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ABSTRACT
Labeling human faces in images contained in Web media
stories enables enriching the user experience offered by me-
dia sites. We propose a lightweight framework for automatic
image annotation that exploits named entities mentioned in
the article to significantly boost the accuracy of face recog-
nition. While previous works in the area labor to train com-
prehensive offline visual models for a pre-defined universe of
candidates, our approach models the people mentioned in a
given story on the fly, using a standard Web image search
engine as an image sampling mechanism. We overcome mul-
tiple sources of noise introduced by this ad-hoc process, to
build a fast and robust end-to-end system from off-the-shelf
error-prone text analysis and machine vision components. In
experiments conducted on approximately 900 faces depicted
in 500 stories from a major celebrity news website, we were
able to correctly label 81.5% of the faces while mislabeling
14.8% of them.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision– applications

General Terms
Algorithms, Experimentation

Keywords
Face recognition, Text analysis, Web search, Machine learn-
ing

1. INTRODUCTION
The Web is a heaven of (and for) media outlets. Media

sites of all shapes and forms, topics and languages, inde-
pendent and part of a network, abound. Still, despite this
variety, the prototypical online media story page revolves
around an article that is typically accompanied by a center-
piece image (see Figure 1). True to the saying “a picture
is worth a thousand words”, the centerpiece image is among
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Figure 1: An example media page, with highlighted
entity names and annotated faces.

the dominant attention hubs of media story readers, and me-
dia editors carefully select and position that image for each
story. Another typical attribute of media stories, especially
in large and diverse sites and portals, is that named entities
mentioned in stories – in particular celebrities – are often
linked to a “topic page” dedicated to that entity on the site.

Images embedded in HTML pages, and in particular in
media stories, are typically clickable as a single unit – a
click on any pixel of the image transfers the user to the same
destination URL. However, nowadays it is relatively easy to
associate different target URLs with different portions of
an image, i.e. to designate different areas of the image as
leading to different URLs.

We tap the capability above in the context of media stories
that focus on people. The centerpiece image in such stories
naturally contains faces, and our aim is to identify which
person is depicted by which face, i.e. to associate names to
the depicted faces. An immediate application of this capa-
bility is then to link each face in the image to a destination
specific to the depicted person, just as is typically done for
mentions of that person in text, without editorial interven-
tion. To achieve this goal, we present FRUIT – a system for
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Face Recognition Using Information reTreival. FRUIT com-
bines face recognition techniques with entity extraction and
ranking schemes in a maximum likelihood framework.

Unlike mainstream applications of face recognition tech-
nology, FRUIT does not build nor maintain a large database
of celebrities’ images. Rather, given a story and its center-
piece image, it employs a lightweight and ad-hoc processing
pipeline for associating faces with names, built mostly from
off-the-shelf building blocks. At a high level, the process is
as follows. We begin by detecting faces in the image, and
by extracting named entities from the story’s text. Each
name is further scored by the prominence of the name in
the story. Next, we send the extracted names as queries to
an image search engine, retrieving a few dozen results per
query. We treat those results as positive examples for the
queried name, and using standard face similarity functions
associate a probability between each name and each face.
After further adjustment of these probabilities based on the
score of each name, we solve a bipartite matching instance to
arrive at the final, maximum likelihood assignment of names
to faces. Furthermore, a post-processing step assigns a con-
fidence score to each name-face assignment, allowing us in
low confidence cases to leave a face unnamed rather than to
wrongly associate it with some name.

Each step in the processing pipeline above may introduce
noise that impacts our success rates. Face detection in im-
ages suffers from false positives, false negatives and mis-
alignment (bounding boxes that do not correctly capture
the face). Entity extraction is imperfect, and even if it were,
not every face in the image is necessarily mentioned in the
text of the story. Image search engines are not very pre-
cise, and even images that are of the queried name and thus
considered as good results for human consumption, might
be ill-suited for face recognition tasks. In particular, the re-
sults of image search for people with a small Web footprint
are fairly random.

Despite the above obstacles, our experiments – over a cor-
pus of approximately 500 stories from Yahoo! OMG1, a ma-
jor site of entertainment news – show that FRUIT exhibits a
robust behavior. For example, in one operating point it cor-
rectly associates names to 81.5% of faces, while associating
false names with 14.8% of faces. The error rate can be signif-
icantly decreased, at the expense of the cumulative fraction
of labeled images. We analyze our results along several axes
by performing sensitivity analysis to multiple design param-
eters of our system, and isolating the noise introduced by its
individual components.

