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ABSTRACT

Web service composition provides a means of customized
and flexible integration of service functionalities. Quality-
of-Service (QoS) optimization algorithms select services in
order to adapt workflows to the non-functional requirements
of the user. With increasing number of services in a work-
flow, previous approaches fail to achieve a sufficient relia-
bility. Moreover, expensive ad-hoc replanning is required to
deal with service failures. The major problem with such se-
quential application of planning and replanning is that it ig-
nores the potential costs during the initial planning and they
consequently are hidden from the decision maker. Our ba-
sic idea to overcome this substantial problem is to compute
a QoS optimized selection of service clusters that includes
a sufficient number of backup services for each service em-
ployed. To support the human decision maker in the service
selection task, our approach considers the possible repair
costs directly in the initial composition. On the basis of a
multi-objective approach and using a suitable service selec-
tion interface, the decision maker can select compositions in
line with his/her personal risk preferences.
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1. INTRODUCTION

1.1 Background
In Service-Oriented Architectures (SOA), service providers

offer services that in many cases perform the same task but
with varying Quality-of-Service (QoS) levels. QoS-aware
service selection algorithms can be used to optimize the QoS
of a given workflow during runtime. These algorithms select
for each task one service, by taking, e.g., the price and re-
liability of the resulting workflow into consideration. More-
over, the user may also specify constraints on the QoS of the
workflow. Since the search space is exponential, heuristic
algorithms are employed to compute solutions in a feasible
amount of time.

1.2 Goals
Our main goal is to support the human decision maker in

selecting a service composition that best fits his/her needs
in an open service environment. We intend to compute QoS
optimized compositions that can sustain a certain number
of service failures. For that purpose, we need an extended
QoS model that takes services failures into account. In the
following, we outline the resulting subgoals in more detail.

1.2.1 Sufficient reliability (Goal G1)

Services failures may occur for various reasons, e.g., hard-
ware failures or obsolete registry information. As the num-
ber of services in a workflow grows, the reliability of the
workflow decreases significantly. Let us consider, for in-
stance, a fixed reliability of 95% for each service. A small
workflow containing ten of these services has a reliability of
less than 60%; a workflow containing 25 such services has a
reliability of less than 30%.

The utility of a workflow has often been computed by ag-
gregating the reliability with other QoS attributes, such as
the price, by using a simple additive weighting scheme. Con-
sequently, the algorithms might sacrifice reliability in order
to optimize other QoS attributes. Moreover, even if relia-
bility is the primary objective, the current approaches are
not sufficient to maintain it at a feasible level. In particular,
selection approaches that use skyline queries to prune the
search space [2] exclude potential backup services before the
selection phase.
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For that reason, ad-hoc replanning algorithms have to be
used to replace failed services with backup services. How-
ever, sometimes a service cannot be replaced, e.g., if the
constraints are very tight and only this services can be em-
ployed at a certain stage of the workflow.

1.2.2 Improved QoS model (G2)

Moreover, the current selection algorithms ignore the po-
tential additional costs and longer response times of em-
ploying backup services selected by ad-hoc replanning algo-
rithms. For that purpose, the QoS model needs to cover the
probabilistic nature of the QoS of the workflows in order to
facilitate computations to predict the expected outcome as
well as the outcome in the best and worst cases.

1.2.3 Support of functionally diverse services (G3)

It is unlikely that services sharing the same purpose will
have identical interfaces. Similar services developed and
offered by different service providers would naturally have
slightly different functional interfaces; one may have more
input parameters, while another may have output param-
eters with a different type. Moreover, we expect that the
number of publicly accessible web services will increase dra-
matically from current approx. 28,0001 due to the emer-
gence of Cloud Computing. By including functionally di-
verse services, selection algorithms would have more services
to choose from and more potential backup services would be
able to be employed.
For the above reasons, we claim that selection algorithms

must take the functionality of the services into consideration.
Consequently, certain links between services might be invalid
in a workflow composition, and selections would be unusable
if they included such a link. Moreover, local optima are
more likely in this scenario, leading to poorer results from
heuristic algorithms that explore the search space in a more
or less random manner.

1.2.4 Assisting the user in selecting a solution (G4)

Since multiple valid solutions might be computed, the user
should be able to choose among them intuitively. By com-
paring solutions with each other, their impact on the other
attributes should be visualized when one QoS attribute is
increased.

