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ABSTRACT
Because it is an integral part of the Internet routing appa-
ratus, and because it allows multiple instances of the same
service to be “naturally” discovered, IP Anycast has many
attractive features for any service that involve the replica-
tion of multiple instances across the Internet. While briefly
considered as an enabler when content distribution networks
(CDNs) first emerged, the use of IP Anycast was deemed
infeasible in that environment. The main reasons for this
decision were the lack of load awareness of IP Anycast and
unwanted side effects of Internet routing changes on the IP
Anycast mechanism. Prompted by recent developments in
route control technology, as well as a better understanding
of the behavior of IP Anycast in operational settings, we
revisit this decision and propose a load-aware IP Anycast
CDN architecture that addresses these concerns while ben-
efiting from inherent IP Anycast features. Our architecture
makes use of route control mechanisms to take server and
network load into account to realize load-aware Anycast. We
show that the resulting redirection requirements can be for-
mulated as a Generalized Assignment Problem and present
practical algorithms that address these requirements while
at the same time limiting session disruptions that plague reg-
ular IP Anycast. We evaluate our algorithms through trace
based simulation using traces obtained from a production
CDN network.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

General Terms
Performance, Algorithms

Keywords
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1. INTRODUCTION
The use of the Internet to distribute media content contin-

ues to grow. The media content in question runs the gambit
from operating system patches and gaming software, to more
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traditional Web objects and streaming events and more re-
cently user generated video content [4]. Because of the often
bursty nature of demand for such content [9], and because
content owners require their content to be highly available
and be delivered in timely manner without impacting pre-
sentation quality [13], content distribution networks (CDNs)
have emerged over the last decade as a means to efficiently
and cost effectively distribute media content on behalf of
content owners.

The basic architecture of most CDNs is simple enough,
consisting of a set of CDN nodes distributed across the In-
ternet [2]. These CDN nodes serve as proxies where users
(or “eyeballs” as they are commonly called) retrieve content
from the CDN nodes, using a number of standard protocols.
The challenge to the effective operation of any CDN is to
send eyeballs to the “best” node from which to retrieve the
content, a process normally referred to as “redirection” [1].
Redirection is challenging, because not all content is avail-
able from all nodes, not all nodes are operational at all
times, nodes can become overloaded and, perhaps most im-
portantly, an eyeball should be directed to a node that is in
close proximity to it to ensure satisfactory user experience.

Because virtually all Internet interactions start with a do-
main name system (DNS) query to resolve a hostname into
an IP address, the DNS system provides a convenient mech-
anism to perform the redirection function [1]. Indeed most
commercial CDNs make use of DNS to perform redirection.
DNS based redirection is not a panacea, however. In DNS-
based redirection the actual eyeball request is not redirected,
rather the local-DNS server of the eyeball is redirected [1].
This has several implications. First, not all eyeballs are in
close proximity to their local-DNS servers [11, 14], and what
might be a good CDN node for a local-DNS server is not nec-
essarily good for all of its eyeballs. Second, the DNS system
was not designed for very dynamic changes in the mapping
between hostnames and IP addresses. This problem can be
mitigated significantly by having the DNS system make use
of very short time-to-live (TTL) values. However, caching
of DNS queries by local-DNS servers and especially certain
browsers beyond specified TTL means that this remains an
issue [12]. Finally, despite significant research in this area [7,
5, 16], the complexity of knowing the“distance”between any
two IP addresses on the Internet, needed to find the closest
CDN node, remains a difficult problem.

In this work we revisit IP Anycast as redirection tech-
nique, which, although examined early in the CDN evolu-
tion process [1], was considered infeasible at the time. IP
Anycast refers to the ability of the IP routing and forward-
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ing architecture to allow the same IP address to be assigned
to multiple different endpoints, and to rely on Internet rout-
ing to select between these different endpoints. Endpoints
with the same IP address are then typically configured to
provide the same service. For example, IP Anycast is com-
monly used to provide redundancy in the DNS root-server
deployment [8]. Similarly, in the case of a CDN all endpoints
with the same IP Anycast address can be configured to be
capable of serving the same content.