Performance measurements demonstrate that an optimized
version of our algorithm can run in less than 10 sec per me-
dia page. This low overhead renders FRUIT image annotation
practical for use in media publishing pipelines.

The contributions of this work are the following:

• We present FRUIT – an accurate, light-weight, ad-hoc
process for associating names with faces appearing in
images of media stories.

• Unlike traditional face recognition approaches in ma-
chine vision, FRUIT does not require large and well-
maintained databases of carefully chosen, high quality
pictures for each encountered person. Rather, we show
that accurate recognition can be achieved by leverag-

1http://omg.yahoo.com

ing a small number of results returned by image search
engines. In a sense, the Web - as mediated by image
search engines and accessed through public APIs - is
our training set.

• FRUIT is built from careful integration of standard, off-
the-shelf tools for text and image analysis. Our inno-
vation lies in how we put those tools to work together
to overcome the noise each of them introduces.

The rest of this paper is organized as follows. Section 2 sur-
veys the related work. Section 3 overviews the system design
and the details of its components. Section 4 exemplifies the
algorithm’s behavior on a complex real-world page. The al-
gorithm’s accuracy is extensively evaluated in Section 6 on
the dataset described in Section 5. We discuss the system’s
performance bottlenecks and the ways to eliminate them in
Section 7, and conclude in Section 8.

2. RELATED WORK
Labeling faces on the Web is profoundly different from

traditional face recognition, which originally was limited to
controlled environments. In that context, both the train-
ing and test sets used to be part of carefully selected and
manually labeled datasets (e.g., Yale [3] and FERET [15]).
These data collections featured high-resolution images taken
in studio conditions (in a variety of handpicked poses, illu-
mination conditions, etc.). The classical face recognition
algorithms (Eigenfaces [19], Bunch Graph [22], etc.) have
been designed to work under these conditions.

In contrast, classifying faces on the Web exposes the pro-
cess to extremely diverse image qualities. Moreover, ad-hoc
learning from faces on the Web, alongside its obvious ad-
vantages, introduces even more noise. For example, image
search by name provides only a weak guarantee that the re-
sults are relevant for the query, as well as a basic promise of
image quality. It fetches a very small sample, which is sus-
ceptible to name ambiguity and person popularity. There-
fore, the probability of face models being contaminated by
wrongly labeled images is high.

A number of research efforts try to bridge the gap be-
tween the two extremes described above. The Labeled Faces
in the Wild (LFW) project [10], which is constrained to a
closed dataset like [3, 15], deals with variable-quality (albeit
still manually labeled) images. In this work, we use two
techniques – face alignment [9] and Three-Patch Linear Bi-
nary Patches (TP-LBP) [23] – that have been developed to
tackle the image quality challenges. We deliberately avoid
over-optimizing the image processing part, since our goal is
demonstrating the feasibility of achieving acceptable robust-
ness with standard building blocks. For example, we do not
present our experiments with more advanced face recogni-
tion methods (e.g., [16]) that achieve better precision but
are prohibitive for performance reasons.

Some works addressed the challenge of automatically la-
beling the training examples in images [4, 14] and video
frames [6], using the related text. They analyze a large cor-
pus of text and multimedia, and associate entities with vi-
sual information by clustering their co-occurrences in media
pages. While this approach works well for popular entities,
labeling the infrequent ones is more challenging [12]. We
adopt a complementary path, by outsourcing labeled image
sampling (ad-hoc training) to Web search.
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Image search was previously employed for sampling face
data, in the context of video annotation [24, 13]. Both works
focus on the single-person recognition use case, whereas our
solution labels multiple candidates simultaneously. Their
application domain is also different from ours (video analy-
sis versus single-shot recognition), which offers a lot of re-
dundancy and simplifies the classification.

Our work capitalizes on exploiting auxiliary signals to en-
hance traditional face recognition. Namely, we demonstrate
a boost in recognition rates stemming from a simple rank-
ing of named entities extracted from the text. This result
is in concert with earlier work by Gallagher et. al. [8] that
highlighted the possibility of using image-related structured
information, e.g., the age and gender of the persons in the
image, for classification without any visual training data.

The literature on topic detection and tracking in text is
abundant, including textbooks [1]. Our entity scoring func-
tion is deliberately unsophisticated, since our goal is a simple
proof of concept. For example, we use popular signals like
term frequency and order of occurrence, but do not learn
advanced text segmentation models that have been shown
useful to improve the quality of many IR tasks [18, 20].

