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ABSTRACT
Did celebrity last longer in 1929, 1992 or 2009? We in-
vestigate the phenomenon of fame by mining a collection
of news articles that spans the twentieth century, and also
perform a side study on a collection of blog posts from the
last 10 years. By analyzing mentions of personal names, we
measure each person’s time in the spotlight, and watch the
distribution change from a century ago to a year ago. We
expected to find a trend of decreasing durations of fame as
news cycles accelerated and attention spans became shorter.
Instead, we find a remarkable consistency through most of
the period we study. Through a century of rapid technologi-
cal and societal change, through the appearance of Twitter,
communication satellites and the Internet, we do not observe
a significant change in typical duration of celebrity. We also
study the most famous of the famous, and find different re-
sults depending on our method for measuring duration of
fame. With a method that may be thought of as measuring
a spike of attention around a single narrow news story, we
see the same result as before: stories last as long now as they
did in 1930. A second method, which may be thought of as
measuring the duration of public interest in a person, indi-
cates that famous people’s presence in the news is becoming
longer rather than shorter, an effect most likely driven by
the wider distribution and higher volume of media in mod-
ern times. Similar studies have been done with much shorter
timescales specifically in the context of information spread-
ing on Twitter and similar social networking site. However,
to the best of our knowledge, this is the first massive scale
study of this nature that spans over a century of archived
data, thereby allowing us to track changes across decades.
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1. INTRODUCTION
Beginning in the 19th century, long-distance communica-

tion transitioned from foot to telegraph on land, and from
sail to steam to cable by sea. Each new form of technology
began with a limited number of dedicated routes, then ex-
panded to reach a large fraction of the accessible audience,
eventually resulting in near-complete deployment of digital
electronic communication. Each transition represented an
opportunity for news to travel faster, break more uniformly,
and reach a broad audience closer to its time of inception.

Even today, the increasing speed of the news cycle is a
common theme in discussions of the societal implications of
technology. Stories break faster, are covered in less detail,
and news sources quickly move on to other topics. Online
and cable outlets aggressively search for novelty in order to
keep eyeballs glued to screens. Popular non-fiction dedicates
significant coverage to this trend, which by 2007 prompted
a satirical website entitled The Onion to offer the following
commentary on cable news provider CNN’s offerings: “CNN
is widely credited with initiating the acceleration of the mod-
ern news cycle with the fall 2006 debut of its spin-off channel
CNN:24, which provides a breaking news story, an update
on that story, and a news recap all within 24 seconds.”

With this speed-up of the news cycle comes an associated
concern that, whether or not causality is at play, attention
spans are shorter, and consumers are able to focus for in-
creasingly brief periods on a particular news subject. Stories
that might previously have occupied several days of popu-
lar attention might emerge, run their course, and vanish in
a single day. This theory is consistent with a suggestion
by Herbert Simon [9] that as the world grows rich in infor-
mation, the attention necessary to process that information
becomes a scarce and valuable resource.

The speed of the news cycle is a difficult concept to pin
down. We focus our study on the most common object of
news: the individual. An individual’s fame on a particu-
lar day might be thought of as the frequency with which a
person reading the news at random would see their name.
From this idea we develop two notions of the duration of the
interval of discussion of an individual. The first is based on
falloff from a peak, and intends to capture the spike around
a narrow news story. The second looks for period of sus-
tained public interest in an individual, from the time the
public first notices that person’s existence until the public
loses interest and the name stops appearing in the news.
We study the interaction of these two notions of “duration
of fame” with the radical shifts in the news cycle we outline
above. For this purpose, we employ Google’s public news
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archive corpus, which contains over sixty million pages cov-
ering 250 years, and we perform what we believe to be the
first study of the dynamics of fame over such a time period.

Data within the archive is heterogeneous in nature, rang-
ing from directly captured digital content to optical charac-
ter recognition employed against microfilm representations
of old newspapers. The crawl is not complete, and we do
not have full information about which items are missing.
Rather than attempt topic detection and tracking in this
error-prone environment, we instead directly employ a rec-
ognizer for person names to all content within the corpus;
this approach is more robust, and more aligned with our
goal of studying fame of individuals.

Based on these different notions of periods of reference to
a particular person, we develop at each point in time a dis-
tribution over the duration of fame of different individuals.

Our expectation upon undertaking this study was that in
early periods, improvements to communication would cause
the distribution of duration of coverage of a particular per-
son to shrink to the left. Through the 20th century, we
hypothesized that the continued deployment of technology,
and the changes to modern journalism resulting from compe-
tition to offer more news faster, would result in the duration
of fame continuing to shrink over the course of the century
into the present day.
Summary of findings.

We did indeed observe effects through the early 20th cen-
tury in line with our hypothesis regarding communications.
However, from 1920 to 1990, after newspapers had stabilized
into roughly their current form, we saw a quite different pic-
ture. Over the course of a century, through a world war, a
global depression, a two order of magnitude growth in vol-
ume, and a technological curve moving from horse-drawn
carriages to satellite communication, we saw little change in
the distribution of story durations or the distribution of con-
tinuous public attention. A side study on a corpus consisting
entirely of blog posts over the last eight years from the Blog-
ger blog hosting organization, which has a radically different
focus from professional news media, shows once again the
same distribution. This distribution is heavy-tailed, with
power law exponent around -2.5.

