deal with
other entity and relation extraction [6] and common-sense
knowledge acquisition from text [3, 34], tackle a task that
is different from ours. Their task involves identification and
extraction of causality relations, while ours involve predic-
tion of events caused by a given event. Thus, our algorithm
can generate events that were not observed before. More-
over, in Section 5.2 we describe a module of our algorithm
that obtains training examples based on methods similar to
the above.

We do not claim to create more precise information extrac-
tion methods, but rather how to leverage all this knowledge
to perform an important Al task — future event prediction.
We present novel methods of combining world knowledge
with event extraction methods to represent coherent events.
We then present novel methods for rule extraction and gen-
eralization using this knowledge.

3. EVENT REPRESENTATION

The basic element of our algorithm is an event. We lever-
age elements from the work of Kim [20] and to design a rep-
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resentation scheme that allows us comparing events, gen-
eralizing them and reasoning about them. Given a set of
(physical or abstract) objects O, Kim defined an event as
a triplet [O;, P,t] where O; C O is a set of objects, P is
a relation (or a property) over objects and ¢ is a time in-
terval. We propose a representation that further structures
the event to have roles in addition to the property relation.
Each event will be composed of a temporal action or state
that the event’s objects exhibit (P), one or more actors O1
that conducted the action, one or more objects O2 on which
the action was performed, one or more instruments Os the
action was conducted with, and one or more locations Oy
of the event. Formally, it is represented as an ordered set
e = (P,01,...,04,t), where P is the action, O; C O and
t is a time-stamp. For example, the event “The U.S army
destroyed a warehouse in Iraq with explosives”, which oc-
curred on October 2004, is modeled as: Destroy (Action);
U.S Army (Actor); warehouse (Object); explosives (Instru-
ment); Iraq (Location); October 2004 (Time). Illustration
of more such events can be see in Figure 5.

The approaches in the literature for event representation
can be divided to two groups: The first approach describes
an event in the sentence level by an intact text or individual
terms [5, 36]. However, representing the events “U.S army
bombs a warehouse in Iraq”, “Iraq attacks the U.S base” and
“Terrorist base was attacked by the U.S marines in Kabul”
using terms alone might yield that the first two events more
similar than the first and last — as it lacks the understanding
the actor of both events is a military group and that Kabul
and Iraq are the locations of the events. The second ap-
proach, describes events in a syntax-driven way, where each
element is mapped to a noun phrase [12, 19, 13, 9]. In our
example, this representation again will not find the appro-
priate similarity of the events, as in the syntax level both
the second and third event are similar.

Using these representations, it is hard to perform general-
izations and comparison of events in a semantic or pragmatic
way that takes into account all the elements composing an
event. Our approach is semantic — it identifies actors, ob-
jects etc. This resembles the complex event representations
presented in large knowledge ontolgies, such as Cyc [22].
This mapping of the atomic elements of each event (e.g.,
U.S Army) to semantic concepts (e.g., actor) provides a fer-
tile ground for canonic representation of events that are both
comparable and generalizable.

4. THE PREDICTION ALGORITHM

In this section we present Pundit — a learning algorithm
that outputs a predictor g, which, given a present event,
can predict its possible effects. During training, the learning
algorithm generalizes over the given examples and produces
an abstraction tree (AT) (Section 4.3). For each node in the
AT, a prediction rule is generated based on the examples
in the node (Section 4.4). In the prediction phase, the new
event is matched to a node in the AT, and the associated
rule is applied on it to produce the effect event.

4.1 Problem Definition

Let Ev be the universe of all possible events. We define
a prediction function f : 2F¥ — 25¥ that maps from a set
of events to a set of future events (i.e., f(e).t > e.t). In this
work, we focus on a subclass of this problem — functions of
the form g : Ev — Ev. Our solution is based on learning
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this function from examples. Assume there is a causality
function g unknown to us. Assume we are given a set of
examples E = {{e1,g(e1)),...,{en,g(exn))}, our goal is to
produce a hypothesis § which is a good approximation of g.

4.2 Generalizing Over Objects and Actions

Our goal is to develop a learning algorithm that auto-
matically induces a causality function based on examples of
causality pairs. The inferred casualty function should be
able to make its prediction for the given event, even if it was
never observed before. For example, given the training ex-
amples (earthquake in Turkey, destruction) and (earthquake
in Australia, destruction), and a current new event of “earth-
quake in Japan”, a reasonable prediction would be “destruc-
tion”. To be able to handle such predictions, we must endow
our learning algorithm with generalization capacity. For ex-
ample, in the above scenario, the algorithm needs the ability
to generalize Australia and Turkey to countries, and to infer
that earthquakes in countries might cause destruction. This
type of inference and the knowledge that Japan is also a
country enables the algorithm to predict the effects of new
events based on patterns in the past.

