
System Π: A Hypergraph Based Native RDF Repository
∗

Gang Wu, Juanzi Li, Kehong Wang
Department of Computer Science and Technology, Tsinghua University, Beijing, P.R.China

{wug, ljz, wkh}@keg.cs.tsinghua.edu.cn

ABSTRACT

To manage the increasing amount of RDF data, an RDF repository

should provide not only necessary scalability and efficiency, but

also sufficient inference capabilities. In this paper, we propose a

native RDF repository, System Π, to pursue a better tradeoff among

the above requirements. System Π takes the hypergraph represen-

tation for RDF as the data model for its persistent storage, which

effectively avoids the costs of data model transformation when ac-

cessing RDF data. In addition, a set of efficient semantic query

processing techniques are designed. The results of performance

evaluation on the LUBM benchmark show that System Π has a

better combined metric value than the other comparable systems.

Categories and Subject Descriptors: H.3.0 [Information Storage

and Retrieval]: General

General Terms: Design, Management, Performance

Keywords: Hypergraph, RDF, Repository

1. INTRODUCTION
With the rapid growth of RDF data on the Web, more and more

Semantic Web applications turn to RDF repositories for help in pur-

suing better data management performance in system scalability,

query efficiency, and inference capabilities. Traditional data man-

agement systems cannot fulfill the requirements directly, because

the data models of them are different from that of RDF, and most

of them do not provide any inference capability. Hence, some RDF

repositories are developed specially. Currently, these repositories

are at their infant stages, and hence there is still sufficient room for

improving the performance. A practical direction is to make the

persistent storage represent the RDF data model more efficiently.

The data model of RDF is the RDF graph which allows several

representations. The most popular representations are the triple

sets and the directed labeled graph. However, they all have some

limitations as the data model of RDF repository persistent stor-

ages. Jonathan Hayes proposes a hypergraph representation to deal

with this situation [4]. By letting an edge be composed of three

vertices corresponding to the elements of a triple, the hypergraph

representation can support efficient traversals on the RDF graph,

and overcome the above two limitations. Suppose T is an RDF

graph. The hypergraph representation of T is G = (V, E), where

V = {vx|x ∈ U ∪ B ∪ L}, E = {(vs, vp, vo)|(s, p, o) ∈ T}.

∗
This work is supported by the National Natural Science Foundation of China under

Grant No.90604025 and the Major State Basic Research Development Program of

China (973 Program) under Grant No.2003CB317007 and No.2007CB310803.

Copyright is held by the author/owner(s).
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

1.1 Hypergraph Based Persistent Storage

GraphVertex

+oid

+label

+type

GraphEdge

+srcVertex

+typeVertex

+tarVertex

+inEdges

*

+tar

1

+outEdges

*

+src

1

Figure 1: The class diagram of hypergraph based persistent storage

In System Π, we design a concise storage scheme as the class

diagram shown in Figure 1. Here, class GraphVertex represents

a vertex in V , which has three fields: oid, label, and type. Field

oid has the type of integer with the length of 64 bits, and is used

to uniquely identify a vertex. Field label is a variable length string

used to record the value of URI reference or literal. Field type is

also a 64 bits integer designed to encode specific semantic informa-

tion of the vertex in a bitmap manner. Class GraphEdge represents

an edge in E , where srcVertex, typeVertex, and tarVertex corre-

spond to the oids of three elements of a triple. The edges starting

from and ending at a vertex can be visited through field outEdges
and inEdges of the vertex. The total size costed by the persis-

tent storage is the same as that of the repositories directly storing

RDF triples if not taking inEdges into account. There are three ad-

vantages: 1) Class GraphVertex, GraphEdge, and their relation-

ship together reflect the hypergraph representation for RDF. The

idea is intuitive, easy to understand, and the implementations of

the algorithms from graph theory are straightforward. 2) Further

reducing the overhead of storage space is possible. As edges in a

vertex’s outEdges (or inEdges) have the same value of srcVertex
(or tarVertex), we can omit srcVertex (or tarVertex) to simplify

the representation of GraphEdge. 3) Edges are clustered by ver-

tices so that edges having the same srcVertex or tarVertex values

can be accessed by a less database operation.