1.3 Contributions
To reach these goals, we devised a multi-objective opti-

mization algorithm that leverages background knowledge to
discover robust QoS-optimized service selections in an open
service environment. The algorithm takes the costs of po-
tential service failures into account and ranks solutions on
the basis of the risk preferences of the decision maker.
Specifically, we present the following contributions in this

paper:

1. We discuss the consequences of including functionally
diverse services in the selection process. In address-
ing Goal G3, we evaluate and compare state-of-the-art
multi-objective optimization algorithms.

2. We present our own selection algorithm that is based
on a genetic algorithm. It leverages background knowl-
edge on the functionalities of the services to find robust
valid service selections efficiently (Goal G1 and G3).

1according to www.seekda.com (accessed November 2011)

3. Our QoS model takes the reliability of services into
account and enables to compute the expected outcome
of adding backup services to a composition. For each
service we introduce the expected QoS values and the
QoS in the best and worst case. This way, the user
may choose a service selection based on his/her risk
preferences (Goal G2).

4. Finally, we present a graphical tool that helps the user
to find a service selection that best fits his/her needs.
The user inputs QoS and risk preferences, and the tool
ranks the sorted solutions and provides a means to
compare them (Goal G4).

In our previous work [21], we evaluated the benefits of
employing background knowledge on service functionality
for QoS-aware service selection with single objectives. We
compared our algorithm with a genetic algorithm in a dif-
ferent problem setting from the one of the current study. In
this paper, we describe an advanced repair operation, pro-
vide a detailed description of the algorithm and introduce a
new QoS model to consider possible repair costs. Moreover,
we compare our algorithm with various multi-objective op-
timization algorithms. In [20, 22], we evaluated functional
clustering in the context of service planning. The clustering
algorithm could only be applied to scenarios where the back-
ground type hierarchy is known. Moreover, in the following
we present ways to merge clusters.

The rest of the paper is structured as follows: in the next
section we present the preliminaries of service composition
and multi-objective optimization. Section 2 covers related
work. We present our approach in Section 4 and evaluate it
in Section 5. Section 6 concludes this paper.

2. PRELIMINARIES
First, we describe QoS-aware service composition in the

context of functionally diverse services. Next, we discuss
multi-objective optimization and describe some of the re-
lated approaches.

2.1 QoS-aware Service Composition

2.1.1 Services

A service S provides a reusable functionality that is spec-
ified in a service description document. These descriptions
define the required input and provided output parameters of
the service, abbreviated as S.I and S.O. Usually, the inter-
face descriptions are written in WSDL. Semantic annotation
languages such as SA-WSDL can be used to further spec-
ify the parameter types of the service in order to facilitate
logical reasoning on the parameters.

Apart from that, service-level agreements (SLA) docu-
ments that are published by the service provider describe
the QoS attributes of a service. They include, for instance,
the price, response time, and claimed reliability of the ser-
vice, written as Sprice, Stime and Srel. For a detailed clas-
sification of QoS measures, please refer to [17].

2.1.2 Service Compliance

In order to connect a service S to a service S′, S has to pro-
vide an output parameter S.O that can be further processed
by S′. If semantic annotations are provided, a logical rea-
soner exploits a background type hierarchy to check whether
an output o ∈ S.O is compatible with an input i ∈ S′.I. In
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that case, the type of o is the same type or a subtype of i.
If only the WSDL documents are given, the check is done
on the data-structural level by comparing names and basic
types. On the basis on the above considerations, we define
a relation combinable as follows

Definition 1 (Functional compliance). Two services
S and S′ are combinable, written as S → S′ iff.

∃o ∈ S.O . ∃i ∈ S
′
.I . o ∼ i

where the relation ∼ denotes type compatibility.

To execute a service, all inputs have to be provided by
other services or the user.

2.1.3 Workflows

A workflow provides a control flow for two or more ser-
vices. A workflow template contains service tasks instead of
actual services. A task describes an abstract functionality
that can be performed by an actual service. To associate
services to a task, either the functional interface of the ser-
vices is compared with the functional requirements of the
task or the services are collected based on e.g. informal
descriptions. The authors of [3] propose that providers reg-
ister their services at service communities. In this way, they
indicate which functionality is to be carried out by their
services.
In the end, a set of functionally related services, each hav-

ing its own QoS attributes, is associated with the task. Se-
lection algorithms select for each task of a workflow one ac-
tual service such that the QoS of the workflow are optimized.
The set of selected services is called service selection.
Figure 1 shows an example workflow template and a pos-

sible service selection.