To generalize over a set of examples, each consisting of a
pair of events, we perform generalization over the compo-
nents of these events. There are two types of such compo-
nents — objects and actions.

To generalize over objects, we assume the availability of a
semantic network G, = (V, E), where the nodes V = O are
the objects in our universe, and the labels on the edges are
relations such as isA, partOf and CapitalOf. In this work,
we consider one of the largest semantic network available,
the LinkedData ontology [4], which we describe in detail in
Section 5.

We define two objects to be similar if they relate to a third
object in the same way. This relation can be a label or a
sequence of labels in the semantic network. For example,
Paris and London will be considered similar because both
their nodes connect by the path Capital=of, Inzcontinent
the node Europe. More formally:

DEFINITION 1. Let a,b € V. A sequence of labels L =
li,...,lk is a generalization path of a,b, denoted by Gen-
Path(a,b), if there exist two paths in G, (a,v1,l1),. ..
and (byw1,l1), ... (Wi, We+1,1k), S-t. Vb1 = Wht1-

(Uk, Vk+1, lk)

During generalization of the events over-generalization should

be avoided — e.g., given two similar events, one occurring in

Paris and one in London we wish to produce the general-
Capital—of In—continent

ization “city in Europe” ( Europe)
rather than the most abstract generalization “city in a con-

. Capital—of In—continent IsA .
tinent” ( =22 Continent). That is,

the minimal generalization of the objects.

DEFINITION 2. The minimal generalization path, de-
noted by MGenPath(a,b), is defined as the shortest gener-
alization path. We denote distgen(a,b) as the length of the
MGenPath(a,b).

Path-based semantic distances, as the one above, were
shown to be successful in many NLP applications. For ex-
ample, a similiar distance was used to measure semantic
relatedness of two words as a function of the length of the
shortest path in a taxonomy (such as Wordnet or Wikipedia)
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Procedure MINIMAL GENERALIZATION PATH(G)
(1) Q < new Queue
(2) Foreach {(a,c,!),(b,c,1) € E(G)]

a,b,c € V(AT),l € Lables}
Mgen(a, b) Gen =c
Mgen(a,b).Pred =1
Mgen(a,b).Expanded = false
Q enqueu((a b))

1) (a,b) + Q.dequeu()
2) If Mgen(a,b). Expanded # true:
Mgen(a,b). Expanded = true
(3.4) Foreach {(z,a,l),(y,b,l) € E(AT)]
x,y € V(AT),l € Lables}
(3.4.1) Mgen(z,y).Gen = Mgen(a,b).Gen
(3.4.2) Mgen(z,y).Pred = Mgen(a,b).Pred||l
(3.4.3) Mgen(z,y).Fxpanded = false
(z,

(3.4.4) Q. enqueu( Y))
(4)Return Mgen

Figure 1: Procedure for calculating the minimal Gener-
alization path for all object pairs

connecting the two nodes representing the words [31, 37].
We build on this metric, and expand it to handle events,
that are structured and can contain several objects from
different ontologies.

To efficiently produce M GenPath, we designed an algo-
rithm (described in Figure 1), based on dynamic program-
ming, that computes the M GenPath for all object pairs in
G. At stage 1 a queue that will hold all nodes with common
generalization is initialized. At stage 2, the algorithm identi-
fies all nodes (a, b) that have a common node (c) connecting
to them via the same type of edge (). ¢ can be thought of
as a generalization of a and b. The M gen structure maps a
pair of nodes to their generalization (M gen.Gen) and their
generalization path (M Gen.Pred). At stage 3, in a dynamic
programming manner, the algorithm iterates over all nodes
(a,b) in Mgen, for which we found a minimal generalization
in previous iterations, and finds two nodes — one (x) con-
necting to a and one (y) connecting to b via the same type
of edge | (stage 3.4). Thus, the minimal generalization of x
and y is the minimal generalization of a and b, and the path
is the M GenPath of a, b with the addition of the edge type [.
This update is performed in stages 3.4.1-3.4.4. Eventually,
when no more nodes with minimal generalization can be ex-
panded (i.e., cannot find two nodes that connect to them via
the same edge type), the algorithm stops and return Mgen
(stage 4).

We also define a distance between actions using an ontol-
ogy Gy, similarly to the way we defined distance between ob-
jects. Specifically, we use the VerbNet [17] ontology, which
is one of the largest English verb lexicon. It has mapping
to many other online resources, such as Wordnet [30]. The
ontology is hierarchical and is based on a classification of
the verbs to the Levin classes [15]. Using this ontology we
describe the connections between verbs. Figure 6 shows a
node in this ontology that generalizes the actions “hit” and
“kick”.