1.2 Physical Query Processing

1.2.1 Hypergraph Traversal

The fundamental RDF data access approach in System Π is to

traverse on the underling hypergraph. Analogizing pointer chasing

operations in object database systems, hypergraph traversal could

also be an implementation method for join operation.

1.2.2 Vertex Value Index

The hypergraph storage only supports accessing a vertex by its

oid, which means we have to traverse the hypergraph to filter out

the vertex with the specific URI value in its label field. Since such

operation is frequent, a hash index structure, named Vertex Value

Index (VVI), is designed for quick access. The key of VVI is a URI

or a literal, and the value of VVI is the oid of a vertex.

1035

WWW 2008 / Poster Paper April 21-25, 2008 · Beijing, China

1.2.3 Triple Indices

Triple Indices are B-Tree index structures built on three triple

sets to facilitate join operation between triple sets. One triple set

contains triples in the origin form, i.e. (subject, predicate, ob-
ject). The other two reorder the triple set in forms of (object, sub-
ject, predicate) and (predicate, object, subject). Each indexes

a triple set by taking each triple as a key of the B-Tree. Given

a triple pattern, no matter how many and where variables are, all

matches can be found by means of one of the indices. When get-

ting two triple sets bound to two triple patterns, a sort merge join

is enough to work out the final results. There are two principles in

the choice of join approach between hypergraph traversal and triple

indices: 1) If the predicate of a triple pattern has a owl:cardinality
property valued 1, priority should be given to hypergraph traversal.

2) If there exist more than one variable in a triple pattern, priority

should be given to triple indices based approach.

1.2.4 Index for Transitive Properties

rdfs:subClassOf, rdfs:subPropertyOf, and other properties own-

ing owl:TransitiveProperty property are all transitive. Transitive

closure computation is one of the most basic inference capabilities

for an RDF repository. In System Π, we employ an index structure

based on the Prime number Labeling Scheme for Directed graph

(PLSD). Comparing with our previous work [10], the new labeling

scheme can support arbitrary directed graph even those with cycles.

In [9], formal definitions, proof, algorithm description, and detail

experimental results are presented. Given a transitive property p, if

all edges are removed from the hypergraph G except those taking p

as the predicates, we call the remaining sub-graph Gp. Then, with

the help of PLSD labels for vertices in Gp, transitive closure com-

putation can be evaluated efficiently using only simple arithmetic

operations like division and unique factorization of composite inte-

ger. In System Π, we index PLSD labels with a B-Tree structure.

1.3 Inference Strategy
In order to tradeoff between inference capabilities and the com-

putational complexity, the set of inference rules for pD∗ seman-

tics [8] are implemented in System Π. Together with the follow-

ing proposed hybrid inference strategies (involving partial forward

chaining, backward chaining, and labeling scheme), System Π rep-

resents the OWL-Lite compatible inference capabilities with a NP-

complete computational complexity. For the sake of convenience,

we refer the rules for RDFS with a prefix “rdfs” and their rule num-

bers1, and refer the rules for pD∗ semantics with a prefix “owl”

and their rule numbers2. Strategy 1: For triples involved in rule

rdfs2(a), rdfs3(a), rdfs6, rdfs7, owl4, owl7, owl12 and owl13, Sys-

tem Π indexes them with PLSD Index at the stage of RDF data

loading. Strategy 2: Rule rdfs4, rdfs5, owl1, owl2, owl5, owl6,

owl9, owl10, owl11, owl14, owl15 and owl16 are also processed

at the stage of RDF data loading, which may further trigger infer-

ences for rules in Strategy 1 and 2. The closure of inference is

conducted in a forward chaining manner. Strategy 3: For a seman-

tic query that needs inferences for the rules in Strategy 1 or any rule

not mentioned in Strategy 1 and Strategy 2, System Π will process

the rules in a backward chaining manner.