S11S12

S13

S41S42

S43

S21S22 S51S52

S31

Task T1 Task T2

Task T4

Task T3

Task T5

Figure 1: Workflow template with service tasks (white cir-
cles) and a corresponding selection (dark grey circles)

Services can be executed in parallel by using either an
AND fork or a XOR fork.

2.1.4 QoS Optimization

The QoS vector Q of the workflow is computed on the
basis of the types of QoS attributes and the control flow of
the workflow. A detailed description of this aggregation can
be found in [4, Table 1]. Many related approaches simplify
the QoS optimization problem by treating it as a single-
objective optimization problem (SOO). For that purpose,
the components of the obtained QoS vectorQ are aggregated
into a single value σ by applying e.g. a weighted sum. SOO
algorithms optimize σ and try to meet the QoS constraints.

2.2 Multi-objective Optimization
In contrast to SOO algorithms, multi-objective optimiza-

tion (MOO) algorithms treat every component of Q as an
objective. Consequently, only a partial-ordering on the so-
lutions exists and it is defined by the dominates relation.

Definition 2 (Dominate relation). A solution W

dominates solution W ′, written as W ≻ W ′, iff W :

1. violates fewer constraints than W ′, or

2. violates as many constraints as W ′ and

∀n
i=1W.Qi ≥ W

′
.Qi ∧ ∃k . W.Qk > W

′
.Qk

In the QoS-aware service selection scenario, a selection W

dominates another selection W ′ in two cases: either W vio-
lates fewer QoS constraints than W ′ or it violates as many
constraints and yields better or equal results in all QoS di-
mensions and yields one better result than W ′ in one di-
mension. The outcome of a MOO algorithm is a set of non-
dominated solutions, also called pareto-optimal solutions:

Definition 3 (Pareto optimality). Given a solution
set W. The solution set WP ⊆ W is called pareto-optimal
with respect to W iff:

∀WP ∈ WP . ¬∃W ∈ W . W ≻ WP

The algorithm cannot judge whether one solution from the
pareto-set is better than another one. Instead, the user ul-
timately selects a solution that best fits his/her preferences.
If any constraint is violated, the solution is invalid.

Several possible indicators exist to compare MOO algo-
rithms; we shall use the hypervolume HV [27]. The HV of
a solution set W means the hypervolume in the objective
space that is dominated by W (cf. Fig. 2).

W1

W2

W3

W4

Figure 2: The hypervolume (grey area) of the pareto front
{W1, W2, and W3}, dominating solution W4

In order to compare multiple algorithms, we merge the
non-dominated fronts of all algorithms into a maximum front
Wmax. The solutions of this front are not dominated by any
solution computed by the algorithms. The HV ratio of W is
then computed by:

HV (W)

HV (Wmax)

If optimization algorithms are used to solve the service se-
lection problem, each task becomes a decision variable, hav-
ing the index of the currently selected service as a value. A
näıve approach to compute a solution is to reduce the MOO
problem to an SOO problem. The SOO algorithm solves
the modified problem multiple times, using various weights,
with the goal of computing a huge variety of solutions. In the
following, we will discuss in brief several algorithms that are
customized to the MOO problem. For details, please refer
to the original studies. The presented algorithms yield the
best results in our problem setting, as shown in Section 5.

WWW 2012 – Session: Web Engineering  2 April 16–20, 2012, Lyon, France

971



2.2.1 NSGA-II

The non-dominated sorting genetic algorithm II (NSGA-
II) [5] employs a fast sorting algorithm to assign genomes
to the right front. Genomes of the first front are not domi-
nated by any other genome, genomes from the second front
are only dominated by genomes from the first front, etc. Af-
ter identifying all fronts, the algorithm tries to preserve the
diversity among genomes by using a crowded comparison
approach.

2.2.2 IBEA

Zitzler and Künzli describe the indicator-based evolution-
ary algorithm (IBEA) in [26]. It uses a binary quality indi-
cator to compare two potential solutions sets, providing an
extension to the original dominates relation. The fitness of
an individual is computed by using the indicator to compare
it with the rest of the population.

