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ABSTRACT
We investigate the design of mechanisms to incentivize
high quality outcomes in crowdsourcing environments with
strategic agents, when entry is an endogenous, strategic
choice. Modeling endogenous entry in crowdsourcing mar-
kets is important because there is a nonzero cost to making
a contribution of any quality which can be avoided by not
participating, and indeed many sites based on crowdsourced
content do not have adequate participation. We use a mech-
anism with monotone, rank-based, rewards in a model where
agents strategically make participation and quality choices
to capture a wide variety of crowdsourcing environments,
ranging from conventional crowdsourcing contests with mon-
etary rewards such as TopCoder, to crowdsourced content
as in online Q&A forums.

We begin by explicitly constructing the unique mixed-
strategy equilibrium for such monotone rank-order mech-
anisms, and use the participation probability and distribu-
tion of qualities from this construction to address the ques-
tion of designing incentives for two kinds of rewards that
arise in the context of crowdsourcing. We first show that
for attention rewards that arise in the crowdsourced content
setting, the entire equilibrium distribution and therefore ev-
ery increasing statistic including the maximum and average
quality (accounting for participation), improves when the
rewards for every rank but the last are as high as possible.
In particular, when the cost of producing the lowest possi-
ble quality content is low, the optimal mechanism displays
all but the poorest contribution. We next investigate how
to allocate rewards in settings where there is a fixed total
reward that can be arbitrarily distributed amongst partic-
ipants, as in crowdsourcing contests. Unlike models with
exogenous entry, here the expected number of participants
can be increased by subsidizing entry, which could poten-
tially improve the expected value of the best contribution.
However, we show that subsidizing entry does not improve
the expected quality of the best contribution, although it
may improve the expected quality of the average contribu-
tion. In fact, we show that free entry is dominated by taxing
entry— making all entrants pay a small fee, which is rebated
to the winner along with whatever rewards were already as-
signed, can improve the quality of the best contribution over
a winner-take-all contest with no taxes.
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1. INTRODUCTION
Crowdsourcing, where a problem or task is broadcast to

a crowd of potential contributors for solution, is a rapidly
growing online phenomenon being used in applications rang-
ing from seeking solutions to challenging projects such as in
Innocentive or TopCoder, all the way to crowdsourced con-
tent such as on online Q&A forums like Y! Answers, Stack-
Overflow or Quora. The two key issues which arise in the
context of crowdsourcing are quality— is the obtained so-
lution or set of contributions of high quality?— as well as
participation— there is a nonzero effort or cost associated
with making a contribution of any quality in a crowdsourc-
ing environment which can be avoided by simply choosing
to not participate, and indeed many sites have too little con-
tent. In such a setting, the effort an agent decides to exert
will depend on how many other agents are likely to partici-
pate and how much effort they will exert, since the amount of
effort necessary to obtain a particular reward depends both
on the number and strength of competitors an agent faces.
Naturally, the level of effort agents choose, and therefore
the quality of the output created, depends on the incentives
offered to agents. How should rewards be designed to incen-
tivize high effort, in a setting where entry is an endogenous,
strategic choice?

We are motivated by two different kinds of questions that
arise in the context of designing rewards for crowdsourced
content, depending on the setting and the nature of the re-
wards. The first is in the context of attention rewards on
user-generated content (UGC) based sites, such as online
Q&A forums like Quora or StackOverflow. Here, the mech-
anism designer, or site owner, has a choice about how many
of the received contributions to display, i.e., how to reward
the contributions with attention — he could choose to dis-
play all contributions for a particular task, or display only
the best few, suppressing some of the poorer contributions.
What strategy improves the quality of the best contribution
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supplied? What about the average quality of contributions?
On the one hand, suppression should cause quality to rise,
because the payoff to poor content falls; on the other hand,
suppressing content also corresponds to decreasing the total
reward paid out, which could decrease quality. Is it a good
idea, in a game-theoretic sense, to display all contributions?

The second question arises in settings where there is
some fixed total available reward which can be distributed
arbitrarily amongst the agents. This happens, for example,
in the setting of crowdsourcing contests with monetary
rewards, where the principal posing the challenge or task
offers some fixed amount of money for obtaining the solution
to the challenge. Another instance is systems which reward
agents with virtual points1. (The distinction between this
setting and attention rewards is that it is not possible to take
away attention from the second position and add it to the
first position since, to a first approximation, attention to the
second spot comes from a subset of viewers providing atten-
tion to the first; so attention rewards cannot be arbitrarily
redistributed across ranks.) How can rewards be designed
to improve the quality of contributions in settings with ar-
bitrarily redistributable rewards, when entry is endogenous?

Our contributions. We use a mechanism with mono-
tone, rank-based rewards in a model with contributors who
strategically choose both participation and quality to si-
multaneously capture a wide variety of crowdsourcing en-
vironments, ranging from conventional crowdsourcing con-
tests with monetary rewards such as TopCoder, to crowd-
sourced content such as in Q&A forums. We first analyze the
equilibria of such monotone rank-order mechanisms, and ex-
plicitly construct the unique mixed-strategy equilibrium for
this mechanism (§3). We then use this construction, which
explicitly gives us the equilibrium participation probability
and distribution of qualities, to address the question of how
to design rewards for each of the two settings previously
mentioned.

We first show (§4) that for attention rewards, the en-
tire equilibrium distribution and therefore every increasing
statistic, including the maximum and average quality (ac-
counting for participation) improves when the rewards for
every rank but the last are as high as possible: if there are
n potential contributors, then the optimal mechanism sets
the attention rewards for ranks 1 through n − 1 to be the
maximum possible, while the attention to the nth rank is
curtailed to the cost of producing the lowest possible quality
contribution (note here that k < n agents may participate,
in which case only the rewards for ranks 1, . . . , k are given
out). If this cost is low, this prescribes, roughly speaking,
displaying all but the poorest contribution.

We next investigate redistribution of rewards (§5). Un-
like in models with exogenous entry with a fixed number
of participants, it is possible here to increase the expected
number of participants by subsidizing entry, for example,
by providing a small reward to all participants in addition
to a large reward to the winner. In models with exogenous
entry, more participants lead to higher qualities, suggesting
that subsidizing entry may be productive in this endogenous

1If the value of points is determined only in proportion to
the total number of points awarded (so that just doubling
the number of points awarded for all tasks has no effect on
incentives), the total number of points available to reward
agents with is effectively fixed as well.

entry setting as well. Also, even if subsidizing entry (at the
cost of paying less to the winner) were to reduce the equilib-
rium distribution from which each contributor chooses her
quality, the expected value of the maximum quality could
nonetheless increase when the number of contributors in-
creases, since we have the maximum of a larger number of
random variables. However, we show that subsidizing entry
does not improve the expected value of the maximum qual-
ity, although it may improve the expected value of the total
contribution. In fact, we show that free entry (corresponding
to a winner-take-all contest) is dominated by taxing entry -
making all entrants pay a small fee, which is rebated to the
winner along with whatever rewards were already assigned,
can improve the expected quality of the outcome.