Because it fits seamlessly into the existing Internet rout-
ing mechanisms, IP Anycast packets are routed “optimally”
from a IP forwarding perspective. That is, for a set of Any-
cast destinations within a particular network, packets are
routed along the shortest path and thus follow a proximally
optimal path from a network perspective. Packets travel-
ing towards a network advertising an IP Anycast prefix, will
similarly follow the most optimal path towards that desti-
nation within the constraints of the inter-provider peering
agreements along the way.

From a CDN point of view, however, there are a number
of problems with IP Anycast. First, because it is tightly cou-
pled with the IP routing apparatus, any routing change that
causes anycast traffic to be re-routed to an alternative any-
cast endpoint may cause a session reset to any session-based
traffic such as TCP. Second, because the IP routing infras-
tructure only deals with connectivity, and not the quality of
service achieved along those routes, IP Anycast likewise is
unaware of and can not react to network conditions. Third,
IP Anycast is similarly not aware of any server (CDN node)
load, and therefore cannot react to node overload conditions.
For these reasons, IP Anycast was originally not considered
a viable approach as a CDN redirection mechanism.

In this paper we present our work on a load-aware IP
Anycast CDN architecture. Our revisiting of IP Anycast
as a redirection mechanism for CDNs was prompted by two
recent developments. First, route control mechanisms have
recently been developed that allow route selection to be in-
formed by external intelligence [19, 6, 20]. Second, recent
Anycast based measurement work [3] shed light on the be-
havior of IP Anycast, as well as the appropriate way to de-
ploy IP Anycast to facilitate proximal routing.

When selecting between multiple hosts with the same Any-
cast IP address, route control mechanisms allow both CDN
node load and network conditions to be taken into account,
which addresses two of the concerns listed above (i.e., quality
of service and load-awareness). Route control also partially
deals with the concern about resetting sessions because of
route changes. We note that in practice there are two vari-
ants of this problem: (i) Route changes within a network
that deploys IP Anycast addresses and (ii) Route changes
outside of the network which deploys Anycast IP addresses.
Route control mechanisms can easily deal with the first of
these problems preventing unnecessary switching between
Anycast addresses within the network. As for route changes
outside of the IP Anycast network, recent Anycast measure-
ment work [3] has shown that most IP prefixes exhibit very
good affinity, i.e., would be routed along the same path to-
wards the Anycast enabled network.

The main contributions of our work are as follows:

• We present a practical Anycast CDN architecture that
utilizes server and network load feedback to drive route
control mechanisms to realize CDN redirection (Sec-
tion 2).

Figure 1: Load-aware Anycast CDN Architecture

• We formulate the required load balancing algorithm as
a Generalized Assignment Problem and present prac-
tical algorithms for this NP-hard problem that take
into consideration the practical constraints of a CDN
(Section 3).

• Using server logs from an operational production CDN
(Section 4), we evaluate our algorithms by trace driven
simulation and illustrate their benefit by comparing
with native IP Anycast and an idealized load-balancing
algorithm (Section 5).

2. ARCHITECTURE
In this section we first describe the workings of a load-

aware Anycast CDN and briefly discuss the pros and cons
of this approach vis-a-vis more conventional CDN architec-
tures. We also give an informal description of the load bal-
ancing algorithm required for our approach before describing
it more formally in later sections.

2.1 Load-aware Anycast CDN
Figure 1 shows a simplified view of a load-aware Anycast

CDN. We assume a single autonomous system (AS) in which
IP Anycast is used to reach a set of CDN nodes distributed
within the AS. For simplicity we show two such CDN nodes,
A and B in Figure 1. In the rest of the paper, we use the
terms“CDN node”and“content server” interchangeably. We
further assume that the AS in question has a large footprint
in the country or region in which it will be providing CDN
service; for example, in the US, Tier-1 ISPs have this kind
of footprint1. Our paper investigates synergistic benefits of
having control over the PEs of a CDN. We note that these
assumptions are both practical, and, more importantly, a
recent study of IP Anycast [3] has shown this to be the ideal
type of deployment to ensure good proximity properties2.