2.2.3 GDE3

The Generalized Differential Evolutionary [10] algorithm
(GDE3) provides an MOO extension for the DE algorithm.
It uses an initial random seed and applies select, mutate,
and crossover operations. The magnitude of the mutate op-
eration decreases as the evolution proceeds. It also uses the
notion of crowdedness in a slightly modified version than is
used it the NSGA-II algorithm.

2.2.4 OMOPSO

The particle swarm optimizer OMOPSO [18] defines an
extended notion of leader. In SOO, a leader dominates the
other particles of a PSO, influencing their motion through
the objective space. Since multiple leaders may exist in
MOO, the authors also employ the crowding factor in or-
der to decide which leaders are kept in case too many exist.

3. RELATED WORK

QoS-aware Service Selection.
Since the problem of finding the optimal service selec-

tion [25] is NP-hard, heuristic algorithms [4] have been in-
vestigated as a means of computing near-optimal solutions.
To improve the performance of service selection, some ap-
proaches attempt to prune the search space. In [1], global
QoS-constraints are split up into local constraints for each
single service task. Subsequently, the configuration with the
locally best services is selected. In [2], services that are not
part of the skyline, which may also include backup services,
are removed. Moreover, their definition of dominance [2,
Definition 3] is not sufficient in our setting, since services
that are not part of the skyline might be part of the optimal
solution, e.g. especially in cases where only few functionally
valid solutions exist.

Multi-objective Optimization in Service Selection.
Genetic algorithms have been successfully used for multi-

objective optimization; see, e.g. [19, 23]. These approaches
consider several QoS attributes based on a classical QoS
model as an objective function of the optimization problem.
Thus, it is not possible to use the risk profile of the various
feasible compositions.
The authors of [24] employ a multi-objective stochastic

program to take probabilistic QoS values into account. Al-

though they consider the worst-case scenarios of QoS, they
do not consider service failures.

Reliability and Replanning.
The previous approaches all rely on ad-hoc replanning

when a service failure occurs, as described in for instance [12].
The authors use semantic service discovery on the service
registry to compensate service failures, requiring semantic
annotation to find suitable services.

In [14], a replanning scope is determined and extended to
compensate service failures efficiently. If no suitable service
exists or if the QoS attributes of the backup services are not
sufficient, the execution of the workflow fails. In contrast
to such ad-hoc algorithms, our approach considers service
failures beforehand, taking the individual reliability of each
service into consideration. This way, robust workflows are
created in the initial planning phase.

Jaeger et al. [8] aggregate redundant services and execute
them in parallel in order to optimize the response time and
reliability. For that purpose, they propose three replacement
patterns. In our study, however, we tried to avoid unneces-
sary service invocations in order to minimize the costs.

QoS Models.
The most common QoS model for service selection is pre-

sented in [4, 17]. Several QoS attributes are characterized
and methods to aggregate the QoS are provided.

In [9], a probabilistic QoS model is provided to compute
the expected case of the QoS values. The authors apply this
model for predicting the average QoS of the workflow when
it is executed a number of times. The computed QoS of both
models are only valid if there are no service crashes.

A failure-aware model is presented in [11]. This model
takes into account additional failure recovery times. The
authors infer the QoS by collecting past execution logs. In
our study, we incorporate the reliability of a service in the
computation of the expected QoS a priori.

Functionally Diverse Services.
Regarding functionally diverse services, the matching qual-

ity of the service links is incorporated into the utility func-
tion in [13]. The authors balance the compliance with the
QoS values, not evaluating whether the computed solution
is executable. In our approach we consider the functional
compliance as a hard constraint, requiring selections to fully
satisfy the requested inputs of all used services.

In [7] the authors investigate the gap between the concep-
tual and data-structural level of service composition. They
claim that even if the conceptual types of the parameters of
two services are compatible, the WSDL implementation may
still be incompatible. They focus on automatic composition
and do not take QoS-attributes into account.