We repeated our procedure after removing all but the most
famous of the famous names: in one experiment, we kept
names which were in the top 1000 in frequency for some
year, and in a second, we kept names which were in the top
0.1% for some year. In all cases, found that the more pop-
ular names tended to have longer periods of fame. When
we measured story durations, we saw the same thing as be-
fore: the distribution of durations of news stories for the
most-mentioned names did not change between 1920 and
1990. However, when instead looked at the duration of pub-
lic attention toward an individual, we found that the most
famous of the famous have found steadily longer and longer
durations in the news starting in 1920.

In the case of taking top 1000 names in each year, the
increasing could be explained as follows: as the corpus in-
creases in volume toward later years, a larger number of
names appear, representing more draws from the same un-
derlying distribution of fame durations. The quantiles of the
distribution of duration for the top 1000 elements will there-
fore grow over time as the corpus volume increases. On the
other hand, our experiment that took the top 0.1% of names
still showed in increasing trend, although with a smaller rate

Figure 1: The volume of news articles by date.

of increase. We therefore conclude that the increasing trend
is not completely caused by an increase in corpus volume.

To summarize, we find that the most popular figures in
today’s news stay in the limelight for longer than their coun-
terparts did in the past. At the same time, however, the
average person remains in the limelight for essentially the
same amount of time today as in the past, and the length
of individual news stories has not changed, either for the
average person or for the most popular.

2. WORKING WITH THE NEWS CORPUS
We perform our main study on a collection of the more

than 60 million news articles in the Google archive that
are both (1) in English, and (2) searchable and readable
by Google News users at no cost. In Section 6, we cross-
validate our observations against the corpus of public blog
posts on Blogger, which is described there.

The articles of the news corpus span a wide range of time,
with the relative daily volume of articles over the range of
the corpus shown in Figure 1. There are a handful of articles
from the late 18th century onward, and the article coverage
grows rapidly over the course of the 19th century. From the
last decade of the 19th century through the end of the corpus
(March 2011), there is consistently a very substantial volume
of articles per day, as well as a wide diversity of publications.
For the sake of statistical significance, our study focuses on
the years 1895–2011.

The news corpus contains a mix of modern articles ob-
tained from the publisher in the original digital form, as well
as historical articles scanned from archival microform and
OCRed, both by Google and by third parties. For scanned
articles, per-article metadata such as titles, issue dates, and
boundaries between articles are also derived algorithmically
from the OCRed data, rather than manually curated.

Our study design was driven by several features that we
discovered in this massive corpus. We list them here to ex-
plain our study design. Also, data mining for high-level be-
havioral patterns in a diachronous, heterogeneous, partially-
OCRed corpus of this scale is quite new, precedented on this
scale perhaps only by [8] (which brands this new area as
“culturomics”). But, with the rapid digitization of historical
data, we expect such work to boom in the near future. We
thus hope that the lessons we have learned about this corpus
will also be of independent interest to others examining this
corpus and other similar archive corpuses.

2.1 Corpus features, misfeatures, and missteps

2.1.1 News mentions as a unit of attention
Our 116-year study of the news corpus aims to extend

the rich literature studying topic attention in online social
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media like Twitter, typically over the span of the last 3–5
years. Needless to say, 100-year-old printed newspapers are
an imperfect proxy for the attention of individuals, which
has only recently become directly observable via online be-
havior. Implicit in the heart of our study is the assumption
that news articles are published to serve an audience, and
the media makes an effort, even if imperfect, to cater to
the audience’s information appetites. We coarsely approxi-
mate a unit of attention as one occurrence in a Google News
archive article, and we leave open a number of natural ex-
tensions to this work, such as weighting articles by historical
publication subscriber counts, or by size and position on the
printed page.

Due to the automated OCR process, not every “item” in
the corpus can be reasonably declared a news article. For
example, a single photo caption might be extracted as an
independent article, or a sequence of articles on the same
page might be misinterpreted as a single article. Rather than
weighting each of these corpus items equally when measuring
the attention paid to a name, we elected to count multiple
mentions of a name within an item separately, so that arti-
cles will tend to count more than captions, and there is no
harm in mistakenly grouping multiple articles as one.

We manually examined (A) a uniform sample of 50 ar-
ticles from the whole corpus (which, per Fig. 1, contains
overwhelmingly articles from the last decade), and (B) a
uniform sample of 50 articles from 1900–1925. We classified
each sample into:

• News articles: timely content, formatted as a stand-
alone “item”, published without external sponsorship,
for the benefit of part of the publication’s audience,

• News-like items: non-article text chunks where a name
mention can qualify as that person being “in the news”
— e.g. photo captions or inset quotes,

• Non-news: ads and paid content, sports scores, recipes,
news website comments miscategorized as news, etc.

The number of items of each type in the two samples are
given in the following table.

full corpus sample 1900–1925 sample
news articles 31 28

news-like items 3 2
non-news items 16 20

We expect that the similarity in these distributions should
result in minimal noise in the cross-temporal comparisons,
and leave to future work the task of automatically distin-
guishing real news stories from non-news.

2.1.2 Compensating for coverage
Even once we discard the more sparsely covered 18th and

19th centuries, there is still more than an order of magnitude
difference between article volume in 1895 and 2011. We
address these coverage differences by downsampling the data
down to the same number of articles for each month in this
range. We address the nuanced effects of this downsampling
on our methodology in Section 3.3.