Face recognition capabilities (also called automatic album
tagging) have been recently added to popular photo sharing
sites, e.g., Google Picasa2 and Facebook3. These applica-
tions require manual tagging of example images, and appar-
ently restrict themselves to recognizing people within a small
reach in the social network. In this sense, our application is
more generic.

3. SYSTEM OVERVIEW
Figure 2 illustrates FRUIT – a framework for automated

face annotation in media pages.
The processing pipeline works as follows. At the first step,

two actions happen independently: (1) named person enti-
ties are extracted from the article’s text, and (2) human
faces are detected in the associated image. The extracted
named entities become candidates (further denoted by C)
for matching to the discovered faces (denoted by F ).

Following this, the process diverges into two tracks: (1)
static scoring of candidates, which estimates the prior prob-
abilities for each candidate to match some face in the im-
age, and (2) pairwise similarity scoring, which computes
the match probabilities for each face-candidate pair. The
first path is based entirely on text analysis, and is relatively
straightforward. The second one captures visual relatedness.
The idea behind it is (1) sampling a set of representative
images for each candidate through web search, and (2) com-
paring these ad-hoc visual models with the detected faces
through a machine vision algorithm.

Finally, we feed the static scores and the similarity scores
into a matching component, which associates each detected
face with at most one entity mined from the text. This
process is cast as maximum-likelihood assignment, which
translates to matching in the bipartite face-entity graph.
FRUIT receives many noisy inputs, therefore it is essential

to introduce some internal resilience mechanisms. Our eval-
uation (Section 6) shows that even näıve static scoring is es-

2http://picasa.google.com/support/bin/answer.py?
answer=156272
3http://www.facebook.com/blog.php?post=
467145887130

sential for focusing the context, and thus reducing the noise
introduced by the face recognition component. In order to
further reduce the probability of false matches, we install a
post-matching filter that drops annotations from faces that
are more similar to some false candidate randomly sampled
from the Web than to the original assignment.

Figure 2 depicts this flow, using an example of a news
story about Bart Simpson catching a three-eyed mutated
fish. The entities mentioned in the text are Homer, Bart,
and Lisa Simpson, whereas the detected faces belong to
Bart, Lisa, and the fish (false detection), respectively. The
image sampling process might fetch some wrong images –
e.g., one Marge’s image is returned for the query “Homer”.
The static scores and the similarity scores are used to match
faces to entities, which correctly labels Bart and Lisa, but
Homer is misclassified. This false label is eventually dropped
due to low confidence.

In what follows, we extend on the technical details of each
of the building blocks – face detection (Section 3.1), en-
tity extraction and (static) scoring (Section 3.2), face-entity
similarity scoring (Section 3.3), and eventually the matching
(Section 3.4) and post-match filtering (Section 3.5) phases.

3.1 Face Detection
The face detection procedure is used by multiple parts of

our system. We employ an OpenCV4 implementation of the
well-known Viola-Jones face detection algorithm [21], with-
out any modification or parameter tuning. The minimum
size of a detectable face in a media image is set to 50 × 50
pixels – a small value, stemming from the fact that the im-
ages themselves can be of variable size and quality.

3.2 Entity Extraction and Scoring
FRUIT uses a simple standard entity extraction procedure.

The entities are extracted through (1) a shallow parsing of
text and HTML markup, and (2) looking up the parsed
terms in a dictionary or taxonomy.

We project that there is a close correlation between an
entity’s relevance in the text and the probability of appear-
ing in the associated image. Similarly to previous studies
on primary topic detection [1], we rank the entities men-
tioned in the text by (1) their frequencies (denoted T ) and
(2) the relative order of their occurrences (denoted R). We
assume that these two random variables are independent,
and model the probability of candidate c appearing in the
image as (denoted P (c)) as a product of the two conditional
probabilities P (c|R = r) and P (c|T = t). The latter are
modeled as sigmoid distributions:

P (c|R = r) =
1

1 + e−2(r−1.5|F |) ,

and

P (c|T = t) =
1

1 + e−2(t−0.5T̃ )
,

where T̃ is the average frequency of named entity occur-
rences in the text.

In other words, the favorably scored entities are (1) among
the topmost 1.5|F | (have a chance to fit in the image, with

a small slack), and (2) appear no less than 0.5T̃ (not too
infrequent). For example, if two faces are detected in the

4http://opencv.willowgarage.com
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Figure 2: The system architecture and the processing flow for a particular example. Note that the system
overcomes the errors of its individual components, e.g., a face mis-detection and a mis-assignment of a face
to a candidate.

image, and all candidate names appear exactly once in the
text, then the first three will de-facto compete for the match.

