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ABSTRACT
The Web offers rich relational data with different seman-
tics. In this paper, we address the problem of document
recommendation in a digital library, where the documents in
question are networked by citations and are associated with
other entities by various relations. Due to the sparsity of
a single graph and noise in graph construction, we propose
a new method for combining multiple graphs to measure
document similarities, where different factorization strate-
gies are used based on the nature of different graphs. In
particular, the new method seeks a single low-dimensional
embedding of documents that captures their relative simi-
larities in a latent space. Based on the obtained embedding,
a new recommendation framework is developed using semi-
supervised learning on graphs. In addition, we address the
scalability issue and propose an incremental algorithm. The
new incremental method significantly improves the efficiency
by calculating the embedding for new incoming documents
only. The new batch and incremental methods are evaluated
on two real world datasets prepared from CiteSeer. Exper-
iments demonstrate significant quality improvement for our
batch method and significant efficiency improvement with
tolerable quality loss for our incremental method.
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1. INTRODUCTION
Recommender systems continue to play important and

new roles in business on the World Wide Web [11, 12, 14,
10, 13]. Per definition, the recommender system is an in-
formation filtering technique that seeks to identify a set of
items that are likely of interest to users.

The most popular method adopted by contemporary rec-
ommender systems is Collaborative Filtering (CF), where
the core assumption is that similar users on similar items
express similar interests. The heart of memory-based CF
methods is the measurement of similarity: either the simi-
larity of users (a.k.a user-based CF) or the similarity of items
(a.k.a items-based CF) or a hybrid of both. The user-based
CF computes the similarity among users, usually based on
user profiles or past behavior [14, 10], and seeks consistency
in the predictions among similar users. But it is known that
user-based CF often suffers from the data sparsity problem
because most of the user-item ratings are missing in prac-
tice. The item-based CF, on the other hand, allows input
of additional item-wise information and is also capable of
capturing the interactions among them [11, 12]. This is a
major advantage of item-based CF when it comes to deal-
ing with items that are networked, which are usually en-
countered on the Web. For example, consider the problem
of document recommendation in a digital library such as
the CiteSeer (http://citeseer.ist.psu.edu). As illustrated in
Fig. 1, let documents be denoted as vertices on a directed
graph where the edges indicate their citations. The similar-
ity among documents can be measured by their cocitations
(cociting the same documents or being cocited by others) 1.
In this case, document B and C are similar because they are
cocited by E.

Working with networked items for CF is of recent interest.
Recent work approaches this problem by leveraging the item
similarities measured on an item graph [12], modeling item
similarities by an undirected graph and, given several ver-
tices labeled interesting, perform label propagation to rank
the remaining vertices. The key issue in label propagation

1More precisely, the term cocitation in this paper refers to
two concepts in information sciences: bibliographic coupling
and cocitation.
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Figure 1: An example of citation graph.

on graphs is the measurement of vertex similarity, where
related work simply borrows the recent results of the Lapla-
cian on directed graphs [2] and semi-supervised learning of
graphs [18]. Nevertheless, using a single graph Laplacian to
measure the item similarity can overfit in practice, especially
for data on the Web, where the graphs tend to be noisy and
sparse in nature. For example, if we revisit Fig. 1 and con-
sider two quite common scenarios, as illustrated in Fig. 2,
it is easy to see why measuring item similarities based on a
single graph can sometimes cause problems. The first case is
called missing citations, where for some reason a citation is
missing (or equivalently is added) from the citation graph.
Then the similarity between A and B (or C) will not be en-
coded in the graph Laplacian. The second case, called same
authors, shows that if A and E are authored by the same
researcher Z, using the citation graph only will not capture
the similarity between D and B, which presumably should
be similar because they are both cited by the author Z.

A
B

C

D E
(a) Missing citations

A
B

C

D E

Z

(b) Same authors

Figure 2: Two common problematic scenarios for
measuring item similarities on a single citation
graph: missing citations and same authors.

Needless to say, the cases presented above are just two
of the many problems caused by the noise and sparsity of
the citation graph. Noise in a citation graph is a result of a
missing citation link or an incorrect one. Fortunately, real
world data can usually be described by different semantics or
can be associated with other data. In the focus of relational
data in this paper, we work with several graphs regarding
the same set of items. For example, for document recom-
mendation, in addition to the document citation graph, we
also have a document-author bipartite graph that encodes
the authorship, and a document-venue bipartite graph that
indicates where the documents were published. Such rela-
tionship between documents and other objects can be used
to improve the measurement of document similarity. The
idea of this work is to combine multiple graphs to calcu-
late the similarities among items. The items can be the full
vertex set of a graph (as in the citation graph) or can be a
subset of a graph (as in document-author bipartite graph) 2.

2Note the difference between this work and the related
work [16] where multiple graphs with the same set of vertices
are combined.

By doing so, we let data from different semantics regarding
the same item set complement each other.

In this paper, we implement a model of learning from mul-
tiple graphs by seeking a single low-dimensional embedding
of items that captures the relative similarities among them.
Based on the obtained item embedding, we perform label
propagation, giving rise to a new recommendation frame-
work using semi-supervised learning on graphs. In addition,
we address the scalability issue and propose an incremental
version of our new method, where an approximate embed-
ding is calculated only for the new items. The new methods
are evaluated on two real world datasets prepared from Cite-
Seer. We compare the new batch method with a baseline
modified from a recent semi-supervised learning algorithm
on a directed graph and a basic user-based CF method us-
ing Singular Value Decomposition (SVD). Also, we compare
the new incremental method with the new batch method
in terms of recommendation quality and efficiency. We ob-
serve significant quality improvement in our batch method
and significant efficiency improvement with tolerable quality
loss for our incremental method.