2.1.3 Evolution of discourse and media — why names?
We set out originally to understand changes in the pub-

lic’s attention as measured by news story topics. There are a
myriad heuristics to define a computationally feasible model
of a “single topic” that can be thought to receive and lose
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Figure 2: Articles with recognized personal names per
decade

the public’s attention. But over the course of a century,
the changes in society, media formatting, subjects of public
discourse, writing styles, and even language itself are sub-
stantial enough that neither sophisticated statistical models
trained on plentiful, well-curated training data from modern
media nor simple generic approaches like word co-occurrence
in titles are guaranteed to work well. Very few patterns con-
nect articles from 1910 newspapers’ “social” sections (now all
but forgotten) about tea at Mrs. Smith’s, to 1930 articles
about the arrival of a trans-oceanic liner, to 2009 articles
about a viral Youtube video.

After trying out general proper noun phrases produced
inconclusively noisy results, we decided to focus on occur-
rences of personal names, detected in the text by a propri-
etary state-of-the-art statistical recognizer. Personal names
have a relatively stable presence in the media: even with
high OCR error rates in old microform, over 1/7th of the
articles even in the earliest decades since 1900 contain rec-
ognized personal names (see Figure 2).

But personal names are not without historical caveats, ei-
ther. A woman appearing in 2005 stories as “Jane Smith”
would be much more likely to be exclusively referenced as
“Mrs. Smith”, or even “Mrs. John Smith”, in 1915. Also,
the English-speaking world was much more Anglo-centric in
1900 than now, with much less diversity of names. An infor-
mal sample suggests that most names with non-trivial news
presence 100 years ago referred overwhelmingly to a single
bearer of that name for the duration of a particular news
topic, but many names are not unique when taken across the
duration of the whole corpus — for instance, “John Jacob
Astor”, appearing in the news heavily over several decades
(Fig. 3), in reference to a number of distinct relatives. On
account of both of these phenomena, among others, we aim
to focus on name appearance patterns that are most likely
to represent a single news story or contiguous span of public
attention involving that person, rather than trying to model
the full media “lifetime” of individuals, as we had considered
doing at the start of this project.

2.1.4 OCR errors in data and metadata
We empirically discovered another downfall of studying

long-term “media lifetimes” of individuals. In an early ex-
periment, we measured, for each personal name, the 10th
and 90th percentiles of the dates of that name’s occurrence
in the news. We then looked at the time interval between
10th and 90th percentiles, postulating that a large enough
fraction of names are unique among newsworthy individuals
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that the distribution of these inter-quantile gaps could be
a robust measure of media lifetime. After noticing a solid
fraction of the dataset showing inter-quantile gaps on the
scale of 10-30 years, we examined a heat map of gap dura-
tions, and discovered a regular pattern of gap durations at
exact-integer year offsets, which, other than for Santa Claus,
Guy Fawkes, and a few other clear exceptions, seemed an
improbable phenomenon.

This turned out to be an artifact of OCRed metadata.
In particular, the culprit was single-digit OCR errors in the
scanned article year. While year errors are relatively rare,
every long-tail name that occurred in fewer than 10 articles
(often within a day or two of each other), and had a mis-
OCRed error for one of those occurrences contributed prob-
ability mass to integral-number-of-years media lifetimes. As
extra evidence, the heat map had a distinct outlier segment
of high probability mass for inter-quantile range of exactly
20 years, for end dates ranging from 1980 to 1989 — the
digits 6 and 8 being particularly easy to mistake on blurry
microfilm. Note that short-term phenomena are relatively
safe from OCR date errors, thanks to the common English
convention of written-out month names, and to the low im-
pact of OCR errors in the day number.

OCR errors in the article text itself are ubiquitous. Conve-
niently, the edit distance between two recognizable personal
names is rarely very short, so by agreeing to discard any
name that occurs only once in the corpus, we are likely to
discard virtually all OCR errors as well, with no impact on
data on substantially newsworthy people. We should note
that OCR errors are noticeably more frequent on older mi-
crofilm, but the reasonable availability of recognizable per-
sonal names even in 100-year-old articles, per Fig. 2, sug-
gests that this problem is not dire. A manually-coded sam-
ple of 50 articles with recognized names from the first decade
of the 1900s showed only 8 out of 50 articles having incor-
rectly recognized names (including both OCR errors and
non-names mis-tagged as names).

2.1.5 Simultaneity and publishing cycles
There are also pitfalls with examining short timelines. In

the earliest decades we examine, telegraph was widely avail-
able to news publishers, but not fully ubiquitous, with rural
papers often reporting news “from the wire” several days af-
ter the event. An informal sample seems to suggest that
most news by 1900 propagated across the world on the scale
of a few days. Also, many publications in the corpus un-
til the last 20 years or so were either published exclusively
weekly or, in the case of Sunday newspaper issues, had sub-
stantially higher volume once a week, resulting in many oth-
erwise obscure names having multiple news mentions sepa-
rated by one week — a rather different phenomenon than a
person remaining in the daily news for a full week. On ac-
count of both of these, we generally disregard news patterns
that are shorter than a few days in our study design.

3. MEASURING FAME
We begin by producing a list of names for each article.

To do this, we extract short capitalized phrases from the
body text of each article, and keep phrases recognized by an
algorithm to be personal names.