The distributions’ parameters have been selected heuris-
tically, without any prior training, to exemplify the appli-
cability of our framework to arbitrary datasets. We don’t
claim the optimality of this simple scoring function in any
respect – in fact, a more careful fine-tuning might positively
impact the ultimate annotation goal.

3.3 Face-Entity Similarity Scoring
The pairwise similarity scoring procedure receives a set of

candidate entities extracted from the text, and a set of face
images detected in the associated picture. It returns a value
between 0 and 1 for each face-candidate pair, which cap-
tures the probability of the face belonging to the candidate.
The procedure can be roughly partitioned into the following
steps:

Similarity Scoring:

1. Sample a small set of representative images for
each candidate from a Web search engine.

2. Map the faces from the media page and from
the sampled images to a low-dimension feature
space via a face recognition algorithm.

3. For all face-candidate pairs, compute similarity
scores – a distance metric which reflects prox-
imity between a point (face) and a set of points
(samples) in the feature space.

We now describe each of these steps in more detail.

3.3.1 Sampling through Image Search
We use a public image search engine API to retrieve a set

of images by entity name. Large and wallpaper-size images
are preferred, to exclude poor-quality pictures. No addi-
tional facets (e.g., filter by color, being a photo, containing
faces, etc.) are used. This set is further pruned to a subset
of “portrait-quality” images that are fit for modeling a hu-
man face. An image is defined portrait-quality if it contains
a single face no smaller than 100× 100 pixels5. We use the
Viola-Jones algorithm [21] (Section 3.1) for face detection.
The search result set contains up to 35 URL’s, which we re-
trieve top-down until δ portrait-quality images are fetched.

Note that the sampling phase is inherently noisy. In the
first place, it suffers from entity name ambiguities. Be-
yond that, search engines often return related person images
alongside the real candidate’s ones, especially for candidates
with a small footprint on the Web. The further stages of our
algorithm therefore need to compensate for this noise.

3.3.2 Face Recognition
Both the analyzed and the sampled face images undergo

a pre-processing stage, which includes careful bounding box
alignment [9], scaling to the uniform size of 64 × 64 pixels,
transformation to grayscale, and intensity histogram equal-
ization [7].

Following this, a machine vision algorithm is employed to
map all faces to points in a moderate-dimensionality fea-
ture space (tens to thousands of dimensions), in which the
proximity relationships between the original images are pre-

5In contrast with images as small as 50× 50 pixels that we allow
on media pages, Section 3.1.
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served. The centerpiece requirement for the face recognition
technique is computational efficiency. In this context, we ex-
periment with three off-the-shelf tools. We used the modern
Three Patch - Local Binary Pattern (TP-LBP) algorithm [23]
as the main solution. For baseline we used features cre-
ated with the classical Eigenfaces technique [19], and a
fast approximation of the Earth Moving Distance (EMD) al-
gorithm [17]. In minimum detail, they work as follows.
Eigenfaces maps each image to a space induced by all

the sampled images. This space is concisely captured by
its d first eigenvectors. An arbitrary image is therefore ex-
pressed as a linear combination thereof – i.e., a d-coordinate
point. We set d = min(4|C|, 30) – typically, the number of
dimensions does not exceed 15.

The earth moving distance between two images is the
minimum cost of turning one image into the other, where
the cost is defined to be the amount of bright pixels to
be moved times the geometric distance by which they are
moved. EMD is expected to be less sensitive to image mis-
alignments than Eigenfaces. We map each image to a vec-
tor of EMD distances to the sampled images. The resulting
space’s dimensionality is typically below 100 dimensions.
TP-LBP employs local texture descriptors for representing

an image. The features are histograms of local texture de-
scriptor values calculated in rectangular regions tessellating
the face image. The concatenation of these histograms is
the image’s footprint (a 1024-dimension vector in our case).
In contrast with Eigenfaces, each image can be processed
individually to create the representation.

3.3.3 Similarity Computation
We interpret the similarity between face f and candidate

c ∈ C, denoted S(f, c), as the probability of a multi-label
classifier associating the face with the candidate’s name. We
explore two such classifiers – k-nearest neighbor (kNN) and
multi-class support vector machine (MC-SVM).