WWW 2012 — Session: Web Mining

4.3 Generalizing Events

In order to provide significant support for generalization,
we wish to find similar events that can be generalized to a
single abstract event. In our example, we wish to infer that
both (earthquake in Turkey, destruction) and (earthquake
in Australia, destruction) are examples of the same group of
events. Therefore, we wish to cluster the events in such a
way that events, that have both similar causes and similar
effects, will be clustered together. As in all clustering meth-
ods, a distance measure between the classification objects
(in our case, the events) should be defined. . ‘

Let e; = (P*,0%,...,04,t") and e; = (P?,0},...,0},t9)
be two events. In the previous subsection we defined a dis-
tance function between objects (and between actions). Here,
we define the similarity of two events e; and e; to be the sum
of distances between their objects and actions:

4
SIM(ei,ej) = distg?, (P', P) + Y distge, (03, 01) (1)

k=1

where, distS,,, is the distance function distgen in the graph
G.

Likewise, a similarity between two pairs of cause-effect
events (c;, e;) and (cj, e;) is defined as:

SIM(<CZ‘,6¢>, <Cj,6j>) = SIM(CZ',C]') + SIM(ei,ej) (2)

Using the similarity measurement suggested above, the
clustering process can be thought of as a grouping of the
training examples in such a way that there is a low variance
in their effects (similar to information gain methods where
examples are clustered by their class) and have a high sim-
ilarity in their cause. We use the HAC hierarchical cluster-
ing algorithm [11] as our clustering method. The algorithm
starts by joining the closest event pairs together into a clus-
ter, and keeps repeating the process by joining the closest
two clusters together until all elements are linked together
into a hierarchical graph of events which we call abstraction
tree (AT).

During the prediction phase, the input cause event will
be matched to one of the created clusters. To allow this,
we assign to each node in AT a representative cause event,
that is the event closest to the centroid of the node’s cause
events.

4.4 Causality Prediction Rule Generation

The last phase of the learning is the creation of rules that
will allow us, given a cause event, to generate the predicted
event. As the input cause event is matched against the node
centroid, naively we could have returned the effect event of
the matched centroid. This, however, would not provide us
with the desired result. Assume an event e;="Earthquake
hits Haiti“ occurred today, which is matched to a node rep-
resented by the centroid: “Earthquake hits Turkey”, whose
effect is "Red Cross help sent to Ankara“. Obviously, pre-
dicting that Red Cross help will be sent to Ankara because
of an earthquake in Haiti is not reasonable. We would like
to be able to abstract the relation between the past cause
and past effect and learn a predicate clause that connects
them, e.g. for "Earthquake hits [Country Namel* yield "Red
Cross help sent to [Capital of Country]“. During predic-
tion, such a clause will be applied to the present input event
e; producing its effect with regard to e;. In our example,
the logical predicate clause would be CapitalOf, as Capi-
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Procedure FINDPATH(cur Entity, goal Entity, depth)
If curEntity = goal Entity Return ()
Else
If depth =0 Return NULL
Else
Foreach relation € out Edges(cur Entity)
solution < FINDPATH(relation(cur Entity),
goal Entity, depth — 1)
If solution # NULL
Foreach existingSolution € Solutions :
Return Solutions |
(existingSolution||relation||solution)
Return Solutions

Procedure LEARNPREDICATECLAUSE((P®, Of, ..., 0%, t%),
<PE7 Of7 et OZ? te>7 depth)
Foreach Of € O°, O € O°,k € {1...depth}
Return LEARN PREDICATE CLAUSE INNER(OY, O5, k)

Figure 2: Procedure for inferring paths between two
events in the causality graph

talOf(Turkey)= Ankara. When applied on the current event
ei: CapitalOf(Haiti) = Port-au-Prince, the output will now
be "Red Cross help sent to Port-au-Prince”. Notice that
the application of the clauses can only be applied on certain
types of objects — in our case, countries. The clauses can be
of any length, e.g., the pair (“suspect arrested in Brooklyn”,
“Bloomberg declares emergency”) produces the clause
Mayor(BoroughOf(z)), as Brooklyn is a borough of New
York, whose mayor is Bloomberg.