For every name that appears in the input, we consider
that name’s timeline, which is the multiset of dates at which
that name appears, including multiple occurrences within

an article. We intend the timeline to approximate the fre-
quency with which a person browsing the news at random
on a given day would encounter that name. The accuracy
of this approximation will depend on the volume of news
articles available. In order to avoid the possibility that any
trends we detect are caused by variations in this accuracy
caused by variations in the volume of the corpus, we ran-
domly choose an approximately equal number of articles to
work with from each month. We describe and analyze this
process in Section 3.3.

In general, our method can be applied to any collection
of timelines. In Section 6, we apply it to names extracted
from blog posts.

3.1 Finding Periods of Fame
Once we have computed a timeline for each name that

appears in the corpus, we select a time during which we
consider that name to have had its period of fame, using one
of the two methods described below. In order to compare the
phenomenon of fame at different points in time, we consider
the joint distribution of two variables over the set of names:
the peak date and the duration of the name’s period of fame.
We try the following two methods to compute a peak date
and duration for each timeline.

• Spike method. This method intends to capture the
spike in public attention surrounding a particular news
story. We divide time into one-week intervals and con-
sider the name’s rate of occurrence in each interval.
The week with the highest rate is considered to be the
peak date, and the period extends backward and for-
ward in time as long as the rate does not drop below
one tenth its maximum rate. Yang and Leskovec [12]
used a similar method in their study of digital media,
using a time scale of hours where we use weeks.

• Continuity method. This method intends to mea-
sure the duration of public interest in a person. We
define a name’s period of popularity to be the longest
span of time within which there is no seven-day pe-
riod during which it is not mentioned. The peak date
falls halfway between the beginning and the end of the
period. (In Section 5, we will find that the durations
are short compared to the time span of the study, so
using any choice of peak date between the beginning
and end will produce a similar distribution.)

To demonstrate the distinction between these two meth-
ods, Figure 3 shows the occurrence timeline for Marilyn
Monroe. The “continuity method” picks out the bulk of
her fame — 1952-02-13 (“A”) through 1961-11-15 (“D”), by
which point her appearance in the news was reduced to a
fairly low background level. The “spike method” picks out
the intense spike in interest surrounding her death, yielding
the range 1962-7-18 (“E”) – 1962-8-29 (“H”).

Very often these two methods identify short moments of
fame within a much longer context. For example, in Fig-
ure 3, we see the timeline for the name “John Jacob Astor”,
normalized by article counts. The spike method identifies as
the peak the death of John Jacob Astor III of the wealthy
Astor family, with a duration of 38 days (March 8 to Febru-
ary 15, 1890). The continuity method identifies instead the
death of his nephew John Jacob Astor IV, who died on the
Titanic, with a period of five months [11]. The period begins
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Figure 3: Timelines for “Marilyn Monroe” (top) and “John
Jacob Astor” (bot).

on March 23, 1912, three weeks before the Titanic sank, and
ends August 31. Many of the later occurrences of the name
are historical mentions of the sinking of the Titanic.

3.2 Choosing the Set of Names

Basic filtering.
In all our experiments, to reduce noise, we discard the

names which occurred less than ten times, or whose fame
durations are less than two days. (In both methods, a name
whose fame begins Monday and ends Wednesday is consid-
ered to have a duration of two days.) We also remove peaks
that end in 2011 or later, since these peaks might extend
further if our news corpus extended further in the future.

Top 1000 by year.
For each peak type, we repeat our experiment with the

set of names restricted in the following way. We counted
the total number of times each name appeared in each year
(counting repeats within an article). For each year, we pro-
duced the set of the 1000 most frequently mentioned names
in that year. We took the union of these sets over all years,
and ran our experiments using only the names in this set.
Note that a name’s peak of popularity need not be the same
year in which that name was in the top 1000: so if a name
is included in the top-1000 set because it was popular in a
certain year, we may yet consider that name’s peak date to
be a different year.

Top 0.1% by year.
We consider that filtering to the top 1000 names in each

year might introduce the following undesirable bias. Sup-
pose names are assigned peak durations according to some
universal distribution, and later years have more names, per-
haps because of the increasing volume of news. If a name’s
frequency of occurrence is proportional to its duration, then
selecting the top 1000 names in each year will tend to pro-
duce names with longer durations of fame in years with a
greater number of names. With this in mind, we considered
one more restriction on the set of names. In each year y, we
considered the total number of distinct names ny mentioned
in that year. We then collected the top ny/1000 names in
each year y. We ran our experiments using only the names

in the union of those sets. As with the top-1000 filtering, a
name’s peak date will not necessarily be the same year for
which it was in the top 0.1% of names.

3.3 Sampling for Uniform Coverage
The spike and continuity methods for identifying periods

of fame may be affected by the volume of articles available in
our corpus. For example, suppose a name’s timeline is gen-
erated stochastically, with every article between February 1
and March 31 containing the name with a 1% probability. If
the corpus contains 10000 articles in every week, then both
the spike and continuity methods will probably decide that
the article’s duration is two months. However, if the corpus
contains less than 100 articles in each week, then the dura-
tions will tend to be short, since there will be many weeks
during which the name is not mentioned.