The contributions of this work are: (1) We overcome the
deficiency of a single graph (e.g. noise, sparsity) by com-
bining multiple information sources (or graphs) via a joint
factorization to learn rich yet compact representation of the
items in question; (2) To ensure effectiveness and efficiency,
we propose several novel factorization strategies tailored to
the unique characteristics of each graph type, each becom-
ing a sub-problem in the joint framework; (3) To handle
the ever-growing volume of documents, we further develop
an incremental updating algorithm that greatly improves
the scalability, which is validated on two large real-world
datasets.

The rest of this paper is organized as follows: Section 2
introduces how to realize recommendations using label prop-
agation; Section 3 describes our method for learning item
embedding from three general types of graphs; Section 4
further introduces the incremental version of our algorithm;
Experiments are presented in Section 5; Section 6 discusses
the related work; Conclusions are drawn in Section 7.

2. RECOMMENDATION BY LABEL
PROPAGATION

Label propagation is one typical kind of transductive learn-
ing in the semi-supervised learning category where the goal
is to estimate the labels of unlabeled data using other par-
tially labeled data and their similarities. Label propagation
on a network has many different applications. For exam-
ple, recent work shows that trust between individuals can
be propagated on social networks [7] and user interests can
be propagated on item graphs for recommendations [12].

In this work, we focus on using label propagation for docu-
ment recommendation in digital libraries. Let the document
set be D, where |D| is the number of documents. Suppose
we are given the document citation graph GD = (VD, ED),
which is an unweighted directed graph. Suppose the pair-
wise similarities among the documents are described by the
matrix S ∈ R

|D|×|D| measured based on GD. A few doc-
uments have been labeled “interesting” while the remaining
are not, denoted by positive and zero values in the label vec-
tor y. The goal is to find the score vector f ∈ R

|D| where
each element corresponds to the propagated interests. Then
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document recommendation can be performed by ranking the
documents by their interest scores. A recent approach ad-
dressed the graph label propagation problem by minimizing
the regularization loss below [18]:

Ω(f) ≡ fT (I − S)f + μ‖f − y‖2, (1)

where μ > 0 is the regularization parameter. The first term
is the cost function for the smoothness constraint, which
prefers small differences in labels between nearby points; the
second term is the fitting constraint that measures the differ-
ence of f from given data label y. Setting the ∂Ω(y)/∂f = 0,
we can see that the solution f∗ is essentially the solution to
the linear equation:

(I − αS)f∗ = (1− α)y, (2)

where α = 1/(1 + μ). One solution to the above is given in
a related work using a power method [18]:

f t+1 ← αSf t + (1− α)y (3)

where f0 is the random guess and f∗ = f∞ is the solution.
Here, notice that L = (I−αS) is essentially a variant Lapla-
cian on this graph using S as the adjacency matrix; and
K = (I − αS)−1 = L−1 is the graph diffusion kernel. Thus,
one essentially applies f∗ = (1−α)L−1y (or f∗ = (1−α)Ky
)to rank documents for recommendation.

Now the interesting question is how to calculate S (or
equivalently the kernel K) among the set D. However, there
has been limited amount of work on obtaining S. For graph
data, recent work borrows the results from spectral graph
theory [1, 2], where the similarity measures on both undi-
rected and directed graphs have been given. For undirected
graph, Su is simply the normalized adjacency matrix:

Su = Π−1/2WΠ−1/2 (4)

where Π is a diagonal matrix such that We = Πe and e is an
all-one column vector. For directed graph, where the adja-
cency matrix is first normalized as a random walk transition
matrix P (= Π−1W ), the similarity measure Sd is calculated
as:

Sd =
Φ1/2PΦ−1/2 + Φ−1/2P T Φ1/2

2
(5)

where Φ is a diagonal matrix where each diagonal contains
the stationary probability on the corresponding vertex 3.

Note that the similarity measures given above are derived
from a single graph on D. However, many real world data
can be described by multiple graphs, including those within
D and between D and another set. Such information is of
more importance to combine especially when the a single
view of the data is sparse or even incomplete. In the follow-
ing, we introduce a new way to integrate three general types
of graphs. Instead of estimating S directly, we seek to learn
a low-dimensional latent linear space.

3. LEARNING MULTIPLE GRAPHS
The immediate goal of this section is to determine the

relative positions of all documents in a k-dimensional latent
semantic space, say X ∈ R

|D|×k, which will combine the so-
cial inferences in document citations, authorship and venues.

3In practice when some nodes have no outgoing or incom-
ing edges, we can incorporate certain randomness so that P
denotes an ergodic Markov chain.

In the sequel, we assume k is a prescribed parameter which
we do not seek to determine automatically. Note a contribu-
tion of this work is the different strategies used for different
graphs based on their characteristics, which are described in
the following subsections.

We begin by a formulation of our problem. Let D, A, V
be the sets of documents, authors and venues and |D|, |A|,
|V| be their sizes. We have three graphs, one directed graph
GD on D; one bipartite graph GDA between D and A; and
one bipartite graph GDV between D and V, which describe
the relationship among documents, between documents and
authors, and between documents and venues. Let the ad-
jacency matrices of GD, GDA, GDV be D, A and V . We
assume all relationships in question are described by non-
negative values. For example, GD can be considered as to
describe the citation relationship among D and Di,j = 1 if
document di cites dj (Di,j = 0 if otherwise); GA can be con-
sidered as the authorship relationship (an author composes
a document) or the citation relationship (an author cites a
document) between D and A.

3.1 Learning from Citation Matrix: D

In this section, we relate the document embedding X to
the citation matrix D, which is the adjacency matrix of the
the directed graph GD.