Clustering in Service Composition.
The use of clustering prior to the selection phase is de-

scribed e.g. in [15]. The authors use a k-nearest neighbor
algorithm to arrange the services in QoS clusters, without
taking functional compliance into account. The authors of
the EASY project [16] arrange services in a functionality
graph in order to facilitate an efficient service discovery.
They define service compliance in a different way from ours
and do not consider QoS attributes.
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4. APPROACH
Our approach is illustrated in Fig. 3. First, we describe

the method for clustering web services (step 4.1 in the fig-
ure). This method detects backup services for each service
by arranging the services in a functionality graph. Next, we
introduce our modified QoS model that takes backup ser-
vices into account (step 4.2). Finally, we describe our MOO
algorithm SHUURI (step 4.3) that employs this graph and
the model, and show a graphical interface that helps users
to select a service selection that best fits their needs.

S11

S12

S13

S14

S15

N11 N13

N12

NV

N14

N15

S12 S21 S32 S41 S51Genome:

(4.1)
(4.2)
([pbest, pworst],E[p])

([tbest, tworst],E[t])

(rel)

(4.3)
︸ ︷︷ ︸

Task T1

Figure 3: Overview of our approach. The backup services
of S12 are contained in the dotted triangle

4.1 Functional Clustering

4.1.1 Initial Functionality Graph

In the first phase, we detect services that can be easily
replaced and yield a good QoS by arranging services into a
directed-acyclic graph offline. For that purpose, we detect
the services that each service can connect to by examining
the connected tasks and the combinable relation. Subse-
quently, all services from the same tasks are compared with
each other. Figure 4 shows an example clustering of a service
task.

S13

S12

S11

S23

S22

S21

Task T1 Task T2

(a) Service compliance

N12

N11 N13

Cluster C1

(b) Clustering of T1

Figure 4: Clustering of the services of Task T1 from Fig. 1
by considering Task T2. Service S12 can be replaced in every
service composition by S11 and S13 since both can connect
to S22 as well.

Each service is represented by a node in the graph. If two
services can be connected to the same services, the nodes of

these services are merged. Otherwise, if a service S can be
connected to more services than a service S′, then these two
services are connected with a directed edge. Every node
has an input list IL and output list OL to keep track of
all services its corresponding service S can be connected
to. Moreover, each node has two additional lists SC and
OL. N.SC contains the services of N and all services of
its subcluster, i.e. the backup services. N.OL contains the
services that all services from its subcluster can connect to,
in other words, the union of the OL sets of the subcluster
services.

4.1.2 Cluster Unification

The functional clustering arranges services in a graph to
guide the repair process. However, in our algorithm, cluster
fragments may occur in workflow tasks and these fragments
can hinder repairs. To illustrate this idea, let us add services
S14, S15, S24, and S25 to the example shown in Fig. 4. The
set of compatible of the services of Task T1 are shown in
Table. 1.

Service S combinable with

S11 {S21, S22, S24}
S12 {S22, S24}
S13 {S22, S23, S24}
S14 {S24, S25}
S15 {S21, S24, S25}

Table 1: Extended scenario of Fig. 1, leading to a scattered
cluster

In this scenario, the services S14 and S15 become an iso-
lated cluster even though they belong to the same task as
S11, S12, and S13 (cf. Fig. 5a).

In order to merge such cluster fragments, we add virtual
services to the repository that subsume the functionalities of
the fragments (cf. Fig. 5b). In this way, the repair operation
can traverse all services from the same task. In the given
example, let us assume that we merge N12 and N14. We add
a service NV whose IL and OL sets are the intersections of
the corresponding sets in the child nodes.

We iterate this process until we have only one root node
left. The root nodes are selected with a greedy approach;
i.e., the sizes of the unified IL and OL test sets are max-
imized in each node. Therefore, each virtual service can
guarantee that it can be used with a larger number of re-
lated services. In the end, all services are in the same cluster
and reachable from each other.

The clustering is performed offline, so only the repair op-
eration is added to the runtime of the algorithm.

4.1.3 Determining backup services

After computing the final clusters, a set of backup services
is detected for each cluster and sub-cluster root. If service
S fails during execution of the workflow, any service from
the subcluster of S can be employed to replace S. In the
following, we show how to determine which service is to be
executed by computing an execution order for the backup
services.