We propose a model for this effect. Each name ν has
a “true” timeline which assigns to each day t a probability
fν(t) ∈ [0, 1] that an article on that day will mention ν.1

For each day, there is a total number of articles nt; we have
no knowledge of the relation between nt and ν, except that
there is some lower bound nt > nmin for all t within some
reasonable range of time. Then we suppose the timeline
for name ν is a sequence of independent random variables
Xν,t ∼ Binom(fν(t), nt). Our goal is to ensure that any
measurements we take are independent of the values nt.

To accomplish this independence of news volume, we ran-
domly sampled news articles so that the expected number in
each month was nmin. Let X ′

ν,t be the number of sampled
articles containing name ν. If we were to randomly sam-
ple nmin articles without replacement, then we would have
X ′

ν,t ∼ Binom(fν(t), nmin). Notice that the joint distribu-
tion of the random variables X ′

ν,t is unaffected by the article
volumes nt. Any further measurement based on the vari-
ables X ′

ν,t will therefore also be unrelated to the sequence
nt. In practice, instead of sampling exactly nmin articles
without replacement, we flipped a biased coin for each of
the nt articles at time t, including each article with prob-
ability nmin/nt. For a large enough volume of articles, the
resulting measurements will be the same.

We removed all articles published before 1895, since the
months before 1895 had less than our target number nmin of
articles. We also removed articles published after the end of
the year 2010, to avoid having a month with news articles
at the beginning but not the end of the month, but with the
same number of sampled articles.

As an example of the effect of downsampling, the blue
dotted lines in Figure 9 show the 50th, 90th and 99th per-
centiles of the distribution of fame durations using the con-
tinuity method. We see that they increase suddenly in the
last ten years, when our coverage of articles surges with the
digital age. The red lines show the same measurement after
downsampling: the surge no longer appears.

3.4 Graphing the Distributions
We graph the joint distribution of peak dates and dura-

tions in two different ways. We consider the set of names
which peak in successive five-year periods. Among each set
of names, we graph the 50th, 90th and 99th percentile du-
rations of fame. These appear as darker lines in the graphs;

1In fact, articles could mention the name multiple times,
but in the limit of a large number of articles, this will not
affect our analysis.
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for example, the top of Fig. 6 shows the distribution for the
spike method. The lighter solid red lines show the same three
quantiles for shorter three-month periods. For comparison,
the dashed light blue lines show the same results if the ar-
ticle sampling described in Sec. 3.3 is not performed (and
articles before 1895 and after 2010 are not removed). Fig. 9
shows the same set of lines using the continuity method. All
the later figures are produced in the same way, except they
do not include the non-sampled full distributions.

The second type of graph focuses on one five-year period
at a time. The bottom of Fig. 6 shows a cumulative plot
showing the number of names with duration greater than
that shown on the x-axis. This is plotted for many five-
year periods. The graphs of measurements using the spike
method look more like step functions because that method
measures durations in seven-day increments, whereas the
longest-stretch method can yield any number of days. (Re-
call that peaks that last less than two days are removed.)

3.5 Estimating Power Law Exponents
We test the hypothesis that the tail of the distribution

of fame durations follows a power law. For a given five-
year period, we collect all names which peak in that pe-
riod, and consider 20% of the names with the longest fame
durations – that is, we set dmin to be the 80th percentile
of durations, and consider durations d > dmin. Among
those 20%, we compute a maximum likelihood estimate of
the power law exponent α̂, predicting that the probability
of a duration d > dmin is p(d) ∝ dα̂. Clauset et al [2]
show that the maximum likelihood estimate α̂ is given by
α̂ = 1+(

Pn
i=1 ln(di/dmin)). We include a line on each plot of

cumulative distributions of fame durations, of slope α̂+1 on
the log-log graph because we plot cumulative distributions
rather than density functions. The α̂ values we measure are
discussed in the following sections, and summarized in Fig-
ure 4 for the news corpus and Figure 5 for the blog corpus.

3.6 Statistical Measurements
We used bootstrapping to estimate the uncertainty in the

four statistics we measured: the 50th, 90th and 99th per-
centile durations and of the best-fit power law exponents.
For selected five-year periods, we sampled |S| names with
replacement from the set S of names that peaked in that
period of time. For each statistic, we repeated this pro-
cess 25000 times, and reported the range of numbers within
which 99% of our samples fell. The results are presented in
Figures 4 (for the news corpus) and 5 (for the blog corpus).

4. RESULTS: SPIKE METHOD
We measure periods of popularity using the spike method

described in Section 3, and plot the distribution of durations
as it changes over time. We find that for most of the pe-
riod of our study (1920-1990), the distribution of durations
changes little. When we restrict to more popular names as
described in Section 3.2, we observe longer durations across
time, but we still see the same flatness in the range 1920-
1990. This indicates that the length of time stories stay in
the news has not changed much in the past several decades.

4.1 Basic filtering
When we use the basic filtering described in Section 3.2,

most of the names have the shortest possible duration of
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Figure 6: Fame durations measured using the spike method,
plotted as the 50th, 90th and 99th percentiles over time
(top) and for specific five-year periods (bottom). The bot-
tom graph also includes a line showing the max-likelihood
power law exponent for the years 2005-9. (The slope on the
graph is one plus the exponent from Fig. 4, since we graph
the cumulative distribution function.) To illustrate the ef-
fect of sampling for uniform article volume, the first graph
includes measurements taken before sampling; see Sec. 3.3.

one week2 (Figure 6). The 90th and 99th percentiles show
a slight decreasing trend before 1920 and a slight increasing
trend after 1990 but change little between the years 1920-90.