A number of proofs have been removed for want of space,
and can be found in the full version of the paper [10].

Related work. There is a growing literature on the op-
timal design of contests [14, 15, 13], as well as specifically
on the design of online crowdsourcing contests [1, 4, 3] and
online procurement (e.g., [16]). The most relevant of these
to our work are the following. [14] investigates the opti-
mal structure of rewards when the objective is to maximize
the sum of qualities of contributions, for concave, linear and
convex costs; [15] also considers the objective of maximizing
the highest quality contribution. [1] studies the optimal de-
sign of crowdsourcing contests in a setting with agents with
heterogeneous abilities and linear costs, when the objective
is to maximize the sum of the top k qualities minus the to-
tal reward paid out to agents. [3] study the design and
approximation of optimal crowdsourcing contests modeled
as all-pay auctions, again for agents with linear costs, and
investigate the extent of wasted effort compared to conven-
tional procurement. There is also a voluminous economics
literature on contest design not focused on crowd-sourcing,
see, for example, [2] and references therein.

The key difference between this literature and our work is
endogenous entry– all these papers assume some fixed num-
ber n of contestants who always participate (i.e., the cost of
producing the lowest possible quality c(0) = 0), whereas
whether to participate or not is an endogenous strategic
choice in our model (i.e., we allow for c(0) > 0). That en-
dogenous participation may matter is foreshadowed by the
auction literature, which is the basis for much of the mod-
eling of crowdsourced content provision— auctions with en-
dogenous entry are quite different than auctions with exoge-
nous participation. For instance, while posting monopoly
reserve prices is always part of seller maximization in auc-
tion models with exogenous participation, a monopoly seller
sets efficient reserve prices when participation is endogenous
[12]. Endogenous entry makes a substantial difference in the
crowd-sourcing models for much the same reason— it is no
longer possible to reduce the profits of the contributors, be-
cause those profit levels are determined by the cost of entry.
Our results on the optimality of taxing in §5 are foreshad-
owed by Taylor [17] and Fullerton and McAfee [5], both of
whom show, albeit in different settings, that free entry pro-
duces too much entry. An additional, though less important,
difference with the literature on online crowdsourcing con-
tests [1, 3] is that we allow general cost functions rather than
restricting linear cost functions.

There is also a related literature on models with endoge-
nous entry [12, 5, 17, 9, 7, 8], although largely outside the
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specific setting of contest design (with the exception of [17,
8]). [17] studies a setting with agents who all have a com-
mon exogenous cost to participation, and draw the quality
of their output from some distribution. An agent’s only
strategic choice is whether or not to enter in each period
of a possibly multi-period game. In this model, [17] finds
that restricting entry with taxation is optimal. The key
difference from our work, of course, is that quality is an
endogenous choice in our model as opposed to an exoge-
nous draw from a distribution. [8] uses a very similar agent
model to that in [17], but instead addresses the question
of implementation of optimal outcomes— are contest struc-
tures where the highest quality contribution receives some
high prize and all other contributions receive some low prize
adequate to implement the optimal outcome achievable with
nonstrategic agents? We do not address the question of im-
plementability of optimal outcomes, but rather ask how to
improve equilibrium outcomes. [9, 7] address the question
of incentivizing high-quality user-generated content (UGC)
in a game-theoretic framework with strategic agents and en-
dogenous entry, a setting related to that of crowdsourced
content. However, [9, 7] focus on the performance of mech-
anisms in the limit of diverging rewards (as is the case with
attention rewards in the context of very popular UGC sites
such as Youtube or Slashdot), while our results address the
case of finite, or bounded, rewards, as is relevant in much of
crowdsourcing.

2. MODEL
We model a general social computing or crowdsourcing

scenario as a game with rank-dependent rewards, i.e., a
rank-order mechanism with reward ai for producing the ith
best contribution, and focus on the effect of the reward struc-
ture on the qualities of contributions produced by strategic
agents in a single micromarket, such as one crowdsourcing
contest or a question in a Q&A forum.

There is a micromarket with a pool of n agents, each of
whom is a potential participant in this micromarket. Each
agent can choose whether to contribute or not, as well as
the quality of the contribution she makes if she chooses to
enter. Agents make the decision of whether to participate
strategically, i.e., entry is endogenous, and each agent that
chooses to participate then chooses her level of effort, mod-
eled as the quality q of the output she produces, strategically
to maximize her utility. We next describe the utility of an
agent.

The cost, or effort, required to producing a contribution
of quality q for each agent is c(q). We will assume that
c(q) ≥ 0 is some strictly increasing, continuously differen-
tiable function of q. Although we do not need this assump-
tion, it will be useful to imagine that c(0) > 0, i.e., there
is a nonzero cost to producing a contribution, even one of
the lowest possible quality. This nonzero participation cost
models, for example, the cost of reading and understanding
the task for which contributions are being solicited, which
can be avoided by simply choosing to not participate. Since
c(0) > 0, participation always has a strictly positive cost,
whereas not participating at all incurs zero cost and pro-
duces zero benefit, and therefore has a net utility of 0.

Homogeneity. Note that our model of costs assumes ho-
mogeneity amongst all potential contributors, corresponding
to assuming that agents do not differ in their abilities, but
simply in the amount of effort that they choose to put in.

While there are indeed settings where potential contributors
may differ widely in their abilities, there are also settings
where it is effort, rather than ability, which dominates the
quality of the outcome produced (for example, writing a
review for a product on Amazon, or producing an article
for a crowdsourced-content based site such as Associated
Content which requires exhaustively researching the topic
rather than inherent expertise, fall in this category). Also,
in several settings, such as specific topics or categories
in Q&A forums like Quora or Stackoverflow, the set of
potential contributors may be self-selected to have rather
similar abilities or expertise levels, and therefore have
similar costs to producing a particular quality. While the
most complete model of the real world would allow for
differences in both ability and effort, we choose here to focus
on strategic choice of effort, i.e., to focus on the strategic
question faced by an agent of “how little effort can I get
away with?”, since this is a reasonable first approximation
in many settings relevant to crowdsourcing.