Figure 1 also shows the Route Controller function that is
central to our approach [19, 20]. The Route Controller ex-
changes routes with provider edge (PE) routers in the CDN

1http://www.business.att.com, http://www.level3.com
2Note that while our focus in this work is on Anycast CDNs,
we recognize that these conditions can not always be met
in all regions where a CDN provider might provide services,
which suggests that a combination of redirection approaches
might be appropriate.
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provider network. As such, the Route Controller can in-
fluence the routes selected by these PEs. For our purposes,
the Route Controller takes two other inputs, namely, ingress
load from the PEs at the edge of the network, and server load
from the CDN nodes for which it is performing redirection.

The Load-aware Anycast CDN then functions as follows
(with reference to Figure 1): All CDN nodes that are config-
ured to serve the same content (A andB), advertise the same
IP Anycast address into the network via BGP (respectively
through PE0 and PE5). PE0 and PE5 in turn advertise
the Anycast address to the Route Controller who is respon-
sible to advertise the (appropriate) route to all other PEs
in the network (PE1 to PE4). These PEs in turn advertise
the route via eBGP sessions with peering routers (PEa to
PEd) in neighboring networks so that the Anycast addresses
become reachable via the whole Internet (in the Figure rep-
resented by Access Networks I and II).

Request traffic for content on a CDN node will follow the
reverse path. Thus, a request will come from an access net-
work, and enter the CDN provider network via one of the
ingress routers PE1 to PE4. In the simple setup depicted in
Figure 1 such request traffic will then be forwarded to either
PE0 or PE5 en-route to one of the CDN nodes.

Based on the two load feeds (ingress PE load and server
load) provided to the Route Controller it can decide which
ingress PE (PE1 to PE4) to direct to which egress PE
(PE0 or PE5). The Route Controller can manipulate ingress
load(s) worth of request traffic in order to effect server re-
sponse load. In other words, there is an implicit assumption
in our approach that there is a direct correlation between
the request (ingress) traffic and the resulting response server
traffic. Fortunately, as we will show in Section 5, this as-
sumption holds because CDN providers typically group like
content together (e.g., large or small objects) so that in the
aggregate each request “weighs” more or less the same.

2.2 Objectives and Benefits
Given the architecture described above, the goals of the

redirection algorithm driving the Route Controller are as
follows: (i) To utilize the “natural” IP Anycast proximity
properties to reduce the distance traffic is carried in the net-
work. (ii) To react to overload conditions on CDN servers by
steering traffic to alternative CDN servers. (iii) To minimize
the disruption of traffic that results when ongoing sessions
are being re-mapped to alternative CDN servers. Note that
this means that “load-balancing” per server is not a spe-
cific goal of the algorithm: while CDN servers are operating
within acceptable engineering loads, the algorithm should
not attempt to balance the load. On the other hand, when
overload conditions are reached, the system should react to
deal with that, while not compromising proximity.

A major advantage of our approach over DNS-based redi-
rection systems is that the actual eyeball request is being
redirected, as opposed to the local-DNS request in the case
of DNS-based redirection. Further, with load-aware Any-
cast, any redirection changes take effect very quickly, be-
cause PEs immediately start to route packets based on their
updated routing table. In contrast, DNS caching by clients
(despite short TTLs) typically results in some delay before
redirection changes have an effect.

The redirection granularity offered by our Route Control
approach is at the PE level. For large Tier-1 ISPs the num-
ber of PEs typically count in the high hundreds to low thou-

Figure 2: Application level redirection for long-lived
sessions

sands. A possible concern for our approach is whether PE
granularity will be sufficiently fine grained to adjust load in
cases of congestion. Our results in Section 5 indicate that
even with PE-level granularity we can achieve significant
benefit in practice.

Before we describe and evaluate redirection algorithms
that fulfill these goals, we briefly describe two other CDN-
related functions enabled by our architecture that are not
further elaborated upon in this paper.