The citation matrix D include two kinds of document co-
occurrences: cociting and being cocited. A cociting relation-
ship among a set of documents means that they all cite a
same document; A cocited relation refer to that several doc-
uments are cited together by an another document. In many
related work (e.g. [18]) on directed graphs, these two kinds
of document co-occurrences are used to infer the similarity
among documents. Probably the most well recognized way
to represent the similarities among the nodes of a graph is
associated with the graph Laplacian [2], say L ∈ R

|D|×|D|,
which is defined as:

L = I − αSd, (6)

where Sd is the similarity matrix on directed graphs as mea-
sured in Eq. 5; α ∈ (0, 1) is a parameter for the Laplacian
to be invertible; I is an identity matrix. Note that Sd is
symmetric and positive-semidefinite.

Next we give the method to learn from GD.
Objective function: Suppose we have a document em-

bedding X = [x1, ...xk] where xi contains the distribution
of values of all documents on the i-th dimension of a k-
dimensional latent space. The overall “lack-of-smoothness”
of the distribution of these vectors w.r.t. to the Laplacian
L can be measured as

Ω(X) =
∑

1≤i≤k

xT
i Lxi = Tr(XTLX), (7)

where X = [x1, ...xk]. Here we seek to minimize the overall
“lack-of-smoothness” so that the relative positions of docu-
ments in X will reflect the similarity in Sd.

Constraint: In addition to the objective function of X,
we enforce a constraint on X so as to avoid getting a trivial
solution (Note that X = 0 minimizes Eq. 7 if there is no
constraint on X). We choose to use the newly proposed log-
determinant heuristic on XT X, a.k.a the log-det heuristic,
denoted by log |XT X| [6]. It has been shown that the log |Y |
is a smooth approximation for the rank of Y if Y is a positive
semidefinite matrix. It is obvious the gram matrix XT X is
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positive semidefinite. Thus, when we maximize log |XT X|,
we effectively maximize the rank of X, which is at most
k. Another way to understand log |XT X| is to note that
|XT X| = ∏

i λi(X
T X) =

∏
i σi(X)2, where λi(Y ) is the i-

th eigen-value of Y and σi(X) is the i-th singular value of
X. Therefore, a full-ranked X is preferred when log |XT X| is
maximized. For more reasons on using the log-det heuristic,
refer to the Comments below and [6].

Using the log-det heuristic, we arrive at the combined op-
timization problem:

min
X

{
Tr(XTLX)− log |XT X|

}
(8)

where Tr(A) is the trace function defined as the sum of diag-
onal elements of A. It has been shown that max{log |XT X|}
(or equivalently min{− log |XT X|}) is a convex problem [6].
So Eq. 8 is still a convex problem.

Comments: First, it is interesting to notice that we did
not use the traditional constraint on X (such as the or-
thonormal constraint of the subspace used in PCA [15]). The
reason of choosing log-det heuristic in our case is because
that (1) the orthonormal constraint is non-convex while the
remaining of the problem is; (2) the orthonormal constraint
cannot be solved by gradient-based methods and thus can-
not be efficiently solved and cannot be easily combined with
the other two factorizations in the following sections; (3) the
log-det, log |XT X|, has a small problem scale (k × k) and
can be solved effectively by gradient-based methods. Sec-
ond, note a key difference of this work from related work
on link matrix factorization (e.g. [20]) is that we seek to
determine X to comply with the graph Laplacian (not to
factorize the link matrix) which gives us a convex problem
that is global optimal.

3.2 Learning from Author Matrix: A

Here, we show how to learn from an author matrix, A,
which is the adjacency matrix of the bipartite graph, GDA,
that captures the relationship between D and A. We can use
GDA to encode two kinds of information between authors
and documents, one being the authorship and the other be-
ing the author-citation-ship. To encode authorship, we let
A ∈ I

|D|×|A| (I ∈ {0, 1}), where Ai,j indicates whether the
i-th paper is authored by the j-th author; To encode author-
citation-ship, we assume A ∈ R

|D|×|A|, where Ai,j can be the
number of times that document i is cited by author j (or the
logarithm of the citation count for rescaling).

We consider both kinds of author-document relationship
equivalently using matrix factorization, where authors in
both cases are considered social features of documents, in-
ferring similarities between documents. The basic intuition
is that the document related to a same set of authors should
be relatively close in the latent space X. The inference of
this intuition to citation recommendation is that the other
work of an author will be recommended given a reader is
interested in several work by similar authors.

Given the authorship matrix A ∈ R
|D|×|A|, we want to

use X to approximate it. Let the authors be described by
an author profile matrix W ∈ R

|A|×k. We can approximate
A by XW T as:

min
X,W
‖A−XW T ‖2F + λ1‖W‖2F , (9)

where X and W are the minimizers. To prevent overfitting,
the second term is used, where λ1 is the parameter. Note

that later we will combine Eq. 8 and Eq. 9; So we do not show
the constraint on ‖X‖2F here. It is worth mentioning that
the idea of using two latent semantic spaces to approximate
a co-occurrence matrix is similar to that used in document
content analysis (e.g. the LSA [5]).

3.3 Learning from Venue Matrix: V

In the above, we have given the method for learning a
representation of D from a directed citation graph GD and
an undirected bipartite graph GDA. In this section, we are
given an additional piece of categorical information, which
can be described by the bipartite venue graph GDV , where
one set of nodes are the documents from D and the other
set are the venues from V.