We will now show how to learn such clauses for each node
in the AT graph. Recall that the semantic network graph
Go is an edge-labeled graph, where each edge is a triplet
(v1,v2,1), where [ is a predicate (e.g. “CapitalOf”). The
rule-learning procedure is divided to two main steps: First,
we find an undirected path p; of length at most k in Go
between any object of the cause event to any object of the
effect event. Note that we do not necessarily look for paths
between two objects in the same role. In the above exam-
ple, we found a path between the location of the cause event
(Brooklyn) to the actor of the effect event (Bloomberg). Sec-
ond, we construct a clause using the labels of the path p; as
the predicates. We call this the predicate projection of size
k, pred = l1,...,l; from an event e; to an event e;. Dur-
ing prediction, the projections will be applied to the new
event ¢ = (P*,0y,...,04,t) by finding an undirected path
in Go from O; with the sequence of labels of pred. As k is
unknown, the algorithm, for each training example (ct, e:)
in a node in AT, finds all possible predicate paths with in-
creasing sizes of k from the objects of ¢; to the objects of e;
in the Go graph. Each such path is weighted by the num-
ber of times it occurred in the node. The full procedure of
predicate generation is described in Figure 2. The function
LearnPredicateClause calls the inner function FindPath
for different k sizes and different objects from the given cause
and effect events. FindPath is a recursive function trying to
find in a graph a path of length k& between the two objects.
It returns the labels of such path if found.
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Procedure PROPAGATION(e = (P?, Oy, ..
(1) Candidates + {}
(2) Q < new Queue
(3) Q.enqueu(G.root)
(4) While Q # 0:
(4.1) cur + Q.dequeu()
(4.2) Foreach edge € cur.OutEdges:
If SIM (e, edge.Source) > SIM (e, edge.Destination):
Candidates < Candidates|J
{(edge.Source, SIM (e, edge.Source))}

., 04,t))

Else :
Q.enqueu(edge.Destination)
(5) Return Candidates

Figure 3: Procedure for locating candidates for pre-
diction

4.5 Prediction

Given a trained model g, it can be applied to a new event
e= (P 01,...,04,t) and to output its effect. The process
is divided into two main steps — propagation of the event
in the AT retrieving all similar nodes that match the new
event, and then the application of the node rule on the event
to produce the effect of the event.

Given a new event, Pundit traverses the AT starting from
the root. For each node in the search frontier, the algorithm
computes the similarity (SIM/(e;,e;)) of the input event to
the centroid of each of the children on this node, and ex-
pands those children with better similarity than their par-
ent. At the end, the algorithm returns the set of all nodes
in the search frontier, sorted by their similarity to the in-
put event. Intuitively, we try finding the nodes which are
the least general but still similar to the new event. The full
algorithm is illustrated in Figure 3. The algorithm saves a
set of possible matched results (Candidates), and a queue
holding the search frontier (Q). In stage 4, the algorithm
traverses the graph. In stage 4.2, for each edge, the algo-
rithm tests whether the similarity of the new event e to the
parent node (edge.Source) is higher than to the child node
(edge.Destination). If the test succeeds, the parent node,
with its similarity score, is added to the possible results. Af-
ter all edges are exposed, the algorithm returns the possible
results in stage 5. A visualization of the process can be seen
in Figure 4.

For each node retrieved in the previous stage, the node
predicate projection, pred, is applied to the new event e =
(P%,01,...,04,t) by finding an undirected path in Go from
O; with the labels of pred. This rule generates a possible
effect event based on the retrieved node.

The projection results are all the objects in the vertex
reached. Formally, pred can be applied if
H‘/O : O g Vv()7 HVl “ee Vk : (‘/0, %,ll), e (kah Vk,lk) S
Edges(Go). The projection results are all the objects o €
V. The projections results of all the nodes, are weighted by
the similarity of the target cause to the node MGen (for tie
breaking).

S. CAUSALITY MINING PROCESS: IMPLE-

MENTATION DETAILS

In the previous section we present a high-level algorithm
that requires training examples 7', knowledge about entities
Go, and events’ action classes P. One of the main challenges
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“Baghdad
bombing”
“military”
Q 0.2 “military
. communication”
“bombing”
0.7 Q 03
“bombing in bombing in AN

0.65_worship area” 0.2

city” d’s
N\ AN AN y,
/‘\\ /)\\ /—/\\ /)\‘ /—/\‘ /;\\
1 1
0.75 Q\\ S N A N A N A

“bombing in Kabul”

Figure 4: An event of a bombing in Baghdad is re-
ceived as input. The system searches for the least
general cause event it has observed in the past. In
our case it is a generalized cluster: ”bombing in
city”. The rule at this node now will be applied
on Baghdad bombing to generate the prediction.

of this work was to build a scalable system to obtain those
requirements.

We present a system that mines news sources to extract
events, constructs their canonical semantic model, and builds
a causality graph on top of those events. The system crawled,
for more than 4 months, several dynamic information sources.
The largest information source was the New-York-Times
archive, on which optical character recognition (OCR) was
performed. The overall gathered data spans more than 150
consecutive years (1851 — 2009).