The kNN classifier defines the face-candidate similarity as
S(f, c) ∼ e−D(f,c) (the sum is normalized to 1), whereD(f, c)
is a distance function between the face and the candidate
sample image set. D(f, c) is defined as the average L2 dis-
tance in the feature space between f and c’s k closest sam-
ples. We set k = 3.
MC-SVM is a popular multi-label classifier [5]. Given a face

representation f , MC-SVM simultaneously computes S(f, c)
for all c, i.e., the vector of probabilities of f belonging to
each of the candidate clusters. The algorithm defines its L2

distance function internally. We employ the implementation
from libsvm6, parameterized with a Gaussian kernel.

3.4 Matching
FRUIT seeks an injective mapping σ : F → C that matches

each face to a single candidate7. We approach the compu-
tation of this mapping as a maximum-likelihood estimation
problem, which maximizes the joint probability of σ(f) be-
ing a correct label for all f ∈ F .

Section 3.2 defined static entity scores P (·) as an estimate
for the distribution of a-priori probabilities of of entities ap-
pearing in the media page image. Therefore, for face f and
candidate c, the product S(f, c)P (c) reflects the likelihood

6http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
7The injection property is satisfied by the vast majority of media
images, in which no person appears twice. The exceptions are
rare – e.g., artistic collages.

of matching f to c. Assuming that probability distributions
S(f, ·) are all independent for all f8, the likelihood of a par-
ticular mapping σ is

L(σ) =
∏

f∈F,c=σ(f)

P (c)S(f, c).

The corresponding log-likelihood is therefore

logL(σ) =
∑

f∈F,c=σ(f)

(logP (c) + logS(f, c)).

This formulation natively translates to min-cost matching in
a complete bipartite graph (F,C), in which the cost of edge
(f, c) is −(logP (c) + logS(f, c)). This classical problem can
be solved, e.g., by the Hungarian algorithm [11], which runs
in negligible time on small graph instances.

3.5 Post-Filtering
The matching phase might falsely assign faces to candi-

dates. The reasons can be numerous – e.g., wrong samples
might be fetched from the Web, the person on the image
might not be either of the candidates, a non-face patch of
the image might be wrongly identified as a face, or a de-
tected face might be challenging to recognize for the vision
algorithm. The post-filtering phase eliminates these wrong
assignments, as follows.

We validate each matched pair (f, σ(f)) through a pro-
cedure similar to police lineup. Namely, f is compared to
the images of 5 random false candidates. If f is significantly
closer to one of these candidates than to σ(f) – the (f, σ(f))
mapping is canceled.

Technically, the false candidates are randomly chosen from
the domain taxonomy, and pre-processed offline, identically
to the flow described in Section 3.3 For each c̄ ∈ C̄, f under-
goes a binary classification which discriminates between two
classes – σ(f) and c̄ (we use a standard binary SVM imple-
mentation in libsvm). The classifier outputs the likelihood
of f belonging to σ(f) in this context, denoted L(σ(f)|c̄).
We define the confidence of σ(f) as

Θ(σ(f)) = min
c̄∈C̄
L(σ(f)|c̄).

Face f is de-labeled if Θ(σ(f)) is below some user-defined
threshold θ.

4. ILLUSTRATIVE EXAMPLE
This section is a guided walkthrough of FRUIT’s operation

on a real media page from the Yahoo! OMG celebrity gos-
sip website (Figure 3(a)), which is correctly processed by
our framework. The story references several persons – Mon-
ica (Monica Arnold’s stage name), Shannon Brown, Kobe
Bryant, and Carmelo Anthony. All characters are mentioned
more than once. The centerpiece image pictures two of the
above candidates.

Computing the similarity scores is challenged by multi-
ple obstacles. In the first place, the “Monica” named entity
(derived from the text) is an ambiguous query. Most of the
images retrieved for this name from image search belong to
a different person (Monica Bellucci, see Figure 3(d)). More-
over, the images of the correct Monica are taken from a
bad angle. Hence, the data points of the “Monica” class are

8E.g., the pairwise distance function in Section 3.3.3 satisfies this
assumption.
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(a) The page with highlighted named entities

(b) Kobe Bryant

(c) Shannon Brown

(d) Monica

(e) Carmelo Anthony

Figure 3: A media page and the sampled candidate images.

highly dispersed in the feature space. (Note that trying to
build a “consistent model” from a cluster of the dominating
images, similarly to [24], would have resulted in complete
filtering out of the correct person).

Another true character in the image, Shannon Brown,
raises a different problem. He has a large footprint on the
Web, however the top images returned by the search engine
are replicas of the same few shots. Therefore, the classifi-
cation ends up scoring Shannon less similar to himself than
to Monica (probably due to high diversity of her sample im-
ages) as well as to Kobe Bryant (Table 1).