Similar to A, we have the venue matrix V ∈ I
|D|×|V|,

where Vi,j denotes whether document i is in venue j. How-
ever, a key difference here is that each row in V has at most
one nonzero element because one document can proceed in
at most one venue. Although we could as well employ XW T

to approximate V (as in Sec. 3.2), we will show that the spe-
cial property of V can help us cancel the variable matrix W ,
and thus reducing the optimization problem size for better
efficiency. Accordingly, we follow a similar but different ap-
proach. In particular, let us consider to use V to predict
the X via linear combinations. Suppose we have W2 as the
coefficient, we seek to minimize the following:

min
X,W2

‖V W T
2 −X‖2F . (10)

One can understand Eq. 10 in this way: Here each column of
W2 can be considered as a cluster center of the corresponding
class (i.e., the venues). Then solving Eq. 10 in fact simulta-
neously (1) pushes the representation of documents close to
their respective class centers; and (2) optimizes the centers
to be close to their members.

Next, we cancel W2 using the unique property of our venue
matrix V . Setting the derivative to be zero, we have 0 =
∂‖V W T

2 −X‖2F /∂W2 = 2(V T V W2−V T X), suggesting that
W2 = (V T V )−1V T X. Note that V T V is diagonal matrix
and is thus invertible. Plug in W2 back to Eq. 10. We arrive
at the optimization where W2 is canceled:

min
X
‖V (V T V )−1V T X −X‖2F , (11)

where (V T V )−1V T is the pseudo inverse of V . Here since
V T V is |V| × |V| diagonal matrix, its inverse can be com-
puted in |V| flops. Meanwhile, V (V T V )−1V T is block diag-
onal where each block denotes a complete graph among all
documents within the same venue. Note that Eq. 9 cannot
be handled in the same way because (AT A)−1 is a dense ma-
trix, resulting in a |D| × |D| dense matrix of A(AT A)−1AT ,
which in practice raises scalability issues.

3.4 Learning Document Embedding
We have arrived at a combined optimization formulation

given the above sub-problems. We will combine Eq. 8, Eq. 9
and Eq. 10 in a unified optimization framework. Define the
new objective J(X, W ) as a function of X, W . We have an
optimization below to learn the document embedding matrix
X:

J(X, W ) = (Tr(XTLX)− log |XT X|
+α‖A−XW T ‖2F + λ‖W‖2F
+β‖V (V T V )−1V T X −X‖2F ) (12)
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where λ is the weight of regularization on W ; α is the weight
for learning from A; β is the weight for learning from V .
In this paper, we only empirically find the best values for
α and β that yield the best F-scores for the current data
set. Future work on how to choose parameter values will be
helpful to practitioners.

The optimization illustrated above can be solved using
standard Conjugate Gradient (CG) method, where the key
step is the evaluation of objective function and the gradient.
In Appendix .1, we show the gradients for the combined
optimization.

After X is calculated, we can use linear model in the rec-
ommendation, i.e. f∗ = X(XT X)−1XT y. We can obtain
efficiency advantage over the power method as in Eq. 3.

4. INCREMENTAL UPDATE OF DOCUMENT
EMBEDDING

An incremental version of our new method will be pro-
posed in this section. The goal of incremental update of X
is to avoid heavy computation of known documents when
there is a small size of update. The incentive for designing
an incremental update algorithm is to delay (or avoid) re-
computation in a batch approach. The incremental update
of X we will give is an efficient approximate solution. In
particular, suppose we have used document D0, V0, A0 and
their relationship at time t0 to compute a document embed-
ding X0 for the document set D0. Now, at time t1, we have
observed an additional set of new documents D1. How can
we use the pre-computed X0 to compute an embedding of
D1 in X1 ∈ R

|D1|×k efficiently? Note that typically |D1| is
much smaller than |D0|.

4.1 Rewriting Objective Functions
We rewrite the objective function in Eq. 12. Let X be the

minimizer. We assume that the embedding of old documents
is in X0 and the X1 ∈ R

|D1|×k is the embedding for D1. Here
XT = [XT

0 , XT
1 ]. Let the updated three graphs be encoded

in the three new matrices below:

A =

⎡
⎣ A00 A01

A10 A11

⎤
⎦ , V =

⎡
⎣ V0

V1

⎤
⎦ ,L =

⎡
⎣ L00 L01

LT
01 L11

⎤
⎦ ,

where the A encodes the new document-author relationship;
the V encodes the new the document-venue relationship (as-
suming no emergence of new venues); and the L denotes the
new Laplacian calculated on the updated document citation
graph. By convention, the index 0 corresponds to the orig-
inal part of the matrix and the index 1 indicates the new
part. For example, V0 is the venue matrix at time t0 and V1

is the venue matrix at time t1.
Consider the objective function in Eq. 12. After several

rewrites as entailed in Appendix .2, the objective function in
Eq. 12 on the new set of matrices now becomes the following:

J = Tr(XT
0 L00X0 + 2XT

0 L01X1 + XT
1 L11X1)

− log |XT
0 X0 + XT

1 X1|
+λ‖W0‖2F + λ‖W1‖2F

+α‖A00 −X0W
T
0 ‖2F + α‖A01 −X0W

T
1 ‖2F

+α‖A10 −X1W
T
0 ‖2F + α‖A11 −X1W

T
1 ‖2F

+β‖(V0Σ
−1V T

0 − I)X0 + V0Σ
−1V T

1 X1‖2F
+β‖V1Σ

−1V T
0 X0 + (V1Σ

−1V T
1 − I)X1‖2F , (13)

where the coefficients are L, A, V , and Σ = (V T
0 V0 +V T

1 V1);

The variables are X =

⎡
⎣ X0

X1

⎤
⎦, W =

⎡
⎣ W0

W1

⎤
⎦; The param-

eters are α, β, λ.