Mechanism G(a1, a2, . . . , an). Once agents have made
their participation and quality choices, the mechanism ob-
serves the qualities qi produced by the agents who enter, and
awards prizes ai to the participants in decreasing order of
quality. Specifically, a mechanism G(a1, a2, . . . , an) awards a
prize of value ai to the entrant who produces the ith highest-
quality contribution. If more than one agent produces the
same quality, the mechanism breaks ties randomly amongst
these agents to obtain a strict rank order, and assigns re-
wards according to this order. No prizes are awarded to
agents who do not enter, and specifically, if no agent partic-
ipates, no prize is awarded. We note here that we assume
that qualities are perfectly observable, as in all the prior lit-
erature on contest design and crowdsourcing contests [14, 3,
4, 1]— since each task in a crowdsourcing environment is
usually posed by some principal who can rank the contri-
butions in decreasing order of quality (such as the person
posting the task in a crowdsourcing contest or the asker in
an online Q&A forum), this assumption is reasonable, par-
ticularly since G(a1, a2, . . . , an) only uses the relative ranks,
and not the actual absolute values of the qualities.

We will focus throughout on monotone mechanisms, in
which higher ranks receive higher rewards, and not all re-
wards are equal.

Definition 2.1. Consider a micromarket with n agents.
We say G(a1, a2, . . . , an) is a monotone mechanism if a1 ≥
a2 . . . ≥ an and at least one inequality is strict, i.e., ai >
ai+1 for some 1 ≤ i ≤ n − 1. We say G(a1, a2, . . . , an) is
monotone nonnegative if G(a1, a2, . . . , an) is monotone and
an ≥ 0, i.e., all rewards are nonnegative.

Solution concept. We use the solution concept of a
symmetric Nash equilibrium, since agents’ payoff functions
are symmetric in the parameters of the game. In a sym-
metric strategy, each contributor participates with the same
probability and follows the same strategy of quality choices
conditional on participating. We will denote a pair of par-
ticipation probability and CDF that constitute a symmetric
mixed strategy by (p,G(q)).

Definition 2.2. A symmetric mixed strategy equilib-
rium (p,G(q)) is a probability p and a distribution G over
qualities q such that when every agent enters with probability
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p, and chooses a quality drawn from the CDF G(q) condi-
tional on entering, no agent can increase her expected utility
by deviating from this strategy, i.e., by changing either the
probability with which she participates or the distribution G
from which she draws a quality.

3. EQUILIBRIUM ANALYSIS
We begin by analyzing the equilibria of the mechanism
G(a1, a2, . . . , an), which we will then use to compare out-
comes in different mechanisms. We first prove the follow-
ing simple lemma, which eliminates the possibility of ‘pure
strategy’ equilibria in which all participants choose the same
quality.

Lemma 3.1. There exists no symmetric equilibrium in
the game G(a1, a2, . . . , an) where all participants choose the
same quality q conditional on entering when the cost c(q) is
continuous.

Proof. Suppose there is a symmetric equilibrium in
which all participants choose the same quality q conditional
on entering. If k agents enter (where k can be a random
variable if participants randomized over the choice of en-
try), the expected payoff to each agent that enters (where

the expectation is over random tiebreaking) is
∑k
i=1 ai/k.

So the expected payoff to an agent who enters with quality
q is the expectation over all possible values of k,

E[U(q, q−i)] =

n∑
k=1

Pr(k)

k∑
i=1

ai
k
− c(q).

But note that entering with quality q+ε is a profitable devi-
ation if all other agents who enter choose quality q: choosing
q+ ε gives this agent a reward of a1 for all values of k. Since
ai > ai+1 for some i, a1 >

∑n
i=1

ai
n

(and Pr(n) > 0 in a
symmetric equilibrium in which all participants enter with
some positive probability). Since c(q) is continuous, there
exists a choice of ε such that

E[U(q + ε, q−i)] > E[U(q, q−i)]

which constitutes a profitable deviation, contradicting the
assumption that there is a symmetric equilibrium in which
all agents choose the same quality.

Since there can exist no symmetric pure strategy equilib-
ria in which all agents choose a single quality q∗ conditional
on entering, we will investigate symmetric mixed strategy
equilibria where all agents randomize over their choice of
quality (conditional on entering) using the same distribu-
tion. First, of course, we need to establish the existence of
such symmetric mixed strategy equilibria— we will do this
by explicitly constructing such an equilibrium.

The next theorem establishes some properties that any
symmetric mixed strategy equilibrium to G(a1, a2, . . . , an),
if one exists, must possess. We will use these properties to
prove the existence of a symmetric mixed strategy equilib-
rium by constructing one in Theorem 3.2.

Theorem 3.1. Let (p,G(q)) be any symmetric mixed
strategy equilibrium to G(a1, a2, . . . , an). If the agents’ cost
c(q) is continuous and strictly increasing in q, then G(q) is
continuous, i.e., contains no mass points, and has support
on an interval with left endpoint 0.

Proof. Let U(q) =
∑n
i=1 aiPr(i|q), where Pr(i|q) is the

probability of being ranked ith when choosing quality q,
given that the remaining agents participate with probabil-
ity p and draw qualities according to the distribution G(q)
conditional on participating, and ties are broken at random.
U(q) is the benefit to this agent from entering with quality
q when other agents play (p,G(q)). The payoff to an agent
who enters with quality q, when other agents play according
to a mixed strategy (p,G(q)) in G(a1, a2, . . . , an) is

π(q) = U(q)− c(q) =

n∑
i

aiPr(i|q) − c(q).

1. G(q) has no mass points: We first show that G(q) is
continuous on its support, i.e., it has no mass points.
Suppose not; let q0 be a mass point. Then, since ties
are broken randomly, note that

lim
ε→0

U(q0 + ε) > U(q0),

since there is a positive probability of a tie at q = q0,
which can be eliminated by choosing a slightly higher
quality. This implies that there is an ε such that the
payoff from choosing q0 +ε is strictly greater than that
at q0, since the cost function c is continuous in q:

lim
ε→0

π(q0 + ε) = lim
ε→0

(U(q0 + ε)− c(q0 + ε))

> U(q0)− c(q0).

But this means q0 cannot belong to the support of an
equilibrium distribution G, a contradiction. So G(q)
is continuous on its support.