2.3 Additional Functions
Dealing with long lived sessions: Despite increased dis-
tribution of rich media content via the Internet, the average
Web object size remains relatively small [10]. This means
that download sessions for such Web objects will be rela-
tively short lived with little chance of being impacted by
any Anycast re-mappings in our architecture. The same is,
however, not true for long-lived sessions, e.g., streaming or
large file download [18]. (Both of these expectations are val-
idated with our analysis in Section 5.) In our architecture
we deal with this by making use of an additional application
level redirection mechanisms after a particular CDN node
has been selected via our load-aware IP Anycast redirection.
This interaction is depicted in Figure 2. As before an eyeball
will perform a DNS request which will be resolved to an IP
Anycast address (i and ii). The eyeball will attempt to re-
quest the content using this address (iii), however, the CDN
node will respond with an application level redirect (iv) [17]
containing a unicast IP address associated with this CDN
node, which the eyeball will use to retrieve the content (v).
This unicast address is associated only with this CDN node,
and the eyeball will therefore continue to be serviced by
the same node regardless of routing changes along the way.
While the additional overhead associated with application
level redirection is clearly unacceptable when downloading
small Web objects, it is less of a concern for long lived ses-
sions such as large file download. This is why we use HTTP
redirection only for large file downloads so that the startup
overhead is amortized.

Dealing with network congestion: As described above,
the load-aware CDN architecture only takes server load into
account in terms of being “load-aware”. (In other words,
the approach uses network load information in order to ef-
fect the server load, but does not attempt to steer traffic
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away from network hotspots.) The Route Control architec-
ture, however, does allow for such traffic steering [19]. For
example, outgoing congested peering links can be avoided
by redirecting response traffic on the PE connecting to the
CDN node (e.g., PE0 in Figure 1), while incoming congested
peering links can be avoided by exchanging BGP Multi-Exit
Discriminator (MED) attributes with appropriate peers [19].
We leave the full development of these mechanisms for future
work.

3. REDIRECTION ALGORITHM
As described above, our redirection algorithm has two

main objectives. First, we want to minimize the service
disruption due to load balancing. Second, we want to mini-
mize the network cost of serving requests without violating
server capacity constraints. In this section, after presenting
an algorithm that minimizes the network cost, we describe
how we use the algorithm to minimize service disruption.

3.1 Problem Formulation
Our system has m servers, where each server i can serve

up to Si requests per time unit. A request enters the system
through one of n ingress PEs, and each ingress PE j con-
tributes rj amount of requests per time unit. We consider
a cost matrix cij for serving PE j at server i. Since cij is
typically proportional to the distance between server i and
PE j as well as the traffic volume rj , the cost of serving PE
j typically varies with different servers.

The first objective we consider is to minimize the over-
all cost without violating the capacity constraint at each
server. The problem is called Generalized Assignment Prob-
lem (GAP) and can be formulated as the following Integer
Linear Program [15].

minimize

mX

i=1

nX

j=1

cijxij

subject to

mX

i=1

xij = 1, ∀j
X

rjxij ≤ Si, ∀i
xij ∈ {0, 1}, ∀i, j

where indicator variable xij=1 iff server i serves PE j, and
xij=0 otherwise. When xij is an integer, finding an optimal
solution to GAP is NP-hard, and even when Si is the same
for all servers, no polynomial algorithm can achieve an ap-
proximation ratio better than 1.5 unless P=NP [15]. Recall
that an α-approximation algorithm always finds a solution
that is guaranteed to be at most a times the optimum.

Shmoys and Tardos [15] present an approximation algo-
rithm (called st-algorithm in this paper) for GAP, which in-
volves a relaxation of the integrality constraint and a round-
ing based on a fractional solution to the LP relaxation.
Specifically, given total cost C, their algorithm decides if
there exists a solution with total cost at most C. If so, it
also finds a solution whose total cost is at most C and the
load on each server is at most Si + max rj .