For generalization of the objects, the system automati-
cally reads web content and extracts world knowledge. The
knowledge was mined from structured and semi-structured
publicly available information repository. The generation of
the causality graph was distributed over 20 machines, using
a Map-Reduce framework. This process efficiently unites
different sources, extracts events, and disambiguates enti-
ties. The resulting causality graph is composed of over 300
million entity nodes, one billion static edges (connecting the
different objects encountered in the events) and over 7 mil-
lion causality edges (connecting events that were found by
Pundit to cause each other). Each rule in the AT was gen-
erated based on an average of 3 instances with standard
deviation of 2.

On top of the causality graph, a search and indexing in-
frastructure was built to enable search over millions of docu-
ments. This index allows a fast walk on the graph of events,
enabling efficient inference capabilities during the reusing
phase of the algorithm.

5.1 World Knowledge Mining

In this work we leverage the knowledge from several well-
known ontologies to build the entity graph G,. Our graph
is composed of concepts from Wikipedia, ConceptNet [26],
WordNet [30], Yago [38], and OpenCyc. The relations be-
tween the concepts (e.g., CapitalOf) are obtained from the
LinkedData cloud project [4], where concepts are interlinked
using human editors. The billion labeled edges of the graph
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G, are the predicates of those ontologies. Our system creates
the entity graph by collecting the above content, processing
feeds, and processing formatted data sets (e.g. Wikipedia).
Our crawler then archives those documents in raw format,
and transforms them into RDF format, using the interlink-
ing information of LinkedData. We use SPARQL queries as
a way of searching over the knowledge graph we create.

5.2 Causality Events Mining and Extraction

Our supervised learning algorithm requires many learn-
ing examples to be able to generalize well. As the amount
of temporal data is extremely large, spanning over millions
of articles, the goal of getting human annotated examples
becomes impossible. We therefore provide an automatic
procedure to extract labeled examples for learning causal-
ity from dynamic content. Specifically in this work, we
used the New-York-Times archives for the years 1851 —2009,
WikiNews and BBC — over 14 million articles in total (see
data statistics in Table 1). As we perform analysis on news
titles alone, which are quite structured, the accuracy of this
stage (performed on a representative subset of the data) is
78% (see Section 6.2.2). The system mines unstructured
natural language text found in those titles, and searches for
causal grammatical patterns. We construct those patterns
using causality connectors as described in [40, 23]. Those
connectors are divided to three groups:

1. Causal Connectives: in this set of connectors we used
the words: because, as, and after as the connectors.

2. Causal prepositions: in this set of connectors we used
the words: due to, and because of.

3. Periphrastic causative verbs: in this set of connectors
we used the words: cause, and lead to.

We constructed a set of rules for extracting a causality pair.
Each rule is structured as: (Pattern, Constraint, Priority),
where Pattern is a regular expression containing a causality
connector, Constraint is a syntactic constraint on the sen-
tence on which the pattern can be applied, and Priority is
the priority of the rule if several rules can be matched. For
example, for the causality connector “after”; the pattern “Af-
ter [sentencel], [sentence2]” is used, with the constraint that
[sentencel] cannot start with a number. This pattern can
match the sentence “after Afghan vote, complaints of fraud
surface” but will not match the sentence “after 10 years in
lansing, state lawmaker Tom George returns”. An additional
pattern example is “[sentencel] as [sentence2]” with the con-
straint of [sentence2] having a verb. Using the constraint,
the pattern can match the sentence “Nokia to cut jobs as it
tries to catch up to rivals” is matched, but not the sentence
“civil rights photographer unmasked as informer”. The re-
sult of a rule application is a pair of sentences — one tagged
as a cause, and one tagged as an effect.

Given a natural-language sentence (extracted form an ar-
ticle title), representing an event (either during learning
or prediction), the following procedure transforms it into
a structured event:

1. Root forms of inflected words are extracted using a
morphological analyzer derived from WordNet [30] stem-
mer. For example, in the article title from 10/02,/2010:
“U.S. attacks kill 17 militants in Pakistan”, the words
“attacks”, “killed” and “militants” are transformed to
“attack”, “kill” and “militant” respectively.
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Data Source Number of Titles Extracted
New-York-Times | 14,279,387

BBC 120,445

WikiNews 25,808

Table 1: Data Summary.

2. Part-Of-Speech tagging [28] is performed, and the verb
is identified. The class of the verb is identified us-
ing the VerbNet vocabulary [17], e.g., kill belongs to
P =murder class.

3. A syntactic template matching the verb is applied to
extract the semantic relations and thus the roles of the
words (see example in Figure 6). Those templates are
based on VerbNet, which supplies for each verb class
a set of syntactic templates. These templates match
the syntax to the thematic roles of the entities in the
sentence. We match the templates even if they are not
continuous in the sentence tree. This allows the match
of a sentence even where there is an auxiliary verb be-
tween the subject and the main transitive verb. In our
example, the template is “NP1 V NP2” which trans-
forms NP1 to “Agent”, and NP2 to “Patient”. There-
fore, we match U.S. attacks to be the Actor, and the
militant to be the Patient . If no template can be
matched, the sentence is transformed into a typed-
dependency graph of grammatical relations [28]. In the
example, U.S. attacks is identified as the subject of the
sentence (candidate for Actor), militants as the object
(candidate for Patient), and Pakistan as the preposi-
tion (candidate for Location or Instrument, based on
heuristics, e.g., locations lexicons). Using this analysis,
we identify that the Location is Pakistan.