4.2 Efficient Approximate Solution
We will make the Eq. 13 more efficient in this section,

hoping to only calculate the incremental part of X for the
new documents in D1.

First, let us assume that the incremental update of X only
seek to update the embedding of D1 but does not change
the original embedding of D0, i.e. that X0 is fixed. Simi-
larly, W0 is fixed for the authors observed before. Second,
we can see that V0 in V is fixed because documents will
not change venues over time. Third, we show that the seg-
ment in the new Laplacian L01 is approximately zero because
no old documents can cite new documents which results in
relatively small stationary probabilities on the new docu-
ments (we will show more details for this proposition in Ap-
pendix .3). Given the above assumptions and observations,
after discarding the constant terms, we have the following
optimization for incremental update of X:

Japp = Tr(XT
1 L11X1)− log |XT

0 X0 + XT
1 X1|

+α‖A01 −X0W
T
1 ‖2F + α‖A10 −X1W

T
0 ‖2F

+α‖A11 −X1W
T
1 ‖2F + λ‖W1‖2F

+β‖(V0Σ
−1V T

0 − I)X0 + V0Σ
−1V T

1 X1‖2F
+β‖V1Σ

−1V T
0 X0 + (V1Σ

−1V T
1 − I)X1‖2F , (14)

where Σ = (V T
0 V0 + V T

1 V1). The variables are X1 and W1

that has |D1| × k and |A1| × k elements respectively. Since
D1 and A1 are very small, the incremental calculation of X1

can be achieved very efficiently. Again, this problem can be
solved using conjugate gradient method where the gradients
of Eq. 14 are presented in Appendix .1.

5. EXPERIMENTS
A real-world data set for experimentation was generated

by sampling documents from CiteSeer using combined doc-
ument meta-data from CiteSeer and another two sources
(the ACM Guide, http://portal.acm.org/guide.cfm, and the
DBLP, http://www.informatik.uni-trier.de/ ley/db) for en-
hanced data accuracy and coverage. The meta-data was
processed so that the ambiguous author names and noisy
venue titles were canonicalized 4. Since the data in CiteSeer
are collected automatically by crawling the Web, we may
not have enough information about certain authors. Ac-
cordingly, we collected the documents by those top authors
in CiteSeer ranked by their numbers of documents. Then we
collected the venues of these documents. Similarly, we kept
those venues with most documents in the prepared subset
and discarded the venues that include fewer documents. Fol-
lowing the same procedure, two datasets were prepared with
different sizes. The first dataset, referred to as DS1, has 400
authors, 9, 197 documents, 50 venues, and 19, 844 citations;
The second dataset, referred to as DS2, which is larger in
size, has 800 authors, 15, 073 documents, 100 venues, and
38, 614 citations.

4Venues with only temporal differences, such as the con-
ference proceedings from different years or the journals of
different issues, were treated as the same venue.
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5.1 Evaluation Metrics
The performance of recommendation can be measured by

a wide range of metrics, including user experience studies
and click-through monitoring. For experimental purpose,
this paper will evaluate the proposed method against cita-
tion records by cross-validation. In particular, we randomly
remove t documents, use the remaining documents as the
seeds, perform recommendations, and judge the recommen-
dation quality by examining how well these removed doc-
uments can be retrieved. As suggested by real user usage
patterns, we are only interested in the top recommended
documents. Quantitatively, we define the recommendation
precision (p) as the percentage of the top recommended doc-
uments that are in fact from the true citation set. The re-
call (r) is defined as the percentage of true citations that
are really recommended in the top m documents. The F-
score, which combines precision and recall is defined as f =
(1 + δ2)rp/(r + δ2p), where δ ∈ [0,∞) determines how rela-
tively important we want the recall to be (Here we use δ = 1,
i.e. F-1 score, as in many related work.) 5 We have intro-
duced a parameter in evaluation, m, which is the number of
top documents we evaluate the f-score at.

5.2 Recommendation Quality
This section introduces the experiments on recommenda-

tion quality. We compare the recommendation by our al-
gorithm with two other baselines: one based on Laplacian
on directed graphs [2] and label propagation using graph
Laplacian [18] (named as Lap) and the other based on Sin-
gular Vector Decomposition of the author matrix (named as
SVD) 6. We chose to compare with the Lap method to see
whether the fusion of different graphs can effectively pro-
duce additional information than the original graph citation
graph; We chose the SVD on author matrix as another base-
line because we would like compare our method against the
traditional CF method on the additional graph information
(as one can argue that the significant improvement of the
new method is purely due to the use of the additional infor-
mation).

f \ m m=t m=5 m=10

DS1

f(lap) 0.013 0.048 0.192

f(svd) 0.035 0.086 0.138

f(new) 0.108 0.242 0.325

DS2

f(lap) 0.011 0.046 0.156

f(svd) 0.027 0.072 0.109

f(new) 0.083 0.158 0.229

Table 1: The f-score calculated on different numbers
of top documents, m.

5Note that even it is the recommendation problem that we
address, we cannot use the Mean Average Error (MAE),
which is used for measuring the quality of a Collaborative
Filtering algorithm, because we do not seek to approximate
the ratings of documents but to preserve their preference
orders in the recommendation ranking.
6If we consider the author matrix as a user-item rating ma-
trix, the SVD of the rating is in fact a simple Collaborative
Filtering (CF) method. However, due to different objectives
of our problem and the traditional CF, we will see later that
our method outperforms SVD towards our goal significantly.

f \ t t=1 t=2 t=3 t=4

DS1

f(lap) 0.041 0.048 0.075 0.086

f(svd) 0.062 0.088 0.099 0.103

f(new) 0.197 0.242 0.248 0.252

DS2

f(lap) 0.037 0.047 0.068 0.077

f(svd) 0.049 0.072 0.082 0.086

f(new) 0.121 0.158 0.181 0.182

Table 2: The f-score w.r.t. different numbers of left-
out documents, t.