3.2 Minimizing Cost
Note that st-algorithm can lead to server overload, al-

though the overload amount is bounded by max rj . In prac-
tice, the overload volume can be significant since a single PE

can contribute a large request load (e.g., 20% of server ca-
pacity). In our system, we use the following post-processing
on the solution of st-algorithm to off-load overloaded servers
and find a feasible solution without violating the constraint.

We first identify most overloaded server i, and then among
all the PEs served by i, find out the set of PEs F (starting
from the smallest in load) where server i’s load becomes
below the capacity Si after off-loading F . Then, starting
with the largest in size among F , we off-load each PE j to
a server with enough residual capacity, as long as the load
on server i is above Si. (If there are multiple such servers
for j, we choose the minimum-cost one in our simulation
although we can employ different strategies such as best-fit.)
We repeat this if there is an overloaded server. If there is no
server with enough capacity, we find server t with the highest
residual capacity and see if the load on t after acquiring j is
lower than the current load on i. If so, we off-load PE j to
server t even when the load on t goes beyond St, which will
be fixed in a later iteration. Note that the load comparison
between i and t ensures the maximum overload in the system
decreases over time, which avoids cycles.

3.3 Minimizing Connection Disruption
While the above algorithm attempts to minimize the cost,

it does not take the current mapping into account and can
potentially lead to a large number of connection disruptions.
To address this issue, we present another algorithm in which
we attempt to reassign PEs to different servers only when
we need to off-load one or more overloaded servers. Specifi-
cally, we only consider overloaded servers and PEs assigned
to them when calculating a re-assignment, while keeping the
current mapping for PEs whose server is not overloaded.
Even for the PEs assigned to overloaded servers, we set pri-
ority such that the PEs prefer to stay assigned to their cur-
rent server as much as possible. Then, we find a set of PEs
that (1) are sufficient to reduce the server load below maxi-
mum capacity and (2) minimize the disruption penalty due
to the reassignment. We can easily find such a set of PEs
and their new server by fixing some of input parameters to
st-algorithm and applying our post-processing algorithm on
the solution.

Since this algorithm reassigns PEs to different servers only
in overloaded scenarios, it can lead to sub-optimal operation
even when the request volume has gone down significantly
and a simple proximity-based routing yields a feasible solu-
tion with lower cost. One way to address this is to exploit
the typical diurnal pattern and reassign the whole set of PEs
at a certain time of day (e.g., 4am every day). Another pos-
sibility is to compare the current mapping and the best pos-
sible mapping at that point, and initiate the reassignment if
the difference is beyond a certain threshold (e.g., 70%). In
our experiments, we use employ the latter approach.

To summarize, in our system, we mainly use the algo-
rithm in Section 3.3 to minimize the connection disruption,
while we infrequently use the algorithm in Section 3.2 to
find an (approximate) minimum-cost solution for particular
operational scenarios.

4. METHODOLOGY

4.1 Data Set
We obtained server logs for a weekday in July, 2007 from

a production CDN which we utilized in a trace driven sim-
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ulation of our algorithms. For our analysis we use two sets
of content groups based on the characteristics of objects the
servers serve: one set for Small Web Objects, and the other
for Large File Download. Each log entry we use has detailed
information about an HTTP request and response such as
client IP, web server IP, request URL, request size, response
size, etc. Depending on the logging software, some servers
provide service response time for each request in the log,
while others do not. In our experiments, we first obtain
sample distributions for different response size groups based
on the actual data. For log entries without response time,
we choose an appropriate sample distribution (based on the
response size) and use a randomly generated value following
the distribution.

One set of inputs required by our algorithm is the request
load arriving from each ingress PE. We use the number of
ongoing requests (being served by a server) that have arrived
from each ingress PE j as request load rj . To determine the
number of request counts arriving from each PE, we look at
the client and server IP pair for each log entry and use Net-
Flow data to determine where the request has entered the
system. Then, we use the service response time to determine
whether a flow is currently being served.