4. Each word in O; is mapped to a Wikipedia-based con-
cept. If a word matches more than one concept, we
perform disambiguation by computing the cosine sim-
ilarity between the body of the news article and the
body of the Wikipedia article associated with the con-
cept: e.g., U.S was matched to several concepts, such
as: United States, University of Salford, and Us (Brother
Ali album). The most similar by content was United
States Wikipedia concept.

5. The time of the event ¢ is the time of the publication
of the article in the news, e.g., t =10/02/2010.

In our example, the final result is the event e = (Murder-
Class, United States Of America, Militant, NULL ,Pakistan,
10/02/2010) . The final result of this stage is a causality
graph composed of causality event pairs. Those events are
structured as described in Section 3. We illustrate such a
pair in Figure 5.

6. EMPIRICAL EVALUATION

A variety of experiments were conducted to test the per-
formance and behavior of our algorithm.

6.1 Methodology

In this section we outline the methodology we used for our
experiments. We provide two types of experiments — one
evaluating the precision of the causality graph constructed,
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“5 Afghan troops were killed”

Class Hit-18.1

Roles and Restrictions:
Agent[int control] Patient[concrete] Instrument|concrete]

Members: bang, bash, hit, kick, ...

Frames:

Example Syntax Semantics
cause(Agent, E)
manner(during(E),
directedmotion, Agent)
lcontact(during(E),

Paula hit the ball | Agent V Patient Agent, Patient)

manner(end(E),forceful,
Agent)

contact(end(E), Agent,

Patient)

Figure 6: VerbNet Template.

and the other evaluating the prediction accuracy of our sys-
tem.

6.1.1 Prediction Evaluation

We implemented the algorithms described above and eval-

uated their performance. The prediction algorithm was trained

using news articles from the period 1851 — 2009. The web
resources snapshots mentioned in Section 5 dated until 2009.
The evaluation is performed on separate data — Wikinews
articles from the year 2010. We refer to this data as the test
data. As in many supervised learning problems the evalua-
tion is performed using human-tagged data. We performed
two evaluation procedure — one comparing the system abil-
ity to predict (accuracy of prediction) and the plausibility
of the predictions (to ensure that the predictions are not
trivial and related to the cause event). The plausibility
evaluation procedure is divided to the following steps:

1. Event identification — our algorithm assumes that the
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input to the predictor A is an event. To find news titles
that represent an event, we randomly sample n head-
lines from the test data. For each headline a human is
requested to decide whether the headline is an event
which can cause other events. We denote the set of
headlines labeled as event as . We again randomly
sample k titles from E. We denote this group as C.

2. Algorithm event prediction — on each event title ¢; €
C, Pundit performs event extraction from the headline,
and produces an event ej with the highest score of
being caused by the event represented by c;. The result
of this stage are the pairs: {(c;,ef)|c; € C}.

. Human event prediction — a human is asked what the
event ¢; € C might cause. The instructions given to
the human were to read the given event and to provide
their best understanding on what the possible event it
can cause. They were allowed to use any resource and
were not limited by time. Human result is denoted as
el'. The human is requested to provide the answer in a
structured manner (as our algorithm produces). The
result of this stage are the pairs: {(c;, el)|c; € CY.

. Human evaluation of the results — Present m people
with a triplet (c;,el, e). We ask to evaluate the pre-
cision of the pair: (c;,e?) and the precision of (¢, e$),
on a scale of 0-4 (0 is a highly impossible prediction
and 4 is a highly possible prediction).

The accuracy evaluation is similar to the evaluation above,
but in the third step we checked in the news (and other web
resources) up to a year after the cause event, whether the
predicted events appeared in the news. Raters were asked
to supply confidence for their evaluations (as some events,
like funerals, are not always reported in the news). We con-
sidered only confident and highly confident results in our
evaluations.

All Human evaluation was conducted using Amazon Me-
chanical Turk (MTurk). We filtered the raters using a captcha
and filtered out outliers. We performed the above mentioned
experiments, with the values n = 1500, k = 50, m = 10.