2. qmin = 0: Let qmin denote the infimum of the qual-
ities in the support of G. Since G contains no mass
points as shown above, G(qmin) = 0. Suppose, for
a contradiction, that qmin > 0. But then, an agent
can profitably deviate by choosing qmin − ε instead of
qmin: since G(qmin) = 0, an agent choosing qmin will be
ranked lowest among all agents who enter anyway, i.e.,
U(qmin− ε) = U(qmin). But c(qmin) > c(qmin− ε) since
c(q) is strictly increasing, so π(qmin − ε) > π(qmin),
yielding a profitable deviation, contradicting qmin be-
longing to the support of an equilibrium distribution.
This argument holds for any quality strictly greater
than the lowest quality, which is 0. Therefore, any
equilibrium distribution G must have qmin = 0.

3. Interval support: Finally, we argue that the support
of G(q) must be an interval (i.e., the support contains
no ‘holes’), or equivalently, G(q) is strictly increasing
between 0 and q̄, where G(q̄) = 1. Suppose not; then
there must exist some q1 < q2 such that G(q1) = G(q2)
(recall that we have already ruled out mass points, so
specifically, there can be no mass point at q2). But
then U(q1) = U(q2), since the quality q affects the
probability of being ranked in any particular position
only via G(q) (see (1)). So

π(q2) = U(q2)− c(q2)

< U(q1)− c(q1) = π(q1)

since c(q1) < c(q2), a contradiction to q2 belonging to
the support in equilibrium.

WWW 2012 – Session: Crowdsourcing April 16–20, 2012, Lyon, France

1002



The probability Pr(i|q) that an agent choosing quality q
has the ith highest quality when the remaining n− 1 agents
play according to (p,G(q)) when G(q) is continuous, is the
probability that i − 1 other agents participate (each with
probability p) and choose quality greater than q (each with
probability 1−G(q)), and the remaining n− i agents either
do not participate or choose quality less than q, i.e.,

Pr(i|q) =

(
n− 1

i− 1

)
(p(1−G(q))i−1(1− p(1−G(q)))n−i.

Note that this expression is valid only because G has no
mass points, since if there is a mass point at q there is a
positive probability of more than one agent using the same
quality, which leads to ties that are broken randomly.

Then, the benefit U =
∑n
i=1 aiPr(i|q) under a continuous

CDF G is

U =

n−1∑
i=0

ai+1

(
n− 1

i

)
(p(1−G(q))i(1− p(1−G(q)))n−1−i.

(1)
Before proceeding with the construction of an equilibrium,

we evaluate a derivative which will be used repeatedly in our
proofs in this section. Setting

x(q) = p(1−G(q)),

write

U(x) =

n−1∑
i=0

ai+1

(
n− 1

i

)
xi(1− x)n−1−i. (2)

Then,

dU

dx
=

n−1∑
i=0

ai+1

(
n− 1

i

)
ixi−1(1− x)n−1−i

−
n−1∑
i=0

ai+1

(
n− 1

i

)
(n− 1− i)xi(1− x)n−2−i

= (n− 1)

n−2∑
i=0

ai+2

(
n− 2

i

)
xi(1− x)n−2−i

− (n− 1)

n−2∑
i=0

ai+1

(
n− 2

i

)
xi(1− x)n−2−i,

so that

dU

dx
= (n− 1)

n−2∑
i=0

(ai+2−ai+1)

(
n− 2

i

)
xi(1−x)n−2−i. (3)

For a monotone mechanism, i.e., with ai ≥ ai+1 and at least
one strict inequality, note that dU

dx
> 0 for x ∈ (0, 1).

Now we will use Theorem 3.1 to construct, and therefore
demonstrate the existence of a symmetric mixed strategy
equilibrium (p,G(q)) in G(a1, a2, . . . , an).

Theorem 3.2 (Equilibrium Construction). There
exists a symmetric mixed strategy equilibrium (p,G(q)) to
G(a1, a2, . . . , an) when ai ≥ ai+1 for all i; this equilibrium
is unique up to inclusion of the endpoints of the support.

Proof. We will construct a candidate pair (p,G(q)) for
which no agent can benefit by changing p and no agent will
want to deviate from G(q); to finish the proof we verify

that p and G(q) are indeed a valid probability and CDF,
respectively.

Before constructing the equilibrium, we note that if
a1 ≤ c(0), i.e., the maximum possible reward is less
than the cost of producing the lowest possible quality, no
agent can derive nonnegative utility from participating in
G(a1, a2, . . . , an) irrespective of the actions of other agents.
In this case, the only equilibrium is that no agents partic-
ipate in G(a1, a2, . . . , an) (i.e., p = 0; the choice of G(q) is
meaningless), which is not very interesting. In what follows,
therefore, we will assume that a1 > c(0).

First, from Theorem 3.1, we know that a mixed strategy
equilibrium (p,G(q)), if one exists, has support on an inter-
val [0, q̄] with G(0) = 0 and G(q̄) = 1. Also, since G(q) is
continuous, the payoff at quality q ∈ [0, q̄] is

π(q) = U(p(1−G(q))− c(q),

where U(x) is the function defined in (2).
Using the fact that 0 belongs to the support and G(0) = 0

(no mass points), we can write the payoff at 0 as

π(0) = U(p)− c(0)

=

n−1∑
i=0

ai+1

(
n− 1

i

)
(1− p)n−1−ipi − c(0).

If p = 1, U(p) = U(1) = an
2. Therefore, if p = 1, π(0) =

an − c(0). But for p to be an equilibrium probability of
participation, we must have π(0) ≥ 0. Therefore, p can
be 1 only if an ≥ c(0), i.e., if an < c(0) then p < 1 in
equilibrium. Conversely, if an ≥ c(0), we must have p = 1
in equilibrium. At p = 1, π(0) = an − c(0) ≥ 0. Since U(p)
is a strictly decreasing function of p on (0, 1), π(0) > 0 for
any p < 1. But then if p < 1, an agent has an incentive to
deviate and increase the probability of participation since
payoffs are strictly positive, contradicting the fact that p is
an equilibrium participation probability. Therefore, p = 1 if
and only if an ≥ c(0).

For (p,G(q)) to be an equilibrium, we must have equal
payoffs throughout the support, i.e.,

π(q) = K

for all q ∈ [0, q̄]. Further, since (p,G(q)) is a free entry
equilibrium, no agent must have an incentive to change her
decision to participate. This means that if p < 1, we must
have K = 0, i.e., equilibrium payoffs must be zero unless
p = 1. We now use this together with the previous argument
to construct our equilibrium.