Table 1 and Table 2 list the f-scores (defined in Sec. 5.1)
of three different methods (our new method with Lap and
SVD) on two datasets (DS1 and DS2). Table 1 for different
number of top documents evaluated on (denoted by m). We
are able to see that the new method outperforms both Lap
and SV D significantly on both datasets in different settings
of parameters. In general, the new method are 3 − 5 times
better in f-score than Lap and 2.5 times better than SV D.
The Lap method under-performs SV D on the very top doc-
uments but beats it if evaluated on more top documents. In
addition, we notice that the f-scores get better in general as
we look at more top documents. Also, the f-scores on the
smaller dataset DS1 are generally higher than those on the
larger dataset DS2. Here, we can see that the recommen-
dation quality can be significantly improved by using the
author matrix as the additional information. Note that the
different information, when used individually, such as the
Lap on the citation graph or the SV D on the author graph,
can be not as good. However, if the multiple information
are combined, the performance is greatly improved7.

5.3 Parameter Effect
The effect of parameters for the new method is experi-

mented in this section. We experiment with different set-
tings of dimensionality, or k, and weights on authors and
venues, or α and β. In Table 3, we show the f-scores for
different k’s. It occurs that the f-scores become higher for
greater k. We believe this is because the higher dimensional
space can better captures the similarities in the original ci-
tation graphs. However, on the other hand, we observe that
it takes longer training time for greater k. Seeking k thus
become a trade-off between quality and efficiency. In our
experiments, we chose k = 100 as greater k do not seem
to give much better results. The CPU time for training at
different k’s are illustrated in Table 4.

f \ k k=50 k=100 k=150 k=200

DS1 0.203 0.242 0.249 0.262

DS2 0.095 0.158 0.181 0.197

Table 3: The f-score w.r.t. different setting of di-
mensionality, k.

7In our experiments, additionally, we work with different
methods of formulating the author matrix, A, for example,
using the number of citations from authors to documents in
A. The experiments show that using the citation-ship in A
can be even better. Due to space limit, here we present the
experiments with authorship in A only.
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t(lap) t(new)

time \ k k=50 k=100 k=150 k=200

DS1 694s 440s 502s 558s 621s

DS2 940s 638s 743s 820s 910s

Table 4: The CPU time for recommendations w.r.t.
different dimensionality, k.

Fig. 3 illustrates the f-scores for different settings of α and
β, which are respectively the weights on authors and venues.
We determine which of the two components obtains greater
improvement if incorporated, search for the best parameter
for this component, fix it, and then search for the best pa-
rameter for the other component. In our experiments, we
observe that adding the author component tends to improve
the recommendation quality better so we first tune α, which
yields different f-scores, as shown by the blue curve in Fig. 3.
Then we fix the α = 0.1 and tune β, arriving at the best
f-score at β = 0.05.
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Figure 3: f-scores for different settings of weights on
the authors, α, and on the venues, β. The α is tuned
first for β = 0; Then β is tuned for the fixed best
α = 0.1.

5.4 Incremental Update
Here we present the experiments for another contribution

of this work: incremental update. The incremental update
method we propose seeks to determine an approximate em-
bedding of documents by working with the incremental data
and the relationship between the new data and the old. We
evaluate this new method in its training time, recommenda-
tion quality, and propagation of errors.

Fig. 4 illustrates the comparison of training time for the
incremental method and batch update by percentage on
both datasets. We try to use a fair baseline. In particular,
we compare with a percentage of batch update time, where
the percentage reflects the relative amount of incremental
data. As illustrated in Fig. 4, the incremental method takes
on average 1/2− 1/5 of the training time of batch method.

The improvement is more significant on larger dataset (DS2)
than small ones (DS1).
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Figure 4: Training time for incremental update and
batch method w.r.t. different percentage of incre-
mental data on DS1 and DS2. The training time for
batch method is the corresponding percentage of the
overall training time.

The next natural question to ask is how much quality has
to be compromised for the improvement of efficiency. Fig. 5
present the comparison of f-scores for different percentage
of incremental using the incremental method with the batch
method applied to the full data. It turns out that the perfor-
mance of incremental method deteriorates as the incremen-
tal data takes a large percentage. Fortunately, the f-scores
decrease at a slower ratio for the larger dataset (DS2). This
is because that more information is captured by the larger
dataset with larger absolute size. On average, the deterio-
ration of recommendation quality can be significant if the
incremental data takes more than 30% of the data. So we
would suggest re-run the batch process when the updated
corpus exceeds the original size significantly.

Finally, we present the propagation of errors if the incre-
mental update is applied to multiple times. It has come to
our attention that the performance deteriorates at a faster
pace if one applies multiple steps of incremental updates.
Fig. 5.4 illustrates the f-scores w.r.t. different numbers of
steps in the incremental updates, for different overall per-
centage to update. Notice that the f-scores deteriorate faster
if the overall percentage of update is greater. Also, the f-
scores decrease slower at first 1 − 2 steps and faster from
the 3rd step onwards. It is then suggested that the new in-
cremental method should be used with caution, preferring
fewer number of uses or on a larger percentage of data for
each use. It seems that the error in the incremental updates
is propagated more than linearly.

The incremental update methods presented in this sec-
tion addresses the scalability issues in recommendation of
large-scale dataset on the Web. In practice, we recommend
a combination of batch update and incremental update seek-
ing a tradeoff between efficiency and scalability.
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Figure 5: f-scores for different percentage of incre-
mental data in the incremental update, on DS1 and
DS2, w.r.t. the batch method applied to the full
data.
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Figure 6: f-scores for different numbers of steps in
the incremental updates, for different overall per-
centage (p) to update, on DS1 and DS2.