1.4 Logical Query Plan
SPARQL is the default query interface of System Π. According

to the specification of SPARQL, a query string is converted into a

SPARQL algebra expression constructed with a set of operators in

1
The rule numbers can be found in Definition 3 of [6].

2
The rule numbers can be found in Table 7 of [8].

the query parser. There are 13 operators totally, including Filter,
Join, Diff, LeftJoin, Union, ToList, OrderBy, Project, Distinct,
Reduced, Slice, BGP, and Graph. However, SPARQL is de-

fined to support only simple entailment for matching RDF graphs.

In other words, the above operators are not enough for expressing

inference semantics. Hence, for purpose of inference, we define

another three operators, i.e., Transitive, Symmetric, and Inverse.

2. PERFORMANCE EVALUATION
We compared System Π with other RDF repositories against

Lehigh University Benchmark (LUBM) [2]. LUBM is the de facto

standard benchmark for evaluating RDF repositories. We generated

four data sets that contain OWL files describing information of one,

five, ten, and twenty universities (named LUBM(1,0), LUBM(5,0),

LUBM(10,0), and LUBM(20,0)). All experimental results can be

found in [9]. Here, we only show the results of combined metric

which is introduced in [2] to tradeoff the performance between in-

ference capabilities and query response time. A larger combined

metric value indicates a better overall performance. In this exper-

iment, we set a = 500, b = 5, α = 1, β = 1, wi = wj , (i, j =
1, ..., 14). The final results are illustrated in Figure 2.

LUBM(1,0) LUBM(5,0) LUBM(10,0) LUBM(20,0)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
M

Data Set

 Sesame

 DLDB

 PI

Figure 2: Combined metric values

The combined metric value of System Π is 0.91127 for LUBM(1,0)

which is 1.17 times and 1.897 times that of DLDB [7] and Sesame

[1] respectively. For the other three data sets, the combined metric

values are still above 0.5 and higher than both DLDB and Sesame.

Most of the current RDF repositories, like Sesame [1], DLDB-

OWL [7], 3Store [3], and RStar [5], are based on traditional database

models. They have good scalability, acceptable query response

time and inference capabilities. However, the performance bottle-

neck is inevitable because of extra costs for data model transforma-

tion in accessing RDF data within a non-RDF persistent storage.

System Π solves the problem by storing RDF data directly in RDF

data model, which enables more optimization techniques based on

the RDF data model characteristics to improve the performance.

3. REFERENCES
[1] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic

architecture for storing and querying rdf and rdf schema. In ISWC 2002, pages

54–68, London, UK, 2002.

[2] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base

systems. Journal of Web Semantics, 3(2-3):158–182, 2005.

[3] S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage. In PSSS, 2003.

[4] J. Hayes. A graph model for rdf. Master’s thesis, August 2004.

[5] L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. Rstar: an rdf storage and query

system for enterprise resource management. In CIKM 2004, pages 484–491.

[6] S. Muñoz, J. Pérez, and C. Gutierrez. Minimal Deductive Systems for RDF. In

ESWC2007, 2007.

[7] Z. Pan and J. Heflin. Dldb: Extending relational databases to support semantic

web queries. Technical Report, Lehigh University, 2004.

[8] H. J. ter Horst. Completeness, decidability and complexity of entailment for

RDF Schema and a semantic extension involving the OWL vocabulary.

Journal of Web Semantics, 3(2-3):79–115, 2005.

[9] G. Wu. Research on Key Technologies of RDF Graph Data Management. PhD

Thesis, Tsinghua University, January 2008.

[10] G. Wu, K. Zhang, C. Liu, and J.-Z. Li. Adapting Prime Number Labeling

Scheme for Directed Acyclic Graphs. In DASFAA 2006, pages 787–796, 2006.

1036

WWW 2008 / Poster Paper April 21-25, 2008 · Beijing, China