Static Score Similarity Score Final

0.048 0.189 0.064 0.009 0.003

0.982 0.167 0.164 0.164 0.162

0.998 0.509 0.700 0.507 0.698

0.084 0.136 0.072 0.011 0.006

Table 1: Static and Similarity Scores Computed by
FRUIT.

These problems are fixed by the static scoring component.
Monica and Shannon are referenced first in the text, and
appear more than the other candidates. Hence, their static
scores are significantly higher than Kobe’s and Cameron’s
(see Table 1), therefore compensating for the image process-
ing algorithm’s error. All in all, “Monica” is the most likely
label for both faces in the image. However, since the solu-

tion is an injective matching, the most similar (right) face is
labeled “Monica” while the other (left) face is labeled with
the second best option – “Shannon Brown” – which is the
correct labeling.

5. EVALUATION DATASET
Below we describe the dataset we use for evaluating FRUIT.

Our experiments are conducted on a set of 500 pages ran-
domly sampled from a few weeks’ feed of Yahoo! OMG – a
major entertainment website9. From this ground set, we fo-
cus on 487 pages relevant for FRUIT – i.e., the stories with a
centerpiece image that contains at least one detectable face
of size 50 × 50 pixels or larger. 185 pages in the set con-
tain one face, 266 pages contain two faces, and 36 pages are
with three or more faces. Our experiment does not exploit
the text captions associated with images, since they are not
present in all media sites.

The taxonomy we use for entity extraction is assembled
from multiple information sources, e.g., WordNet10, DBPe-
dia11, IMDB12, etc.
FRUIT can correctly classify faces in the story image only

if the corresponding people names appear in the article text.
In our dataset, 94.3% of the people appearing in the pictures
are referenced in the text. In this context, we count only di-
rect references to person names – i.e., named entities are not
inferred from composite semantic objects like movie casts,
music band names, etc.

Figure 4 depicts the distribution of the number of named
entities on a page, and its correlation with the number of
faces in the image. The number of candidates varies from
2−3 (typical for the articles dedicated to specific persons) to

9The set’s size is limited only by our labeling capabilities.
10http://wordnet.princeton.edu
11http://dbpedia.org
12http://www.imdb.com
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Figure 4: The distribution of the number of named
entities per page. Most pages reference 3 to 5 named
entities, however the distribution is heavy-tailed.

dozens (in stories about social events). In pages with mod-
erate numbers of candidates, images with two faces prevail.

In Section 6, we separately study the algorithm’s behavior
on pages varying by the number of candidates and faces, and
explain the impact of its multiple design parameters.

6. EVALUATION
In this section we demonstrate and analyze the results

achieved by FRUIT. We measure the annotation quality in
terms of tradeoff between the correctly and wrongly labeled
faces. The fractions thereof are denoted ρ and ρ̄, respec-
tively. (The ratio of unlabeled faces is therefore 1− ρ− ρ̄).

In most of our experiments, the operating point is deter-
mined by the post-filtering confidence threshold θ, which de-
termines when a previously matched face must be de-labeled
(Section 3.5). We consider running θ’s in the range 0 . . . 0.7
(a higher θ corresponds to a more aggressive post-filtering).

The zoom is on applications that require high coverage
(70% and more of totally labeled faces) to minimize edito-
rial work. A wider range of considered thresholds could be
useful for applications that prefer precision – e.g., a negligi-
ble error rate ρ̄ at the expense of dropping the coverage to
40%. However, the phenomena highlighted by our study are
qualitatively the same in that range as well.

6.1 Similarity Scoring
The similarity scoring component employs a computer vi-

sion algorithm for mapping the faces to a low-dimensional
space, and a multi-class classification algorithm for comput-
ing the likelihood probabilities (Section 3.3). This section
motivates our choices for these algorithms, which we con-
tinue to exploit in the following sections.

Figure 5 depicts the comparison between the Eigenfaces,
TP-LBP and EMD image processing method, in conjunction
with the MC-SVM classifier. TP-LBP clearly outperforms the
competition, which is consistent with the result reported for
the LFW dataset by machine vision researchers [23].