One of our objectives is to minimize the network band-
width usage by service requests and responses. To reflect
this, we first obtain the distance matrix dij between server
i and ingress PE j in terms of air miles (which is known to
be highly correlated with link usage within an autonomous
system). Then, we use the product rjdij as the cost cij of
serving requests from PE j at server i. To determine the
server capacity in our experiments, we first analyze the log
to determine the maximum load during the entire time pe-
riod in the log. Then, we use a value slightly larger than the
maximum load and divide it by the number of servers. This
leads to a high-load scenario for peak time, while we have
sufficient server capacity to handle all the requests. Another
interesting aspect is to understand how each scheme per-
forms in scenarios with different loads (e.g., light or medium
load), which we plan to investigate in our future work.

4.2 Simulation Environment
We used CSIM (http://www.mesquite.com) to perform

our trace driven simulation. CSIM creates process-oriented,
discrete-event simulation models. We implemented our CDN
servers as a set of facilities that provide services to ingress
PE flows, which are implemented as CSIM processes. For
each flow that arrives we determine the ingress PE j, the re-
sponse time t, and the response size l. We assume that the
server responds at a constant rate calculated as the response
size divided by the response time. In other words, each flow
causes a server to serve data at the constant rate of l/t for
t seconds. Multiple flows from the same PE j can be active
simultaneously on server S. Furthermore, multiple PEs can
be served by the same facility at the same time.

Our servers (facilities) are configured to have infinite ca-
pacity and very large bandwidth. This means that our
servers in the simulation can handle any size of load. The
redirection algorithm decides whether or not servers are over-
loaded, depending on the number of active connections mon-
itored at the time the algorithm starts. We keep track of the
number of active connections at the server side and ingress
PEs side to calculate the current server load and PE load
rj .

0

5000

10000

15000

20000

25000

30000

35000

40000

22 0 2 4 6 8 10 12

G
am

m
a

Time (Hours in GMT)

Server 1
Server 2
Server 3
S1 Avg

Constant Overload
for Server 3

Figure 3: Correlation between server load and in-
coming traffic volume. The straight line is the aver-
age value for Server 1.

4.3 Schemes and Metrics for Comparison
We experiment with the following schemes and compare

the performance:

• Simple Anycast (sac): This is “native” Anycast, which
represents an idealized proximity routing scheme, where
each request is served at the geographically closest
server.

• Simple Load Balancing (slb): This scheme minimizes
the difference in load among all servers without con-
sidering the cost.

• Advanced Load Balancing, Always (alb-a): This scheme
always attempts to find a minimum cost mapping as
described in Section 3.2.

• ALB, On-overload (alb-o): This scheme only reas-
signs PEs currently mapped to overloaded servers to
minimize connection disruptions as described in Sec-
tion 3.3.

In sac, each PE is statically mapped to a server, and there is
no change in mapping. slb and alb-a recalculate the map-
ping every two minutes based on the current load. While
alb-o also analyzes the current load and mapping every
two minutes, it re-calculates the mapping (usually only for
a subset of PEs) only if an overloaded server exists.

For performance comparison, we first use the number of
ongoing connections and service data rate at each server. A
desirable scheme should keep the number below the capacity
limit all the time. We also examine the average miles a
request traverses within the CDN provider network before
reaching a server. A small value for this metric denotes small
network link usage in practice. We finally use the number of
connection disruptions due to re-mapping. sac uses a static
mapping and does not experience disconnections due to re-
mapping. However, since it is not load-aware, the number of
connections for one server can go over the maximum limit.
In this case, we count the number of dropped connections.
With our redirection scheme, a request may use a server
different from the one used in the trace, and its response time
may change, for example, depending on the server load or
capacity. In our experiments, we assume that the response
time of each request is the same as the one in the trace no
matter which server processes it as a result of our algorithms.
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Figure 4: Number of concurrent connections for each scheme (Large file download)

5. EXPERIMENT RESULTS
In this section, we present our simulation results. We

first investigate the validity of our correlation assumption
between request load and response load in Section 5.1. We
present the evaluation of our redirection algorithms in Sec-
tion 5.2.