First, the services of each subcluster are arranged in QoS
fronts. Starting with the first front, the distance to the
cluster root is computed for each service. The execution
order for the backup services is determined by selecting the
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N14N12

N11 N13 N15

Task T1

Cluster C11 Cluster C12

(a) Two fragmented clusters

N14N12

N11 N13 N15

NV

Task T1

Cluster C1

(b) Unified cluster C1

Figure 5: Unifying two clusters C11 and C12 to C1 by intro-
ducing a virtual service node NV

services with the shortest distance to the original cluster
root service. In our example, the execution order of N12

could be: S12 → S13 → S11.
If a service fails, the services from the ordering are used to

replace the service. The number of backup services depends
on the reliability of services. Our experiences indicated that
three backup services are sufficient in most cases.

4.2 Extended QoS Model
As discussed in Section 2.1.3 the QoS attributes of the

workflow are computed by aggregating the QoS of the em-
ployed services. Since in our approach a list of services is
selected instead of single services, we apply a modified QoS
model. This model helps us to predict the expected outcome
of executing a particular service selection.
For each node, the reliability is computed by taking the

reliabilities of the service and the backup services into con-
sideration:

N
rel = 1−

∏

S∈cluster(N)

(1− S
rel)

For the price and response time, three values are com-
puted: the best-case value, worst-case value, and the value
in the expected case. The best-case refers to the one where
the first service that was selected at the beginning can be
executed successfully. In other words, the value corresponds
to the QoS value of the cluster root. In the worst-case all
services in the execution order except for the last service fail.
In that case, the prices and response times respectively are
summed up for all services.
Finally, the expected case takes reliability into account.

For instance, the price of a cluster node is computed using
the following formula:

E[Nprice] = S
price
1

︸ ︷︷ ︸

Price in case 1

· S
rel
1

︸︷︷︸

Probability of case 1

+

+
(
S

price
1 + S

price
2

)

︸ ︷︷ ︸

Price in case 2

·
(
(1− S

rel
1 ) · Srel

2

)

︸ ︷︷ ︸

Probability of case 2

+

+ . . .

The expected value of the response time of a cluster node is
computed in the same way. We employed seven objectives
in the service selection phase:

• Price:
(
[pbest, pworst],E[p]

)

• Response time:
(
[tbest, tworst],E[t]

)

• Reliability: rel

Table 2 lists the QoS of the three example services and re-
sulting QoS of the cluster nodes.

4.3 The SHUURI Algorithm
We developed a MOO algorithm, called SHUURI, to com-

pute approximate pareto-optimal solutions efficiently. This
algorithm is based on the NSGA-II algorithm (cf. Sect. 2.2.1),
but uses customizations and an additional repair operation
that leverages background knowledge to discover valid selec-
tions.

4.3.1 Evolution of the genomes

First, an initial random population is generated. Then,
mutate, crossover, repair, and select operations are per-
formed in each iteration. The mutate operation uses func-
tional clustering with a certain probability. Instead of pick-
ing a random service for substituting S, a service from the
subcluster of S is chosen. In this way, valid links to S are pre-
served after performing the mutate operation. Apart from
that, SHUURI uses a uniform crossover operator.

4.3.2 Repair operation

After applying the mutate and crossover operations, an
additional repair operation is applied to genomes that con-
tain an invalid link between two services. This operation is
performed with a probability Prep. Experiments on MOO
problems show that a good balance could be had with a Prep

of 33%, as was the case in previous experiments with SOO.
Given the functional clustering, the algorithm searches se-

lectively in order to repair an invalid link instead of replacing
services in a more or less random manner. Algorithm 1 is
the pseudo code of the repair operation.

Algorithm 1: Repair operation

1 foreach Cell c ∈ invalidCells(g) do
2 Set S := c.SC;
3 foreach Service S . ∃ Service link l = (S, c) do
4 S := S ∩ S.OL;
5 end

6 if S 6= ∅ then

7 Set cand :=new Set;
8 foreach Service S′ ∈ T ′ where

∃tl ∈ tlinks . tl =
(
T ′, T (c)

)
do

9 if S ∩ S′.OL 6= ∅ then cand := cand ∪ S′;
10 end

11 foreach Service S′′ ∈ c.SC do

12 if S ∩ S′′.SC 6= ∅ then cand := cand ∪ S′′;
13 end

14 g′ := g.replace
(
c, selectSubstitute(cand)

)
;

15 else

16 if c 6= Root then

17 g′ := g.replace
(
c, c.getRandomParent()

)
;

18 end

19 end

20 end

First, the set S is initialized with the subcluster of an
invalid cell of a genome g (line 2). A cell is invalid if its
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Service QoS Aggregated Cluster QoS

Service Price Time Rel. Node Price:
(
[pbest, pworst],E[p]

)
Time:

(
[tbest, tworst],E[t]

)
Rel.