6. RELATED WORK
This work is first related to a family of work on categoriza-

tion of networked documents. Categorization of networked
documents is developed based on the link structure and the
co-citation patterns (e.g. [8] for Web document clustering).
In [8], all links are treated as undirected edge of the link
graph and the content information is only used for weigh-
ing the links by the textual similarity between documents
on both ends of the link. Very recently, Chung[2] has pro-
posed a regularization framework on directed graphs. Soon
after, Zhou et.al. [18] used this regularization framework
on directed graphs for semi-supervised learning, which also
seek to explain ranking and categorization in the same semi-
supervised learning framework. Later, a work by Zhou et.al.
extended the regularization to multiple graphs with the same
set of vertices [16], which, however, is different from this

work where the item set can be either a full set or a subset
of the graphs in question.

This work also relates to the category of work that ap-
proach document analysis via embedding documents onto a
relatively low dimensional latent space [5, 17]. Latent Se-
mantic Indexing (LSI) [5] is a representative work in this
category that uses a latent semantic space to implicitly cap-
ture the information of documents. Analysis tasks, such as
classification, could be performed on the latent space. An-
other commonly used method, Singular Value Decomposi-
tion (SVD), ensures that the data points in the latent space
can optimally reconstruct the original documents. Based on
similar idea, Hofmann [9] proposed a probabilistic model,
called Probabilistic Latent Semantic Indexing (pLSI). This
work is similar but different to pLSI in that we not only ap-
proximate one single document matrix but several matrices
at the same time.

Finally, this work shares the idea of related work on com-
bining multiple sources of information. In this category,
prior work by Cohn and Hofmann [4] extends the latent
space model to construct the latent space from both con-
tent and link information, using content analysis based on
pLSI and PHITS [3], which is a direct extension of pLSI
on the links. In PLSI+PHITS, the link is constructed with
the linkage from the topic of the source web page to the
destination web page. In that model, the outgoing links of
the destination web page have no effect on the source web
page. In other words, the overall link structure is not uti-
lized in PHITS. Communitiy discovery has also been done
purely based on document content [19]. Recent work. [20]
utilizes the overall link structure by representing links using
the latent information of their both end nodes. In this way,
the latent space truly unifies the content and the underlying
link structure. Our work is similar to that of [20] but we not
only considers links but also co-link patterns by using the
Laplacian on directed graphs.

7. CONCLUSIONS AND FUTURE WORK
We address the item-based collaborative filtering problem

for items that are networked. We propose a new method for
combining multiple graphs in order to measure item simi-
larities. In particular, the new method seeks a single low-
dimensional embedding of items that captures the relative
similarities among them in the latent space. We formu-
late this as an optimization problem, where the learning of
three general types of graphs are formulated as three sub-
problems, each using a factorization strategy tailored to the
unique characteristics of the graph type. Based on the ob-
tained item embedding, a new recommendation framework is
developed using semi-supervised learning on graphs. In ad-
dition, we address the scalability and propose an incremen-
tal version of the new method. Approximate embeddings
are calculated only for new items making it very efficient.
The new batch and incremental methods are evaluated on
two real world datasets prepared from CiteSeer. Experi-
ments have demonstrated significant quality improvement
for our batch method and significant efficiency improvement
with tolerable quality loss for our incremental method. For
future work, we will pursue other applications of the new
graph fusion technique, such as clustering or classification.
In addition, we want to extend our framework to graphs
with hyperedges.
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APPENDIX
.1 The Gradients for Eq. 12 and Eq. 14

The gradients for Eq. 12 are:

∂J

∂X
= 2LX − 2X(XT X)−1

+2α(XW T W −AW ) +

+2β(V V † − I)T (V V † − I)X (15)

∂J

∂W
= 2α(WXT X −AT X) + 2λW (16)

where V † = (V T V )−1V T is the pseudo inverse of V . When
searching for the solutions, we vectorize the gradients of
X, W into a long vector. In implementation, different cal-
culation order of matrix product leads to very different ef-
ficiency. For example, it is much more efficient to calculate
(V V † − I)T (V V † − I)X as (V †)T V T V V †X − 2V V †X + X
because V and V † are very sparse.

The gradients for Eq. 14 are:

1

2

∂Japp

∂X1
= L11X1 −X1(X

T
0 X0 + XT

1 X1)
−1

+α(X1W
T
0 W0 −A10W0) + α(X1W

T
1 W1 −A11W1)

+β(QT
0 P0 + QT

0 Q0X1) + β(QT
1 P1 + QT

1 Q1X1) (17)

where P0 = (V0Σ
−1V T

0 − I)X0, Q0 = V0Σ
−1V T

1 , P1 =
V1Σ

−1V T
0 X0, Q1 = (V1Σ

−1V T
1 − I), Σ = (V T

0 V0 + V T
1 V1).

The gradients of Eq. 14 w.r.t. W1 are

1

2

∂Japp

∂W1
= α(W1X

T
0 X0 −AT

01X0)

+α(W1X
T
1 X1 −AT

11X1) + λW1 (18)

.2 Rewriting the Objective Functions
First, for the terms in Eq. 12 for learning from A, we in-

troduce another set of variables in W1 ∈ R
|A1|×k, to describe

the new authors in A1. Then we have W T = [W T
0 , W T

1 ]. Let
the document-author relationship be encoded in the author

matrix A: A =

⎡
⎣ A00 A01

A10 A11

⎤
⎦. Then we have the following:

‖A−XW T ‖2F =

∥∥∥∥∥∥

⎡
⎣ A00 A01

A10 A11

⎤
⎦ −

⎡
⎣ X0

X1

⎤
⎦ [

W T
0 W T

1

]
∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥
A00 −X0W

T
0 A01 −X0W

T
1

A10 −X1W
T
0 A11 −X1W

T
1

∥∥∥∥∥∥

2

F

= ‖A00 −X0W
T
0 ‖2F + ‖A01 −X0W

T
1 ‖2F

+‖A10 −X1W
T
0 ‖2F + ‖A11 −X1W

T
1 ‖2F . (19)

and ‖W‖2F becomes

‖W‖2F =

∥∥∥∥∥∥
W0

W1

∥∥∥∥∥∥

2

F

= ‖W0‖2F + ‖W1‖2F . (20)

Second, for the term in Eq. 12 regarding learning from
venue matrix, V , we assume that there are no new venues

showing up between t0 and t1. So the new V takes the form

as V =

⎡
⎣ V0

V1

⎤
⎦ where V0 is the venue matrix at time t0.

Let the component V (V T V )−1V T = Φ. We can see that
the learning objective becomes

‖(Φ− I)X‖2F , (21)

where

Φ =

⎡
⎣ V0

V1

⎤
⎦

⎛
⎝[

V T
0 V T

1

] ⎡
⎣ V0

V1

⎤
⎦

⎞
⎠

−1 [
V T

0 V T
1

]

=

⎡
⎣ V0

V1

⎤
⎦ (V T

0 V0 + V T
1 V1)

−1
[

V T
0 V T

1

]

=

⎡
⎣ V0Σ

−1V T
0 V0Σ

−1V T
1

V1Σ
−1V T

0 V1Σ
−1V T

1

⎤
⎦ (22)

and Σ = (V T
0 V0 + V T

1 V1) is a diagonal matrix whose in-
verse is very easy to compute. Then we plug Eq. 22 into
Eq. 21. After several simple manipulations, we arrive at the
following learning objective for venues:

‖(V0Σ
−1V T

0 − I)X0 + V0Σ
−1V T

1 X1‖2F +

‖V1Σ
−1V T

0 X0 + (V1Σ
−1V T

1 − I)X1‖2F , (23)

where Σ = (V T
0 V0 + V T

1 V1).
Third, for the Laplacian terms in Eq. 12 for learning from

the citation graph D, we have the following identities:

Tr(XTLX)

= [XT
0 , XT

1 ]

⎡
⎣ L00 L01

LT
01 L11

⎤
⎦

⎡
⎣ X0

X1

⎤
⎦

= Tr(XT
0 L00X0 + 2XT

0 L01X1 + XT
1 L11X1) (24)

and

log |XT X| = log |XT
0 X0 + XT

1 X1| (25)

where L00 is a |D0| × |D0| matrix for the graph on D0; L01

is a |D0| × |D1| matrix for interaction between D0 and D1;
and L11 is a |D1| × |D1| matrix for the graph on D1.

.3 The Laplacian L is almost block diagonal:
Here we will show that the Laplacian L on the new matrix

D at time t1 is near block diagonal. Recall that the citation

matrix D at time t1 can be written as D =

⎡
⎣ D00 D01

D10 D11

⎤
⎦.

Here, D00 is the same as the citation matrix used to compute
the Laplacian at time t0. Remember that L = I − αS,
where S is the similarity measured on the directed graph D
in Eq. 5:

S =
1

2
(S̄ + S̄T ) (26)

where S̄ = Φ1/2PΦ−1/2 and P is the stochastic matrix nor-
malized from D and Φ is a diagonal matrix containing the
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stationary probabilities. We rewrite S̄ as follows:

S̄ =

⎡
⎣ Φ00

Φ11

⎤
⎦

1
2

⎡
⎣ P00 P01

P10 P11

⎤
⎦

⎡
⎣ Φ00

Φ11

⎤
⎦

− 1
2

(27)
where P00, P01, P10, P11 are normalized from D00, D01, D10, D11

and the diagonal matrix Φ00 (Φ11) contains the stationary
probabilities on the old (new) documents.

We further know that P01 = 0 because new documents D1

cannot be cited by the old documents. So we have:

S̄ =

⎡
⎣ Φ

1
2
00P00Φ

− 1
2

00 0

Φ
1
2
11P10Φ

− 1
2

00 Φ
1
2
11P11Φ

− 1
2

11

⎤
⎦ . (28)

And we also know that the new documents D1, with few
citations among themselves, mainly cite the old documents
in D0. Thus, in the case when D0 is much larger than D1, the
stationary probabilities on the new documents D1 are very

small, i.e. Φ11 ∼ 0. This gives us Φ
1
2
11P10Φ

− 1
2

00 ∼ 0. So we
have shown that S̄ is almost diagonal. Let us rewrite S̄ as:

S̄ ∼ diag(Φ
1
2
00P00Φ

− 1
2

00 , Φ
1
2
11P11Φ

− 1
2

11 ). Since L = I−αS where

S = 1
2
(S̄ + S̄T ), we know that the new L ∼

⎡
⎣ L00 0

0 L11

⎤
⎦

which is almost block diagonal, i.e. L01 ∼ 0. However, note

that L11 is not necessarily zero because Φ
1
2
11P11Φ

− 1
2

11 contains

both Φ
1
2
11 and Φ

− 1
2

11 . Also, note that we do not claim that
L00 in the new L is identical to the original Laplacian on
D0. Nevertheless, we discard the term XT

0 L00X0 in Eq. 13
because X0 is assumed to be unchanged.
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