5.1 Request Load vs. Response Load
As explained in Section 2, our approach relies on redi-

recting traffic from ingress PEs to effect the load on CDN
servers. As such it relies on the assumption that there ex-
ists a linear correlation between request load and the result-
ing response load on the CDN server. The request packet
stream takes the form of requests and TCP ACK packets
flowing towards the CDN node.3 Since there is regularity
in the number of TCP ACK packets relative to the num-
ber of response (data) packets that are sent, we can expect
correlation. In this subsection, we investigate data from an
operational CDN to understand whether this key assump-
tion holds.

We study a CDN content group for large file downloads
and obtain per-server load data from the CDN nodes in

3We limit our discussion here to TCP based downloads.

question. For the network ingress load data, we obtained
NetFlow records to count the number of packets from each
ingress PE to content servers for the corresponding period
of time. (Due to incomplete server logs, we use 16+ hours
of results in this subsection.)

Consider the following value γ = αS/r, where S is the
maximum capacity of the CDN node (specified as the maxi-
mum bytes throughput in the configuration files of the CDN),
α is node’s utilization in [0,1] (as reported by the CDN’s load
monitoring apparatus and referred to as server load below),
and r is the aggregate per-second request count from ingress
PEs coming to the server. Note that a constant value of γ
signifies a perfect linear correlation between server load α
and incoming traffic volume r.

In Figure 3, we plot γ for multiple servers in the content
group. We observe that γ is quite stable across time, al-
though it shows minor fluctuation depending on the time of
day. We further note that server 2 has 60% higher capac-
ity than the other two servers, and the server load ranges
between 0.3 and 1.0 over time. This result shows that the
maximum server capacity is an important parameter to de-
termine γ. Although Server 3 exhibits a slight deviation
after 36000 seconds due to constant overload (i.e., α = 1),
γ stays stable before that period even when α is often well
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(d) alb-o

Figure 5: Number of concurrent connections for each scheme (Small web object)

above 0.9. The data therefore indicates that our assumption
of linear correlation holds.

5.2 Redirection Evaluation
In our evaluation we consider in turn the server load,

the number of miles traffic were carried and the number of
session disruptions that resulted for each of the redirection
schemes presented in Section 4.3.
Server Load: We first present the number of connections
at each server using the results for large file downloads. In
Figure 4, we plot the number of concurrent flows at each
server over time. For the clarity of presentation, we use the
points sampled every minute. Since sac does not take load
into account, but always maps PEs to a closest server, we
observe from Figure 4(a) that the load at only a few servers
grows significantly, while other servers get very few flows.
For example, at 8am, server 6 serves more than 55% of total
requests (5845 out of 10599), while server 4 only receives
fewer than 10. Unless server 6 is provisioned with enough
capacity to serve significant share of total load, it will end
up dropping many requests. In Figure 4(b), we observe that
slb evenly distributes the load across servers. However, slb
does not take cost into account and can potentially lead to
high connection cost.

In Figure 4(c), we present the performance of alb-a. Based
on the maximum total number of concurrent requests, we
set the capacity of each server to 1900. Unlike slb, alb-a
(as well as alb-o) does not balance the load among servers.
This is expected because the main objective of alb-a is to
find a mapping that minimizes the cost as long as the result-
ing mapping does not violate the server capacity constraint.
As a result, in the morning (around 7am), a few servers
receive only relatively few requests, while other better lo-
cated servers run close to their capacity. As the traffic load
increases (e.g., at 3pm), the load on each server becomes
similar in order to serve the requests without violating the
capacity constraint. alb-o initially shows a similar pattern
to alb-a (Figure 4(d)), while the change in connection count
is in general more graceful. However, the difference becomes
clear after the traffic peak is over (at around 4pm). This is
because alb-o attempts to reassign the mapping only when
there is an overloaded server. As a result, even when the
peak is over and we can find a lower-cost mapping, all PEs
stay with their servers that were assigned based on the peak
load (e.g., at around 3pm). This property of alb-o leads
to less traffic disruption at the expense of increased over-
all cost. We further elaborate on this aspect later in this
section.
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Figure 6: Service data rate for each scheme (Large file download)