S11 2$ 290ms 70% N11

(
[2, 2], 2

)
$

(
[290, 290], 290

)
ms 70%

S12 3$ 240ms 30% N12

(
[3, 10], 5.5

)
$

(
[240, 710], 481

)
ms 83%

S13 5$ 180ms 20% N13

(
[5, 5], 5

)
$

(
[180, 180], 180

)
ms 20%

Table 2: Example QoS values for the scenario of Fig. 1

selected service has an invalid link to another service. Next,
the union of the output lists OL is computed (line 4) for all
ingoing links to this service.
As described above, if this intersection is not empty, the

link can be repaired by replacing a service with ones found
by descending the functionality graph. We compute the list
of candidates by checking whether possible preceding ser-
vices (line 9) or services from the subcluster (line 12) can be
employed. Finally, a random service is selected in line 14.
If the intersection in line 6 is empty, no child service of c or

its connected services can repair the invalid link. Therefore,
we ascend the graph by selecting a random parent node in
line 17 and try to repair the genome in the next iteration.
Figure 6 visualizes how the repair operation traverses the

functionality graph. The links of the two incoming services
SN′ and SN′′ , represented by nodes N ′ and N ′′, are both
invalid. To judge whether the links can be repaired by de-
scending the graph, the union N ′.OL ∪ N ′′.OL = {Si} is
compared with the SC sets of the subclusters. Since only
N2.SC contains service Si, the original service SN is replaced
by SN2

N

N ′′

N ′

N1 N2 NM

SNSN′SN′′ SN′′ SN′ SN2

. . .

. . .

⇒

CN1 CN2 CNM

N1.SC = {Sk, Sj} N2.SC = {Si, . . .} NM .SC = {Sl, . . .}

N ′.OL = {Si, Sj}

N ′′.OL = {Si, Sk}

Figure 6: Selecting a subcluster to repair an invalid link
between SN and its two incoming services SN′ and SN′′

4.4 Composition Selection Interface
After the pareto-optimal set of solutions has been com-

puted, the graphical interface is used to select a solution.
The user initially defines his/her preferences regarding the
QoS attributes (price, response time, and reliability). More-
over, the user may provide a risk value, indicating whether
he/she is risk loving, risk neutral, or risk averse, cf. Fig. 7.
A high risk loving preference favors the best-case values of

price and response time. Otherwise, the ordering focuses on
the worst-case values.

On the basis of these selections, the tools present an or-
dered list of solutions and a spiderweb diagram where the
user may compare solutions (cf. Fig 10). In this way, the
user may balance different solutions and mark solutions for
later comparisons.

Figure 7: The settings dialog in which the user chooses
his/her QoS and risk preferences

5. EVALUATION
We evaluated how well MOO algorithms perform in the

problem setting of functionally diverse services by using our
extended QoS model. We examined the quality of the solu-
tions found, i.e. whether the objectives were optimized and
constraints were met. Hence, this evaluation was of whether
the QoS model from goal G2 also reaches goal G3.

Moreover, we were interested in whether the algorithms
could achieve sufficient reliability depending on the work-
flow length and average service compliance. The average
service compliance denotes the probability that a service
can be connected to another one. Services with low com-
pliance exhibit high functionally diversity. This evaluation
addresses goals G1 and G3.

We have employed the jMETAL 3.1 framework [6] which
provides 15 multi-objective optimization algorithms. We
compared SHUURI these other algorithms on the basis of
the hypervolume indicator and reliability they achieved. For
the sake of readability, we shall only discuss the results of
the top-five approaches in the following.

The services and workflows were randomly generated and
each task had 20 alternative services. The parameter types
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Figure 8: Comparing the hypervolume ratio
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Figure 9: Evaluating the reliability of the computed selection

were associated with random concepts of the SSUMO ontol-
ogy. The QoS of the services were randomly generated ex-
pect for the price, which was partially random and partially
anti-correlated to the other QoS parameters. We evaluated
every test case 100 times and limited the runtime of each al-
gorithm to 5000 ms. We applied random constraints on the
response time and price. Depending on the scenario, the
algorithms optimized three or seven objectives, had to meet
QoS constraints, and compute a functionally valid selection.