We now turn to comparing the MC-SVM and kNN similarity
classifiers (Figure 6), in conjunction with TP− LBP. MC-SVM

supercedes kNN in most cases. Note a particular working
point for θ = 0.2 (Figure 6(a)), in which FRUIT labels cor-
rectly ρ = 81.5% faces with an error rate ρ̄ = 14.8% (3.7%
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Figure 5: Comparison between the TP-LBP, Eigen-

faces and EMD vision algorithms in conjunction with
the MC-SVM classifier. The θ confidence threshold val-
ues run from 0 to 0.7. TP-LBP clearly outperforms the
other competitors.
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Figure 7: The quality of the FRUIT’s entity scoring.
FRUIT’s scores weakly correlate with the ideal pre-
dictor of the entities’ probabilities of being part of
the picture.

faces remain unlabeled). MC-SVM’s advantage is mostly pro-
nounced in pictures with 3 and more faces, in which it out-
performs kNN by 9% (Figure 6(b)). We revisit this phe-
nomenon in Section 6.2.
FRUIT configured with TP-LBP and MC-SVM also improves

over the previous works on face labeling in media stories [4,
14]. Similarly to us, these works exploit the article’s text
in conjunction with the image, to enhance the recognition.
They report lower precision (60% to 70%, in contrast with
66% to 84% for FRUIT), as well as lower recall, or the total
fraction of labeled faces (below 70%, compared to 76% to
almost 100% for FRUIT).

All the subsequent experiments use TP-LBP and MC-SVM as
building blocks.

6.2 Entity Scoring
This section evaluates the impact of entity ranking (Sec-

tion 3.2) on FRUIT’s results. We start from validating the ba-
sic assumption that entity scores predict the probabilities of
respective entities appearing in the image. Namely, we mea-
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Figure 6: Comparison between the MC-SVM and kNN classifiers in conjunction with TP-LBP. The θ confidence
threshold values run from 0 to 0.7. MC-SVM is more accurate than kNN, especially in pages with three and more
faces.
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(a) Images with 2 faces
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(b) Images with 3+ faces

Figure 8: The impact of entity scoring on the system’s accuracy (all configurations run with TP-LBP and
MC-SVM). The θ confidence threshold values run from 0 to 0.7. FRUIT improves the fraction of correctly labeled
faces by more than 10% compared to a system that does not leverage entity relevance in the text (uniform
scoring). However, there is a gap of approximately 7% between FRUIT and synthetic (oracle) scoring that
perfectly predicts the identities of people in the image.

sure the fraction of candidates appearing in the images for
different score ranges. For an ideal predictor, this fraction
should be equal to the corresponding score (e.g., 70% of the
candidates with score 0.7 appear in the pictures). Figure 7
shows the correlation between our method and the ideal pre-
dictor. FRUIT’s scoring is clearly imperfect, although it is
close to the ideal in the higher bins. Note that the FRUIT

scores are consistently below the ideal predictor’s dashed
line. This is due to the use of sigmoid ranking functions
with fairly generous slacks (see Section 3.2) that protect
low-ranking candidates from being outruled. Using more
advanced scoring methods (e.g., [1]) is likely to improve the
predictor’s accuracy, as well as the overall results.

We are now ready to assess the bottom-line impact of
FRUIT’s entity scoring. For this purpose, we compare it
with two other methods, which provide the upper and lower
bounds for the power of prediction. The upper bound is em-
bodied by oracle scoring – a synthetic imaginary ranking in

which the named entities that appear in the image receive
score 1, whereas the rest receive score 0. Note that this es-
sentially reduces the number of candidates to the number
of faces, hence the original matching problem transforms to
finding the correct permutation of the candidates in the pic-
ture (a simpler de-noised variation). The lower bound is
captured by uniform scoring that gives equal scores (e.g.,
1) to all entities in the text. This is a degenerated scoring
method that ignores entity relevance.

Figure 8 depicts the gaps in impact between FRUIT’s scor-
ing versus the upper and lower bounds. For example, our
heuristic beats the uniform scoring by 10%. We study the
effect of scoring separately for images with two faces (Fig-
ure 8(a)) and three and more faces (Figure 8(b)). Note that
the positive effect of FRUIT’s entity ranking is larger for the
pages with less faces in the image. This happens because the
number of highly scored candidates in FRUIT is proportional
to the number of detected faces (Section 3.2). Therefore, in
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this setting the classification algorithm must handle more
irrelevant high-scoring candidates, thereby approaching the
uniform scoring scenario.

Note that the accuracy of the system with both oracle and
uniform rankings is surprisingly better for images with more
faces. This happens because in an image with two faces,
assigning a candidate whose face appears in the image to a
wrong face automatically implies that the second assignment
is incorrect as well. In contrast, in images with three faces, a
wrong swap of two face-candidate matches still leaves room
for one correct assignment.