1. an < c(0): If an < c(0), then set p to be the value that
satisfies

n−1∑
i=0

ai+1

(
n− 1

i

)
(1− p)n−1−ipi = c(0). (4)

Note that the left-hand side is a continuous, strictly
decreasing function of p on (0, 1), taking value a1 at
p = 0 and an at p = 1. Therefore there is a unique
solution in (0, 1) to this equation when c(0) satisfies
an < c(0) < a1, i.e., there is a unique solution p which
is a valid probability.

2This corresponds to the fact that when all agents partici-
pate (p=1), an agent choosing 0 quality comes in last (recall
that there is no mass point at 0) and gets benefit an.
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The distribution G(q) is the solution to

n−1∑
i=0

ai+1

(
n− 1

i

)
(1−p(1−G(q)))n−1−i(p(1−G(q))i = c(q).

for each q in [0, q̄], where q̄ is the unique solution (since
c(q) is strictly increasing) to

c(q̄) = a1.

Note that the value of q̄ is that which solves G(q̄) = 1
in the equation above.

2. an ≥ c(0): If an ≥ c(0), set p = 1. The distribution
G(q) has support on the interval [0, q̄], where

c(q̄) = a1 − an + c(0),

and G(q) is given by the solution to

n−1∑
i=0

ai+1

(
n− 1

i

)
(1− p(1−G(q)))n−1−i(p(1−G(q))i

= c(q) + an − c(0)

for each q in [0, q̄]. Again, note that q̄ is obtained by
setting G(q̄) = 1 in the equation above.

To verify that our construction is indeed an equilibrium,
note that no agent has an incentive to deviate and choose
a different p: when p < 1, π(q) = 0 so there is no benefit
from increasing or decreasing p, and π(q) ≥ 0 for p = 1
so no agent wants to decrease participation in this case.
Also, no agent wants to deviate from G(q) conditional on
participating: first, π(q) is equal for all q ∈ [0, q̄], so an
agent might only want to deviate by choosing quality greater
than q̄. But note that in both cases (p < 1 and p = 1),
π(q) = U(q̄) − c(q) < π(q̄) for any q > q̄, since an agent
choosing q̄ is guaranteed to win the maximum possible re-
ward anyway (recall that G has no mass points, specifically
at q̄). So no agent wants to deviate from (p,G(q)).

We have already verified that the value of p lies between 0
and 1, i.e., it is a valid probability. The last thing we need to
verify is that the distribution G(q) computed in both cases
is indeed a CDF (note that the claimed properties of G,
namely continuity with support on [0, q̄] follow directly from
the continuity of U(x) in x and c(q), and by construction).
To show this, we need to show that that G is increasing on
(0, q̄), i.e.,

∂G

∂q
=

(
∂U

∂q

)
/

(
∂U

∂G

)
is nonnegative on (0, q̄). Now, observe that in either case
(an ≥ c(0) or an < c(0)), G(q) can be written as the solution
to

U(p(1−G(q))) = c(q) + max{an − c(0), 0},
where p is determined appropriately. Therefore, U(q) =
c(q) + max{an − c(0), 0} is a strictly increasing function of
q, i.e., ∂U

∂q
> 0. Also, with x = p(1−G),

∂U

∂G
=
∂U

∂x
· ∂x
∂G

= −p∂U
∂x

.

Using the expression in (3), and the fact that ai ≥ ai+1 with
strict inequality for some i, ∂U

∂G
> 0 on (0, q̄). So we have

∂G

∂q
=

(
∂U

∂q

)
/

(
−p∂U

∂x

)
> 0

on (0, q̄) (recall that a1 > c(0) by assumption, so p > 0). By
construction, G(0) = 0 and G(q̄) = 1, so G(q) is increasing
and lies in [0, 1] for q ∈ [0, q̄]. So G(q) is a valid CDF.

The following two facts about the equilibrium are imme-
diate from the proof above.

Corollary 3.1. For any rewards (a1, . . . , an) such that
ai ≥ ai+1 and at least one inequality is strict,

1. The equilibrium participation probability p in
G(a1, a2, . . . , an) is 1 if and only if an ≥ c(0).

2. The maximum quality q̄ in the support of G is given
by c(q̄) = a1 −max{an − c(0), 0}.

4. INCREASING ATTENTION REWARDS
We begin with investigating the design of incentives in

the context of attention rewards. Such attention rewards
arise, for example, in sites that are based on user-generated
content (UGC) such as Q&A forums like Quora or Stack-
Overflow, or Amazon reviews. In these settings, there is
some available amount of attention reward for the top ‘spot’
or answer (derived from all the viewers who read the con-
tribution displayed first), a smaller amount for the second
spot (corresponding to the viewers that continue on to the
second), and so on, i.e., some maximum possible rewards
A1, A2, . . . , An that can be obtained by always showing all
available contributions for each position 1, . . . , n.

Attention rewards have an unusual constraint when con-
trasted with monetary or virtual points rewards of the kind
we discuss in §5: the total available reward

∑n
i=1 Ai can-

not be arbitrarily redistributed amongst agents since, to a
first approximation, attention to the second spot comes from
a subset of viewers providing attention to the first. Thus,
while it is possible to freely increase or decrease each of
the rewards ai between 0 and Ai (subject, of course, to the
monotonicity constraint, i.e., ai ≥ ai+1), it is not easy to
take away reward from a2 and redistribute it to a1.3

Now, a site featuring UGC could suppress some of the
UGC, e.g. by only showing the top-ranked content, or re-
ducing the prominence of lesser ranked content, i.e., the site
could choose ai < Ai by not always (or never) displaying
the ith ranked contribution. Does this strategy improve the
quality of the best contribution supplied? On the one hand,
equilibrium qualities should rise, because the payoff to poor
quality falls. However, the payoff to supplying any content
also falls, so participation falls as well. How do these two
effects interact?

What if we were interested in a different metric of perfor-
mance, and not just in the best contribution— for example,
do the qualities of the average contribution, or the quality of
the second best or third best contribution behave the same
way as the quality of the best contribution as a function of
ai, or do they behave differently? Intuitively, it seems plau-
sible that the solution for maximizing the quality of the best
contribution may differ from what maximizes the quality of
an average contribution, since lower rewards for non-winning
contributions should increase the incentive to be best, but

3We note that randomizing between displaying q1 and q2
in the first and second spot can achieve the opposite redis-
tribution, namely increase a2 at the expense of a1, but we
do not consider this here since it adversely affects the user
experience. The analysis in §5 addresses this issue.
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higher rewards for non-winning contributions may increase
the average quality.