The upper-right corner of the table in Figure 4 shows the
maximum likelihood estimates of the power law exponents
for various five-year-long peak periods. The values have a
fairly small range, between -2.63 and -2.32. We include a
reference line of slope3 -1.48 on the log-log graph for the
period 2005-9, which has an estimated exponent of -2.48.

4.2 Top 1000 by year
When we restrict to names that were in the 1000 most

popular for some year (Section 3.2), we see a median dura-
tion of three to four weeks (Figure 7). This is longer than
the median of one week we see with basic filtering, indicating
that more popular names tend to have longer-lasting news
stories. As with the basic filtering, we do not see any clear
trend of change between the years 1920 and 1990, but we

2Note that fame periods where the two weeks adjacent to the
highest-rate week are both less than 10% of the maximum
rate are considered to have a duration of zero, and were
therefore removed according to our rule that we ignore peaks
that last for less than two days. The smallest duration that
can appear is therefore one week, meaning exactly one of
the two adjacent weeks was above the 10% threshold.
3The slope is one more than the power law exponent, since
our chart is of the cumulative distribution function.
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method filtering period 50th %ile 90th %ile 99th %ile power law exponent
spike all 1905-9 7 (7 .. 7) 28 (28 .. 28) 91 (78 .. 106) -2.45 (-2.55 .. -2.21)
spike all 1925-9 7 (7 .. 7) 28 (28 .. 28) 65 (63 .. 78) -2.63 (-2.74 .. -2.33)
spike all 1945-9 7 (7 .. 7) 21 (21 .. 28) 56 (49 .. 63) -2.44 (-2.50 .. -2.38)
spike all 1965-9 7 (7 .. 7) 21 (21 .. 28) 63 (56 .. 70) -2.37 (-2.44 .. -2.31)
spike all 1985-9 7 (7 .. 7) 21 (21 .. 28) 70 (63 .. 78) -2.32 (-2.36 .. -2.27)
spike all 2005-9 7 (7 .. 7) 28 (28 .. 28) 84 (78 .. 91) -2.48 (-2.53 .. -2.43)
spike top 1000 1905-9 21 (21 .. 21) 63 (56 .. 70) 155 (133 .. 192) -2.75 (-3.15 .. -2.56)
spike top 1000 1925-9 21 (14 .. 21) 49 (46 .. 56) 91 (78 .. 113) -3.22 (-3.74 .. -2.99)
spike top 1000 1945-9 21 (14 .. 21) 49 (42 .. 49) 91 (70 .. 130) -3.33 (-3.73 .. -2.89)
spike top 1000 1965-9 21 (21 .. 21) 56 (49 .. 63) 119 (99 .. 164) -2.90 (-3.54 .. -2.65)
spike top 1000 1985-9 21 (21 .. 28) 63 (56 .. 78) 161 (121 .. 366) -2.85 (-3.19 .. -2.57)
spike top 1000 2005-9 35 (28 .. 35) 99 (84 .. 119) 309 (224 .. 439) -2.64 (-2.96 .. -2.44)
spike top 0.1% 1905-9 35 (28 .. 42) 122 (91 .. 155) 289 (161 .. 381) -2.82 (-3.96 .. -2.36)
spike top 0.1% 1925-9 28 (21 .. 35) 63 (56 .. 82) 145 (91 .. 218) -3.49 (-4.82 .. -2.92)
spike top 0.1% 1945-9 21 (21 .. 28) 56 (49 .. 67) 133 (84 .. 161) -3.35 (-4.32 .. -2.78)
spike top 0.1% 1965-9 28 (21 .. 35) 70 (63 .. 99) 162 (119 .. 494) -2.90 (-3.77 .. -2.47)
spike top 0.1% 1985-9 35 (28 .. 35) 90 (70 .. 113) 327 (140 .. 443) -2.66 (-3.13 .. -2.35)
spike top 0.1% 2005-9 35 (35 .. 42) 119 (99 .. 140) 338 (263 .. 557) -2.76 (-3.10 .. -2.44)