6.3 FRUIT vs Bare Metal Face Recognition
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Figure 9: Comparison between FRUIT (θ = 0.2) and
raw face recognition (TP-LBP in conjunction with MC-

SVM), for varying numbers of candidates in the text.
We measure the fraction of mislabeled faces (lower
is better). FRUIT is less sensitive to noise (the trend-
line is almost flat), and consistently prevails over the
counterpart.

We conclude with underscoring our framework’s superior-
ity to the bare-metal face recognition system with the same
image processing part. Namely, we compare FRUIT to a sys-
tem that runs TP-LBP in conjunction with MC-SVM, and as-
signs each face to the most similar candidate. Note that
the latter algorithm does not necessarily produce an injec-
tive mapping, since two faces might be most similar to the
same person (e.g., see Section 4). FRUIT is parameterized
with θ = 0.2 (less than 5% of faces remain unlabeled). We
contrast the two alternatives by the ratio of false labelings,
for the varying number of candidates in the text.

The results in Figure 9 show that FRUIT is more robust
than the machine vision algorithm. In particular, it is less
sensitive to noise (the number of entities in text). The gap
grows with the number of candidates, reaching 16% for pages
with more than 8 candidates.

7. SYSTEM PERFORMANCE
We evaluate our system on an 8-core Intel Xeon CPU

running at 2.50 Ghz clock speed, with 32 GB of RAM. In
what follows, we describe the breakdown of execution times
of different stages of FRUIT’s pipeline, and suggest potential
performance optimizations.

7.1 CPU Bottlenecks
The processing latency is heavily dominated by the align-

ment of the bounding box around faces detected in the sam-
pled images [9]. A fine-grained alignment takes 3.2 sec per
sample on average. Our experiments show, however, that
this phase is most significant for images with 3 and more
faces (7% of the dataset), for which it boosts the precision
by 8%. For other images, its impact is negligible, hence the
system designer might choose to skip this phase altogether.

The second-largest CPU consumer is face detection [21],
which requires 150 to 200 msec per sample. The rest of the
local processing overhead is insignificant.

7.2 I/O Overhead
The I/O latency is prevailed by download times, which

range from 100 msec to 1.5 sec per image, depending on
image size and hitting the Web caching services. It can be
addressed through standard Web crawler optimizations, e.g.,
I/O parallelism [2].

Reducing the number of sampled images further decreases
the I/O overhead. In this context, the crucial issue is decid-
ing how many samples are enough to retain the annotation
quality. Recall that FRUIT downloads up to 35 samples per
candidate from image search, keeping only the images with
one face detected (Section 3.3). Figure 10 studies FRUIT’s
sensitivity to the number of candidate samples, δ. We con-
sider δ = 5, δ = 10, and δ = 35. Surprisingly, some pages
can be successfully annotated even with 5 samples per can-
didate. The success rate for δ = 10 is only 3% below the
one for δ = 35. This implies that the first ten faces re-
trieved from image search usually capture the data required
for successful face recognition. The difference between im-
ages with two faces and images with three and more faces is
immaterial in this context.

7.3 Summary
All in all, the average processing time of a media page on

an 8-core CPU is within 30 sec, and can be reduced to less
than 10 sec with judicious optimizations.

We consider face annotation within a given media page
as a one-shot problem. Clearly, in a real setting the system
might exploit the dataset locality, and cache the heavyweight
phases’ intermediate results among multiple executions, ap-
proaching subsecond page processing times. However, this
optimization edges our solution closer to the offline database
approaches, e.g., [10].

8. CONCLUSIONS
This work demonstrates that accurate face labeling in

Web media page images can be done in ad-hoc manner with
real-time speeds. We show that the intuitions that guide
humans for this task – searching online for several images of
the most likely candidates – are applicable for a fully auto-
matic technique as well. In particular, most named entities
require no more than 10 image examples for being robustly
recognized in media images.

Our face labeling framework, FRUIT, leverages web search
for ad-hoc image sampling. It is constructed from simple
off-the-shelf building blocks from the worlds of face recogni-
tion and information retrieval. We demonstrate that when
carefully applied together, these components overcome sig-
nificant volumes and miscellaneous types of noise that are
inherent to the individual parts.
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(a) Images with 2 faces
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(b) Images with 3+ faces

Figure 10: Sensitivity of FRUIT’s accuracy to the number of samples per candidate, δ. The θ confidence
threshold values run from 0 to 0.7. The success rate for δ = 10 is only 3% below that for δ = 35.
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