The following theorem says that the entire distribution
of equilibrium qualities (accounting for the fact that agents
participate probabilistically), and therefore every increasing
statistic, improves when the rewards for achieving any of the
the first through last-but-one ranks increases (this uniform
improvement is in contrast to the case with redistribution,
as we will see in §5). Therefore, it is optimal to increase
each of the a1, a2, . . . , an−1 to the maximum extent possible.
However, the situation is somewhat more subtle for an, the
subsidy to the contributor with the lowest possible rank: if
the current value of an < c(0) then increasing an improves
quality, but if an is fairly large already, i.e., an > c(0) then
a decrease in an improves quality.

Lemma 4.1. The derivative of the probability with which
an agent chooses quality greater than q in equilibrium with

respect to ai,
d(p(1−G))

dai
, is positive for i = 1, . . . , n − 1 for

all q ∈ (0, q̄). The derivative with respect to an, d(p(1−G))
dan

is positive when an < c(0) but negative for an > c(0) for all
q ∈ (0, q̄).

Proof. We have from the equilibrium construction that

H(p(1−G),a) ≡ U(p(1−G(q))−c(q)−max{an−c(0), 0} = 0,
(5)

where U(x) is the benefit function defined in (1).
Differentiating (5) gives us

d(p(1−G))

dai
= −

∂H
∂ai
∂H

∂p(1−G)

.

We use the derivative ∂U
∂x

calculated in (3) for the denomi-
nator, with x = p(1−G):

∂H

∂x
= (n− 1)

n−2∑
i=0

(ai+2 − ai+1)

(
n− 2

i

)
xi(1− x)n−2−i

< 0

for x ∈ (0, 1), since ai ≤ ai+1 with at least one strict in-
equality. For a1, . . . , an−1,

∂H

∂ai
=

(
n− 1

i− 1

)
(p(1−G))i−1(1− p(1−G))n−i > 0

for q ∈ (0, q̄). Therefore, d(p(1−G))
dai

> 0 everywhere, i.e.,

increasing the rewards for each of the first through n− 1th
positions always improves the equilibrium distribution.

For an, when an < c(0) or equivalently p < 1,

∂U

∂an
= (p(1−G))n−1 > 0,

on (0, q̄), but when an ≥ c(0) (so that p = 1),

∂U

∂an
= (p(1−G))n−1 − 1 < 0.

Therefore, d(p(1−G))
dan

> 0 for an < c(0) but d(p(1−G))
dan

< 0 for

an ≥ c(0). Thus, the reward for the last position behaves
differently— increasing an until it equals c(0) improves equi-
librium qualities, but when an ≥ c(0), increasing an further
make the equilibrium qualities worse.

Recall also from Corollary 3.1 that c(q̄) = a1 − max{an −
c(0), 0}, so that the maximum quality in the support de-
creases linearly with an when an ≥ c(0).

This immediately gives us the following result.

Theorem 4.1. Suppose each of the rewards ai is con-
strained to lie below some maximum value Ai, 0 ≤ ai ≤ Ai,
where A1 ≥ . . . ≥ An. Then, the choice of rewards
(a1, . . . , an) that optimizes the equilibrium distribution of
qualities, and therefore the expected value of any increasing
function of the contributed qualities, is

ai = Ai, i = 1, . . . , n− 1;

an = min(An, c(0)).

5. REDISTRIBUTION OF REWARDS
We now address the question of how to optimally redis-

tribute reward amongst agents to improve equilibrium qual-
ity. This question arises in settings where there is some
total available reward that can be distributed in any arbi-
trary way amongst agents, as in the case of crowdsourcing
contests such as TopCoder, or even contests with virtual
points, where points have value only relative to the total
number of points in the system, so that effectively there is
a fixed budget of available reward. We note that this set-
ting is the one that has been studied widely in the contest
design literature in economics, and in the growing literature
on the design of crowdsourcing contests, unlike the setting
in §4; the key difference, as discussed in the section on re-
lated work, is that our model allows for endogenous entry.
Which value of (a1, . . . , an) leads to the ‘best’ equilibrium
outcome amongst all mechanisms G(a1, a2, . . . , an) with the
same expected payout?

What do we mean by ‘best’ outcome, i.e., what is the ob-
jective to optimize? As we will see, unlike in the previous
section with attention rewards, not all increasing statistics
of the quality distribution need be optimized by the same
allocation of rewards. We will focus largely on the expected
quality of the best contribution, since this is the objective
of interest in many settings like crowdsourcing contests with
an arbitrarily redistributable total reward, and finally briefly
address the expected total quality, which is potentially rel-
evant in settings like Q&A forums such as Y! Answers.

We first write the budget constraint that says we are re-
stricted to redistributing rewards, i.e., the total expected
payout to contestants must remain the same. Since entry
is endogenous, the number of participants in equilibrium is
a random variable when p < 1, so not all prizes ai are al-
ways paid out. The expected payment to the winners in
equilibrium is

B =

n∑
j=1

(
n

j

)
pj(1− p)n−j

j∑
k=1

ak

since the payment when j contributors enter, which happens
with probability

(
n
j

)
pj(1− p)n−j where p is the equilibrium

participation probability, is
∑j
k=1 ak. Rearranging, we have

B =

n∑
k=1

ak

n∑
j=k

(
n

j

)
pj(1− p)n−j . (6)

Note that when p = 1, B =
∑n
i=1 ai.
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Before deriving our results for the maximum quality, we
state a couple of technical lemmas. The proof of the first
proposition below is obtained easily by integrating by parts.

Proposition 5.1. For any k ≤ n, and p ≥ 0,

n∑
j=k

(
n

j

)
pj(1− p)n−j = n

(
n− 1

k − 1

)∫ p

0

xk−1(1− x)n−kdx.

We introduce some notation before our next lemma.

Definition 5.1 (Bk(q),W(k)). Consider n agents
playing according to the symmetric mixed strategy (p,G(q)).
We define

Bk(q) =

(
n− 1

k − 1

)
(p(1−G(q)))k−1(1− p(1−G(q)))n−k;

Bk(q) is the probability that an agent entering and choosing
quality q is ranked at position k. We also define

W(k) =

∫ q̄

0

Bk(q)pG′(q)dq.