continuity all 1905-9 7 (7 .. 7) 20 (19 .. 21) 70 (64 .. 79) -2.67 (-2.76 .. -2.59)
continuity all 1925-9 7 (7 .. 7) 18 (17 .. 19) 64 (56 .. 71) -2.64 (-2.72 .. -2.53)
continuity all 1945-9 7 (7 .. 7) 16 (15 .. 16) 53 (49 .. 58) -2.74 (-2.82 .. -2.66)
continuity all 1965-9 7 (7 .. 7) 17 (16 .. 18) 66 (58 .. 75) -2.58 (-2.69 .. -2.52)
continuity all 1985-9 7 (7 .. 7) 18 (17 .. 18) 77 (71 .. 83) -2.48 (-2.56 .. -2.44)
continuity all 2005-9 7 (7 .. 7) 21 (20 .. 21) 101 (96 .. 108) -2.43 (-2.46 .. -2.40)
continuity top 1000 1905-9 24 (23 .. 26) 69 (62 .. 76) 166 (136 .. 229) -3.01 (-3.35 .. -2.70)
continuity top 1000 1925-9 22 (21 .. 24) 58 (53 .. 66) 176 (131 .. 338) -3.01 (-3.39 .. -2.67)
continuity top 1000 1945-9 27 (25 .. 29) 66 (57 .. 80) 211 (169 .. 332) -2.92 (-3.32 .. -2.59)
continuity top 1000 1965-9 34 (32 .. 35) 92 (81 .. 104) 262 (203 .. 622) -2.75 (-3.11 .. -2.48)
continuity top 1000 1985-9 52 (49 .. 56) 135 (118 .. 147) 312 (231 .. 739) -3.20 (-3.62 .. -2.83)
continuity top 1000 2005-9 87 (80 .. 91) 229 (211 .. 250) 649 (532 .. 752) -2.97 (-3.32 .. -2.75)
continuity top 0.1% 1905-9 66 (59 .. 79) 146 (126 .. 176) 968 (209 .. 4287) -3.29 (-5.20 .. -2.24)
continuity top 0.1% 1925-9 53 (47 .. 61) 125 (104 .. 161) 476 (258 .. 2498) -2.67 (-3.72 .. -2.20)
continuity top 0.1% 1945-9 57 (52 .. 66) 150 (123 .. 194) 419 (218 .. 1089) -3.19 (-4.26 .. -2.52)
continuity top 0.1% 1965-9 69 (61 .. 79) 168 (143 .. 214) 713 (261 .. 874) -3.01 (-4.01 .. -2.45)
continuity top 0.1% 1985-9 85 (78 .. 94) 187 (158 .. 216) 732 (276 .. 892) -3.40 (-4.30 .. -2.80)
continuity top 0.1% 2005-9 113 (107 .. 119) 271 (246 .. 306) 681 (614 .. 874) -3.16 (-3.59 .. -2.85)

Figure 4: Percentiles and best-fit power-law exponents for five-year periods of the news corpus. Each entry is of the form x
(a .. b), where x is an estimate based on all articles in the period, and 99% of bootstrap estimates fell within the range a ..
b. See Section 3.6 and Sections 4 and 5.

see an increasing trend after 1990, and a decreasing trend
before 1920 in the 90th and 99th percentiles.

The power law exponents for this set of names are shown
in the second block of Figure 4. They are significantly
greater in magnitude than the exponents measured using
basic filtering, and also show more variation.

4.3 Top 0.1% by year
When we restrict our experiment to names which were in

the top thousandth of popularity in at least one year, we
see a median duration of about one month (Fig. 8), again
longer than the median from basic filtering. As before, we
do not see a clear trend of change between 1920-90. The
99th percentile shows more fluctuation than with basic or
top-1000 filtering; this may happen because this experiment
involves a smaller total number of names.

The power law exponents for this set of names are shown
in the third block of Fig. 4. Again, they are greater in magni-
tude than the exponents measured with basic filtering. They
show more variation than the basic-filtering exponents, and
the variation parallels the variation with top-1000 filtering.

5. RESULTS: CONTINUITY METHOD
We measure periods of popularity using the continuity

method described in Sec. 3, and plot the distribution of du-

rations as it changes over time. In contrast to our mea-
surements using the spike method (Sec. 4) we find that the
more popular names (top-1000 and top-0.1% as described in
Sec. 3.2) show progressively longer durations of fame over
the past 90 years, indicating that while the typical dura-
tion of a story in the news has stayed the same, the typical
duration of public attention to a person is growing longer.

5.1 Basic Filtering
Using basic filtering (Sec. 3.2), we find a distribution of

durations similar to that which me measured using the spike
method (Fig. 9). Most of the names have a duration of one
week,4 and the distribution changes little between the years
1920-90. The fourth block of the table in Fig. 4 shows max-
imum likelihood estimates of the power law exponents. The
exponents range between -1.77 and -1.45, slightly greater in
magnitude than exponents measured using the spike method.

5.2 Top 1000 by year
We restrict to names which were in the top 1000 for some

year (Section 3.2). Here we see a new trend which did not

4Unlike the spike method, the continuity method can pro-
duce durations of less than one week. Recall that the basic
filtering excludes names whose periods of fame are shorter
than two days.
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method filtering period 50th %ile 90th %ile 99th %ile power law exponent
spike all 2000-4 7 (7 .. 7) 35 (28 .. 35) 123 (84 .. 189) -2.37 (-2.52 .. -2.23)
spike all 2005-9 7 (7 .. 7) 28 (21 .. 28) 75 (63 .. 84) -2.34 (-2.76 .. -2.27)
spike top 1000 2000-4 21 (14 .. 21) 56 (49 .. 63) 265 (148 .. 479) -2.51 (-2.83 .. -2.18)
spike top 1000 2005-9 14 (14 .. 21) 49 (42 .. 54) 109 (91 .. 151) -2.74 (-3.03 .. -2.41)
spike top 0.1% 2000-4 39 (28 .. 56) 189 (106 .. 305) 717 (286 .. 840) -2.26 (-3.05 .. -1.85)
spike top 0.1% 2005-9 28 (25 .. 35) 88 (74 .. 102) 213 (113 .. 1674) -3.29 (-5.40 .. -2.23)

continuity all 2000-4 7 (7 .. 7) 22 (20 .. 23) 114 (95 .. 160) -2.38 (-2.49 .. -2.28)
continuity all 2005-9 6 (6 .. 7) 18 (17 .. 19) 80 (66 .. 93) -2.62 (-2.72 .. -2.53)
continuity top 1000 2000-4 20 (18 .. 21) 71 (59 .. 83) 387 (237 .. 819) -2.32 (-2.54 .. -2.12)
continuity top 1000 2005-9 21 (20 .. 22) 59 (53 .. 73) 408 (211 .. 1057) -2.37 (-2.62 .. -2.18)
continuity top 0.1% 2000-4 102 (89 .. 123) 372 (236 .. 768) 2010 (768 .. 2238) -2.24 (-3.15 .. -1.86)
continuity top 0.1% 2005-9 83 (70 .. 93) 302 (193 .. 617) 2083 (954 .. 2991) -2.12 (-2.75 .. -1.79)