6.1.2 Extraction Evaluation

As part of the analysis experiments of our algorithm, we
provide evaluation of the information extraction techniques
described in this work and used to train the system. Specif-
ically, we provide two types of evaluation: event extraction
evaluation and causality extraction evaluation. Event Ex-
traction evaluation examines how well the event was ex-
tracted. Users were asked to evaluate on a scale of 1-5 how
well the Action, Actor, Object, Instrument, and Time were
extracted, given the original news title. We performed this
evaluation on a randomly sampled 1000 news title, for each
title we assigned 5 MTurkers. We filtered the raters using
a captcha and filtered out outliers. Similarly, Causality
Extraction evaluation evaluates the plausibility of the
causality relation between two textual events. This eval-
uation indicates the precision of the causality templates we
have crafted. MTurkers were shown two sentences the sys-
tem believed had a cause and effect relation, and they were
asked to evaluate the plausibility of this relation on a scale
of 1-5. We performed evaluation over 500 randomly sampled
pairs, for each we assigned 5 MTurkers.
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Highly Confident
Confident
Pundit 58% 49%
Humans | 40% 38%
Table 2: Prediction accuracy for both human and

algorithm predictions.

[0-1) | [1-2) | [2-3) | [3-4] | Average Average
Ranking Accuracy

0 2 19 29 3.08 £0.19 | 7T7%

0 3 24 23 2.86 +0.18 | 72%

Table 3: Plausibility results. The histogram of the
rankings of the users for both human and algorithm
predictions.

6.2 Results

In this section we provide the results for the two types
of evaluation: the prediction evaluation (both plausibility
and prediction evaluation) and the evaluation of the training
data we provide as input to the system.

6.2.1 Prediction Evaluation

Accuracy evaluation results are reported in Table 2.
Although the performance of Pundit was higher, a paired
t-test on the k paired scores yielded a non statistically sig-
nificant p-value (0.08). The results provide some evidence
that the ability of the algorithm to predict future events is
similar to that of the human ability to predict.

The plausibility evaluation yielded that Pundit’s av-
erage prediction precision is 3.08/4 (3 is a “possible pre-
diction”), and the human prediction average precision is
2.86 + —0.18/4. For each event, we average the results of
the m rankers, producing an averaged score for the algo-
rithm performance on the event, and an averaged score for
the human prediction (see Table 3). We performed a paired
t-test on the k paired scores. The advantage of the algo-
rithm over the humans was found to be statistically signif-
icant with p < 0.05. We can conclude now that the ability
of the algorithm to produce plausible future events is better
than the human ability to predict.

6.2.2 Extraction Evaluation

We have performed the experiments described in the method-

ology section to provide insights on the training data qual-
ity. The analysis of the quality indicated that the averaged
precision of the extracted causality events is 3.11 out of
4 (78%), where 3 means a possible causality relation, and 4
means a highly possible causality relation. For comparison,
other temporal rule extraction systems [8] reach precision
of about 60%. For example, the casuality pair: “pulling
over a car” — 7”2 New Jersey police officers shot”, got a very
high casuality precision score, as this is a plausible cause-
effect relation. Although most causality extractions were
with very high quality, the main reason for errors was that
some events, though reported in the news and match the
templates we have described, are reported as surprise to
common sense casuality knowledge. For example, the fol-
lowing relation: ”event the game heats up” — ”the Yanks
stay cool”, was rated as a low casuality relation, and does
not represent a plausible causality relation.
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Action | Actor | Object | Instrument | Location | Time
93% 74% 76% 79% 79% 100%
Table 4: Event extraction precision based on the
causality patterns.

Actor Object Instrument | Location

Matching | Matching | Matching Matching

84% 83% 79% 89%

Table 5: Entity matching to ontology precision.

For every extracted causality event, we have calculated
the precision of the semantic extraction of the event struc-
ture (Table 4). We conclude that the event extraction in this
domain with the templates we have used has quite a high
precision. For comparison, other works [7] for extracting en-
tities for different types of relations reach 42—53% precision.
The main reason for such high precision is the use of domain-
specific templates for high precision (with lower recall). We
performed additional experiments to evaluate the matching
of every entity from the above to the world-knowledge ontol-
ogy based on semantic similarity. The results as summarized
in Table 5.

The recall of the entire process is 10%. Our goal in
general was to reach a high precision set of rules, from which
generalization can be performed. We do not claim to have
reached the highest performance with regard to causality
extraction, but merely present a modular methodology that
later studies can build upon.

\7\276 share the entire dataset of the extracted events on-
line”.