W(k) is the probability that a particular one of the n agents
who enter with probability p and choose quality from the dis-
tribution G(q) is ranked in the kth position.

The proof of the following proposition uses the identity in
Proposition 5.1:

Proposition 5.2. For any index s ≤ n,

(1−(1−p)n)·

(
n− 1

s− 1

)
ps−1(1−p)1−s ≥

n∑
j=s

(
n

j

)
pj(1−p)n−j .

The following technical lemma uses Proposition 5.2 above,
and is central to the proof of the main lemma.

Lemma 5.1. Suppose an < c(0), i.e., p < 1, and we vary
the reward as for some rank s and change a1 to keep the
budget B unchanged.

da1

das

∣∣∣∣
B

≤ −W(s)

W(1)
.

Proof.

da1

das

∣∣∣∣
B

= − ∂B
∂as

/
∂B

∂a1
.

We first evaluate the quantity ∂B
∂as

when p < 1:

∂B

∂as
=

n∑
j=s

(n
i

)
pi(1− p)n−j +

n∑
k=1

ak

n∑
j=k

(n
i

) (
jpj−1(1− p)n−j − (n− j)pi(1− p)n−j−1

) dp

das

=

n∑
j=s

(n
i

)
pi(1− p)n−j + n

n∑
k=1

(n− 1

k − 1

)
pk−1(1− p)n−k

dp

das
,

which, using (4), gives us

∂B

∂as
=

n∑
j=s

(
n

i

)
pi(1− p)n−j + nc(0)

dp

das
. (7)

Now, note that

dp

das
=

(
n−1
s−1

)
ps−1(1− p)n−s

(n− 1)
∑n−2
i=0 (ai+2 − ai+1)

(
n−2
i

)
pi(1− p)n−2−i

.

Using both of these, together with the inequality in Propo-
sition 5.2 and the definition of W(k), and rearranging, gives
the result.

We now state and prove the main lemma in this section,
which will immediately give us the theorem on maximizing
the expected quality of the best contribution.

Lemma 5.2. Suppose the cost function c is such that
c′(q)/c(q) is non-increasing in q. Then, for any monotone
nonnegative contests G(a1, a2, . . . , an), redistributing reward
away from the winner to any lower rank s > 1 locally de-
creases the expected quality of the best contribution in equi-
librium, i.e.,

dEqmax

das

∣∣∣∣
B,a1

≤ 0.

Proof. The expected value of the highest quality con-
tribution obtained in an equilibrium of G(a1, a2, . . . , an),
counting the utility from receiving no contributions as the
same as from a zero quality contribution, is

Eqmax =

∫ q̄

0

1− (1− p(1−G(q)))ndq.

We are interested in the effect of shifting reward from the
winner to some lower rank s on the expected highest quality
contribution in equilibrium, i.e., the effect of changing as
when a1 is adjusted so as to preserve the expected payout
on Eqmax:

dEqmax

das

∣∣∣∣
B,a1

=
d

das

∫ q̄

0

1− (1− p(1−G(q)))ndq

∣∣∣∣
B,a1

=

∫ q̄

0

np(1− p+ pG(q)))n−1

×
{
dp(1−G(q))

das
+
da1

das

∣∣∣∣
B

dp(1−G(q))

da1

}
dq.

Recall the equilibrium condition from (5):

H(p(1−G),a) = U(p(1−G(q))−c(q)−max{an−c(0), 0} = 0.

Differentiating, we have

∂H

∂p(1−G)
pG′(q) = −c′(q). (8)

Therefore,

dp(1−G(q))

dak
= −

∂H
∂ai
∂H

∂p(1−G)

=
Bk(q)pG′(q)

c′(q)
, (9)

where Bk(q) is as in Definition 5.1.
Case 1: an < c(0), or p < 1. Using the inequality
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bounding da1
das

from Lemma 5.1, we have

dEqmax

das

∣∣∣∣
B,a1

≤
∫ q̄

0
np(1− p + pG(q)))n−1

×
{
Bs(q)−

W(s)

W(1)
B1(q)

}
pG′(q)

c′(q)
dq

= nW(s)

∫ q̄

0

(1− p + pG(q)))n−1

c′(q)

Bs(q)pG′(q)

W(s)
dq

− nW(s)

∫ q̄

0

(1− p + pG(q)))n−1

c′(q)

B1(q)pG′(q)

W(1)
dq.

Now, recall that each term multiplying (1−p+pG(q)))n−1

c′(q) in

this difference is a density:

fk(q) =
Bk(q)pG′(q)

W(k)
=

Bk(q)pG′(q)∫ q̄
0
Bk(q)pG′(q)dq

.

Therefore, the term within the parentheses is the difference
between two densities fs(q) and f1(q), with the property
that the first density (corresponding to s) puts less weight on
higher values of q (formally, it is easy to verify that the two
distributions f1 and fs satisfy the MLRP property if s > 1,
which implies first order stochastic dominance). Therefore,
the right-hand side is the difference between the expected

value of the function (1−p+pG(q)))n−1

c′(q) computed with respect

to the densities fs(q) and f1(q). Therefore, dEqmax
das

is non-

positive if (1−p+pG(q)))n−1

c′(q) is an increasing function of q or

equivalently that c′(q)
(1−p+pG(q)))n−1 is decreasing. Recall that

this derivative being non-positive implies that increasing the
reward a1, while decreasing as in such a way as to hold the
budget constant, improves the expected highest quality.

We now show that a sufficient condition for this is that
c′(q)
c(q)

is non-increasing in q. The equilibrium condition gives
us:

1

c(q)

n−1∑
j=0

(
n− 1

j

)
(p(1−G(q)))j(1−p(1−G(q)))n−j−1aj+1 = 1.

Using this, we have

c′(q)

(1− p+ pG(q)))n−1

=
c′(q)

c(q)

n−1∑
j=0

(
n− 1

j

)
p(1−G(q))

(1− p(1−G(q)))

j

aj+1.

Since
(

p(1−G(q))
(1−p(1−G(q)))

)j
is decreasing in q for every j and

each aj+1 ≥ 0 by assumption, we have that if c′(q)
c(q)

is

decreasing in q, then c′(q)
(1−p+pG(q)))n−1 is decreasing in q as

well, completing the proof.

Case 2: an ≥ c(0), or p = 1. In this case, all agents
always participate, and the budget constraint simplifies to
B =

∑n
i=1 ai. Therefore,

da1

das

∣∣∣∣
B

= −1.