Figure 5: Percentiles and best-fit power-law exponents for five-year periods of the blog corpus. Each entry is of the form x
(a .. b), where x is an estimate based on all articles in the period, and 99% of bootstrap estimates fell within the range a ..
b. See Sections 3.6 and 6.
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Figure 7: Fame durations, restricting to the union of the
1000 most-mentioned names in every year, using the spike
method to identify periods of fame.

appear when we used the spike method to determine dura-
tions of fame. The fame durations increase steadily from
1920 to 2005, the median growing from half a month to two
months, and the 90th percentile growing the same way.

Power law exponents appear in the fifth block of Fig. 4.

5.3 Top 0.1% by year
Restricting to names in the top 0.1% of some year, we

again see an increasing trend, though not as pronounced.
The median duration in 1920 is almost two months, and in
2005 is almost three months.

Since the increasing trend is stronger with top-1000 fil-
tering than with top-0.1% filtering, we hypothesize that the
top-1000 trend is partly caused by a larger total population
of names available in later years; we describe this hypothet-
ical effect with top-0.1% filtering in Sec. 3.2. Since a trend
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Figure 8: Fame durations, restricting to the union of the
0.1% most-mentioned names in every year, measured using
the spike method.

still appears when filtering to a top 0.1% of names, we be-
lieve that the trend is not entirely explained by that effect.

The power law exponents appear at the bottom of Fig. 4.

6. BLOG POSTS
We ran our experiments on a second set of data consist-

ing of public English-language blog posts from the Blogger
service. We began by sampling so that the number of blog
posts in each month in our data set was equal to the number
of news articles we sampled in each month (as described in
Section 3.3). The cumulative graphs of fame duration from
six experiments are shown in Fig. 12. We combine the two
methods for identifying periods of fame with three sets of
names described in Section 3.2. The respective distributions
from the news corpus are superimposed for comparison.
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Figure 12: Cumulative duration-of-fame graphs for the blog corpus. Left-to-right top-to-bottom: all names with the spike
and continuity methods, then union of 1000 top names in each year with the spike and continuity methods, then union of
0.1% of top names in each year with the spike and continuity methods.
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Figure 9: Fame durations measured using the continuity
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time (top), and for specific five-year periods (bottom). To
illustrate the effect of sampling, the first graph includes mea-
surements taken before sampling; see Section 3.3.

The graphs of fame duration measured using the conti-
nuity method are much smoother for the blog corpus than
for the news corpus. This happens because whereas we only
know which day each news article was written, we know the
time of day each blog entry was posted.

The second graph (top-center in Figure 12) has a distinc-
tive rounded cap which surprised us at first. We believe it
is caused by the following effect. Peaks with only two men-
tions in them are fairly common, and have a simple distinc-
tive distribution that is the difference between two sample
dates conditioned on being less than a week apart. Since two
dates that are longer than one week apart cannot constitute
a longest-stretch peak, the portion of the graph with dura-
tions longer than one week does not include any names from
this two-sample distribution, and so it looks different. Our
estimates of power-law exponents only consider the longest
20% of durations, so they ignore this part of the graph.

The estimates we computed for the power-law exponents
of the duration distributions for blog data are shown in Fig-
ure 5, and can be compared to the figures for news articles
in Figure 4. The estimates for the all-names distributions
are fairly close to the corresponding ones for news articles,
supporting a view that many different media of communica-
tion show the same patterns of fame. When we restrict to
popular names, the estimated exponents are often distorted
less than for the corresponding dates in the news corpus.

7. RELATED WORK
Michel et al. [8] study a massive corpus of digitized content

in an attempt to study cultural trends. The corpus they
study is even larger than ours in terms of both volume and
temporal extension.
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Figure 10: Fame durations, restricting to the union of the
1000 most-mentioned names in every year, measured using
the continuity method.

Leetaru [6] presents evidence that sentiment analysis of
news articles from the past decade could have been used to
predict the revolutions in Tunisia, Egypt and Libya.

Our spike method for identifying periods of fame is moti-
vated in part by the work of Yang and Lescovec [12] on iden-
tifying patterns of temporal variation on the web. Szabo and
Huberman [10] also consider temporal patterns, in their case
regarding consumption of particular content items. Klein-
berg studies other approaches to identification of bursts [5].

Numerous works have studied the propagation of topics
through online media. Leskovec et al. [7] develop techniques
for tracking short “memes”as they propagate through online
media, as a means to understanding the news cycle. Adar
and Adamic [1], and Gruhl et al. [4] consider propagation of
information across blogs.

Finally, a range of tools and systems provide access to
personalized news information; see Gabrilovich et al [3] and
the references therein for pointers.
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