5.1 Comparing the Hypervolume Ratio
In the first experiment we computed for each algorithm

the ratio between the hypervolume of its computed first
front and the hypervolume of the merged fronts of all al-
gorithms (cf. Section 2.2). All algorithms used the modified
QoS model of Section 4.2, employing the functionality graph
to evaluate the expected reliability of the workflow.
Figure 8a shows the results for various workflow lengths

and an average service compliance of 60%. SHUURI achieved
the best results and the difference to the other algorithms
became more apparent as the workflow length increased.
In the next experiment, we compared test sets with vary-

ing average service compliance, using a workflow of length
30. The lower the average service compliance was, the more

difficult it became to discover valid selections. SHUURI
yielded the best results regardless of the service compliance.

In summary, SHUURI had a constant HV ratio of ap-
prox. 90%, whereas the other algorithms had a decreasing
HV ratio as the problem size grew. We concluded that the
random explorations of the search space performed by the
other heuristic algorithms were not sufficient for computing
a good approximation of the pareto-front. Since our algo-
rithm leveraged background knowledge efficiently, it discov-
ered feasible solutions in a selective way, leading to a better
approximation of the pareto-optimal set.

5.2 Comparing the reliability
In the next experiment, we evaluated the reliability of the

solutions. Each service reliability was randomly generated
in a range between 95% and 100%. SHUURI employed the
modified QoS model, whereas the other algorithms used the
common one in which the algorithms neglect backup ser-
vices and replace services ad-hoc; i.e., after computing a
selection, backup services are aggregated for each service.
We compared the reliabilities of the top-ten solutions.

As in the previous experiments, we varied the workflow
lengths (cf. Fig. 9a), and the average service compliance was
40%. SHUURI yielded the best reliability with increasing
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workflow length, whereas the other optimization algorithms
had increasingly insufficient reliability.
In the next experiment (cf. Fig. 9b) we modified the ser-

vice compliance, and used a workflow with a fixed length of
30. Using test sets with low service compliance, the relia-
bility of all algorithms decreased, but SHUURI’s selections
still had the highest reliability.
On the basis of these results, we concluded that SHU-

URI combined with the extended QoS model significantly
increases the reliability of the selections. The other algo-
rithms tend to select services having a good reliability but
cannot be replaced by other services. In cases where only
few backup services exist, the algorithms compute selections
that do not have sufficient reliability. SHUURI, on the other
hand, is at least able to sustain a reliability of approx. 80%.

5.3 GA Convergence
The last experiment evaluated the convergence of the two

genetic algorithms, NSGA-II and SHUURI, depicted in Fig. 11.
We used the average HV ratio of the merged front of ten test
runs, allowing each algorithm 200 iterations. The workflow
length of was 30, and the service compliance was 60%. SHU-
URI required a few more iterations to achieve the same HV
ratio as NSGA-II but it converged to a higher value.

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Generations

H
V

ra
ti
o

SHUURI

NSGA-II

Figure 11: Convergence of NSGA-II and SHUURI

6. CONCLUSION
We discussed our approach to supporting decision mak-

ers in finding robust, QoS optimized service compositions
in an open service environment. Our approach takes func-
tionally diverse services into account that are a consequence
of such an environment. This results in a larger number of
backup services, thus increasing the robustness of the result-
ing workflows. We developed a new QoS model that helps
to predict the resulting QoS of a workflow by considering
service failures during the initial selection phase. For each
service, we compute a set of possible backup services before-
hand and evaluate the QoS of this selection.
We compared our selection algorithm, which is based on a

multi-objective genetic algorithm with other state-of-the-art
MOO algorithms. The computed solution set of our algo-
rithm contains solutions with higher quality and reliability
as the problem size grows.
Finally, we presented a graphical interface that enables the

decision maker to compare and choose a solution that best
fits his/her needs. He/she provides his/her preferences and
risk attitude and receives an ordered list of pareto-optimal
selections.

As a next step, we plan to apply our approach in ser-
vice planning [22] that computes workflow templates. Com-
bining both approaches we can provide a flexible and QoS
optimized solution for composing workflows automatically.

Moreover, we intend to extend our approach to consider
inter-service-dependent QoS attributes. In this way, the
time and performance of preceding services can be taken
into consideration.
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