In Figure 5, we present the same set of results using the
logs for small object downloads. We observe a similar trend
for each scheme, although the server load changes more fre-
quently. This is because their response size is small, and the
average service time for this content group is much shorter
than that of the previous group. We also present the ser-
vice rate of each server in Figure 7 (and Figure 6 for large
file download). We observe that there is strong correlation
between the number of connections (Figures 4 and 5) and
data rates (Figures 6 and 7).
Connection Disruption: slb, alb-a, and alb-o can dis-
rupt active connections due to reassignment. In this sub-
section, we investigate the impact of each scheme on con-
nection disruption. We also study the number of dropped
connections in sac due to limited server capacity. In our ex-
periments, we use sufficiently large server capacity for sac
so that the aggregate capacity is enough to process the total
offered load: 2500 for large file download scenario, and 500
for small object scenario. Then, we count the number of
connections that arrive to a server and find the server is op-
erating at its capacity, which would be dropped in practice.
While using a smaller capacity value in our experiments will
lead to more connection drops in sac, we illustrate that sac
can drop a large number of connection requests even when
servers are relatively well provisioned.

In Figure 8, we present the percentage of disrupted con-
nections for each scheme. For large file downloads, the ser-
vice response time is longer, and in case of slb, alb-a, and
alb-o, a flow is more susceptible to re-mapping during its
lifetime. This confirms our architectural assumption con-
cerning the need for application level redirect for long lived
sessions. From the figure, we observe that alb-o clearly
outperforms the other two by more than an order of magni-
tude. However, the disruption penalty due to re-mapping is
much smaller than the penalty of connection drops due to
overload in sac. Specifically, sac drops more than 18% of
total requests in the large files scenario, which is 430 times
higher than the number of disruptions by alb-o. For small
object contents, the disruption is less frequent due to the
smaller object size and thus shorter service time. alb-o
again significantly outperforms the other schemes.
Average Cost: We present the average cost (as the average
number of air miles) of each scheme in Figures 9 and 10. In
sac, a PE is always mapped to the closest server, and the
average mileage for a request is always the smallest (at the
cost of high drop ratio as previously shown). slb balances
the load among servers without taking cost into account and
leads to the highest cost. We observe in Figure 9 that alb-
a is nearly optimal in cost when the load is low (e.g., at
8am) because we can assign each PE to a closest server that
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Figure 7: Service data rate for each scheme (Small web object)

has enough capacity. As the traffic load increases, however,
not all PEs can be served at their closest servers without
violating the capacity constraint. Then, the cost goes higher
as some PEs are re-mapped to different (farther) servers.
alb-o also finds an optimal-cost mapping in the beginning
when the load is low. As the load increases, alb-o behaves
differently from alb-a because alb-o attempts to maintain
the current PE-server assignment as much as possible, while
alb-a attempts to minimize the cost even when the resulting
mapping may disrupt many connections (Figure 8). This
restricts the solution space for alb-o compared to alb-a,
which subsequently increases the cost of alb-o solution.

6. CONCLUSION
New route control mechanisms, as well as a better under-

standing of the behavior of IP Anycast in operational set-
tings, allowed us to revisit IP Anycast as a CDN redirection
mechanism. We presented a load-aware IP Anycast CDN ar-
chitecture and described algorithms which allow redirection
to utilize IP Anycast’s inherent proximity properties, with-
out suffering the negative consequences of using IP Anycast
with session based protocols. We evaluated our algorithms
using trace data from an operational CDN and showed that
they perform almost as well as native IP Anycast in terms

of proximity, manage to keep server load within capacity
constraints and significantly outperform other approaches
in terms of the number of session disruptions.

In the near future we expect to gain operational experi-
ence with our approach in an operational deployment. We
also plan to exploit the capabilities of our architecture to
avoid network hotspots to further enhance our approach.
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