Also, since p = 1, we have

dEqmax

das

∣∣∣∣
B,a1

= − d

das

∫ q̄

0

1−G(q)ndq

∣∣∣∣
B,a1

=

∫ q̄

0

nG(q)n−1

{
dG(q)

das
+
da1

das

dG(q)

da1

}
dq

=

∫ q̄

0

nG(q)n−1

{
dG(q)

das
− dG(q)

da1

}
dq.

Using (8) with p = 1, and noting that ∂H
∂ak

= Bk(q) for

k = 1, . . . , n− 1, we have as before

dG(q)

dak
=
Bk(q)G′(q)

c′(q)
,

for k = 1, . . . , n − 1. We substitute this to obtain for any
s < n:

dEqmax

das

∣∣∣∣
B,a1

=

∫ q̄

0

G(q)n−1

c′(q)

(
nBs(q)G′(q)− nB1(q)G′(q)

)
dq.

Now, nBk(q)G′(q), which is equal to n
(
n−1
k−1

)
(1 −

G(q))k−1G(q))n−kG′(q) is positive and integrates out to 1,
so it is a density. Moreover, it puts more weight on higher q

for lower k. Therefore, if G(q)n−1

c′(q) is increasing, dEqmax
das

∣∣∣
B,a1

will be negative since s > 1. As before, we substitute

an − c(0) +

n−1∑
j=0

(
n− 1

j

)
(1−G(q)))jG(q))n−j−1aj+1

= c(q)

to obtain

c′(q)

G(q)n−1
=
c′(q)

c(q)

(
c(0)

G(q)n−1
+

n−2∑
j=0

(
n− 1

j

)
(1−G(q))j

G(q)j
aj+1

)
.

Again, the term within parentheses is decreasing in q, so

if c′(q)
c(q)

is decreasing, then G(q)n−1

c′(q) is increasing, and the

derivative dEqmax
das

∣∣∣
B,a1

is nonpositive.

Finally, note that when s = n, dG(q)
das

= Bk(q) − 1 ≤ 0,
so that derivative can be immediately seen to be negative.
Together, we have the result for the case an ≥ c(0).

This lemma immediately gives us the two main theorems.
The first result states that if we are restricted to nonnega-
tive rewards ai, i.e., charging for entry is not feasible, then
a winner-take-all contest maximizes the expected quality
of the best contribution in equilibrium amongst all possi-
ble monotone, nonnegative allocations of the total budget
amongst participants. This result agrees with the results
from the literature on contest design and crowdsourcing con-
tests which do not model endogenous entry (eg [1, 3]).

Theorem 5.1. Suppose the cost function c is such that
c′(q)/c(q) is non-increasing in q. Then, the expected quality
of the best contribution obtained in equilibrium among all
monotone nonnegative contests G(a1, a2, . . . , an) that have
the same total expected payout, is maximized by a winner-
take-all contest, i.e., at (a∗1, 0, . . . , 0).

The second result states that free entry does not lead to the
optimum level of quality for the best contribution, and in
fact restricting entry by taxation can improve the maximum
equilibrium quality.
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Theorem 5.2. Consider a winner-take-all contest with
rewards (A, 0, . . . , 0), and suppose c(0) > 0. If the cost c
is such that c′(q)/c(q) is decreasing in q, then taxing entry
locally improves the expected quality of the best contribution
in equilibrium.

Theorem 5.2 shows that it is advantageous to tax partic-
ipants and use the proceeds to subsidize the best quality
result, in order to maximize the best quality result. In mod-
els where participation is exogenous, the desirability of a tax
would not be surprising, because some additional profits can
be extracted with no loss of participation. In contrast, with
endogenous entry, a tax will drive down participation, which
means we choose the maximum from a smaller number of
random variables, potentially leading to a poorer outcome.
It is therefore not surprising that the theorem on the op-
timality of a tax requires a condition on the cost function,
although we note that this condition is satisfied by linear
costs which are typically used in the crowdsourcing contest
design literature [4, 1, 3], as well as exponential and other
cost functions. What this condition accomplishes is to in-
sure that the gain from improving the distribution of quality
of participants will dominate the loss of participation from
a small tax.

Average or total quality.
What if we are interested in the average, or total, qual-

ity instead of the maximum quality? The average quality is
simply the expected value of q drawn according to the CDF
1−p(1−G(q)), where as before, we count nonparticipation,
or no contribution, as producing the same utility as a contri-
bution with quality 0: Eqavg =

∫ q̄
0

1− (1− p(1−G(q)))dq =∫ q̄
0
p(1 − G(q))dq. The total quality is n times this average

quality.
Here, unlike the case with attention rewards, we will see

that the mechanism that is best for maximum quality need
not be the best for average quality. We state the following
two theorems.

Theorem 5.3. Suppose c′(q) = 1, and let denote the ex-
pected total quality. Consider the winner-take-all contest

G(a, 0, . . . , 0). Then
dEqavg
das

∣∣∣
B,a1

≤ 0 at G(a, 0, . . . , 0).

This theorem says that for linear cost functions, the equi-
librium expected total quality is increased by increasing the
reward to the highest rank at the expense of any lower rank
at the winner-take-all contest (a, 0, . . . , 0). Here, there is
too much entry for the average or total quality objective as
well, and taxation, or charging entrants a small fee that is
rebated to the winner, locally improves total quality.

Next, we consider exponential cost functions, c(q) = ekq

(k > 0)— here, unlike for linear costs, how the average qual-
ity can be improved is a function of the available reward B.

Theorem 5.4. Suppose c′(q)/c(q) = k, where k > 0
is independent of q. Consider the winner-take-all contest

G(a, 0, . . . , 0). Then
dEqavg
das

∣∣∣
B,a1

< 0 for small enough B,

while
dEqavg
das

∣∣∣
B,a1

> 0 for large enough B.

This theorem says that for exponential costs, the effect
on the expected average quality of increasing a1 while de-
creasing as to maintain the budget for any s > 1, depends
on the value of B: when B is small, taxing entry improves

average quality, but when B is large, the average quality is
increased by subsidizing entry. Recall that our results on the
expected maximum quality do apply to exponential costs,
and suggest that taxing entry is optimal for maximizing the
expected quality of the best contribution. Thus, when the
available reward B is large, the mechanisms to maximize
the quality of the best and average contributions need not
be the same — taxing entry improves the best contribution’s
quality, whereas subsidizing entry is what improves the to-
tal quality of contributions produced over a winner-take-all
contest for exponential cost functions and large B.
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