6.3 Discussion

We present in this section qualitative analysis of the re-
sults to have a better understanding of the algorithm strength
and weaknesses. Given the event “Louisiana flood” the algo-
rithm predicted that [number] people will flee. The predic-
tion was based on the following past news articles: Residents
of Florida flee storm and Hiltons; 150000 flee as hurricane
nears north Carolina coast; a million flee as huge storm hits
Texas coast; Thousands in Texas flee hurricane Ike; thou-
sands flee as storm whips coast of Florida; at least 1000 flee
flooding in Florida. The past events were generalized to the
causality pair of “[Weather hazards] at [States of the South-
ern United States]” cause “[number] of people to flee”. Dur-
ing the prediction, the event “Louisiana flood” was found
most similar to the above generalized causality pair. The
reusing classification function, outputted that [number| peo-
ple will flee.

As another example, given the event “6.1 magnitude af-
tershock earthquake hits Haiti”, it outputted the following
predictions: “[number] people will be dead”, “[number| peo-
ple will be missing”, “[number] magnitude aftershock earth-
quake will strike island near Haiti” and “earthquake will turn
to United States Virgin Islands”. While the first 3 predic-
tions seem very reasonable, the fourth one is problematic.
The rule the system learnt in this case is — natural disas-
ters that hit countries next to a shore tend to affect near by
countries. In our case it predicted that the earthquake will
affect United States Virgin Islands, which are geographically

http://www.technion.ac.il/ kirar/Datasets.html
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Volcano erupts in Democratic Re-
public of Congo

7.0 magnitude earthquake strikes
Haitian coast

2 Palestinians reportedly shot dead
by Israeli troops

Professor of Tehran University
killed in bombing

Alleged drug kingpin arrested in
Mexico

UK bans Islamist group

lava beds

leaders

in the UK
China overtakes Germany as

world’s biggest exporter

Event Human-predicted event Pundit-predicted event
Al-Qaida demands hostage ex- | Al-Qaida exchanges hostage A country will refuse the demand
change

Scientists in Republic of Congo investigate
Tsunami in Haiti affects coast

Israeli citizens protest against Palestinian
Tehran students remember slain professor
in memorial service
Mafia kills people with guns in town

Islamist group would adopt another name

German officials suspend tariffs

Thousands of people flee from

Congo

Tsunami-warning is issued
War will be waged

Professor funeral will be held
Kingpin will be sent to prison

Group will grow

Wheat price will fall

Table 6: Human and algorithm predictions for events.

close to Haiti. However, the prediction “earthquake will turn
to United States Virgin Islands” is not very realistic as an
earthquake cannot change its course. It was created based
on a match with a past example of a tornado hitting a coun-
try on a coast. The reason for that is the sparsity of the
training. Both are natural disasters, and there were no neg-
ative examples or enough positive examples to support this
distinction. However, we still find this example interesting,
as it issues a prediction using spatial locality (United States
Virgin Islands are [near] Haiti). Another example of the
same problem is the prediction: ( lightning kills 5 people,
lightening will be arrested), which was predicted based on
training examples in which people who killed other people
got arrested. More examples, out of the 50 in the test, can
be seen in Table 6.

7. CONCLUSIONS

Many works have been done in information extraction and
ontology building. In this work, we discuss how to leverage
such knowledge into a large scale Al problem of events pre-
diction. We present a system that is trained to predict events
that might happen in the future, using a causing event as
input. Each event is represented as a tuple of one predi-
cate and 4 general semantic roles. The event pairs used for
training were extracted automatically from news titles using
simple syntactic patterns. Generalization to unseen events is
achieved by: 1) creating an abstraction tree (AT) that con-
tains entities from observed events together with their sub-
suming categories extracted from available online ontologies;
2) finding predicate paths connecting entities from causing
events to entities in the caused events, where the paths are
again extracted from available ontologies.

We discuss the many challenges of building such a system
— starting from obtaining large enough dataset, the represen-
tation of the knowledge, and the inference algorithms needed
for such a task. We perform large-scale mining and apply
natural language techniques to transform the raw data of
over 150 years of history archives into a structured represen-
tation of events, using a mined web-based object hierarchy
and action classes. This shows the scalability of the pro-
posed method, which is an important factor for any method
that requires large amounts of data to work well. We also
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present that numerous resources, built by different people
for different purposes (e.g. the different ontologies), can in
fact be merged via a concept-graph to build a system that
can work well in practice.

We perform large-scale learning over the large data corpus
and present novel inference techniques. We consider both
rule extraction and generalization. We propose novel meth-
ods for rule generalization using existing ontologies, which
we believe can be useful for many other related tasks.

For future directions, we wish to investigate how to decay
information about events in the system, as causality learnt
in 1851 might be less relevant to the prediction in 2010.
However, many common sense knowledge can still be used
even if happened long time ago. Additional direction might
include better event extraction, e.g., as proposed by Do et
al. [10].

Our experimental evaluation showed that the predictions
of the Pundit algorithm are at least as good as those of
humans. We believe that our work is one of the first to
harness the vast amount of information available on the web
to perform prediction that is general purpose, knowledge
based, and human like.
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