
Performance of Compressed Inverted List Caching
in Search Engines∗

Jiangong Zhang
CIS Department

Polytechnic University
Brooklyn, NY 11201, USA

zjg@cis.poly.edu

Xiaohui Long
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

xiaohui.long@microsoft.com

Torsten Suel
CIS Department

Polytechnic University
Brooklyn, NY 11201, USA

suel@poly.edu

ABSTRACT
Due to the rapid growth in the size of the web, web search engines
are facing enormous performance challenges. The larger engines in
particular have to be able to process tens of thousands of queries per
second on tens of billions of documents, making query throughput
a critical issue. To satisfy this heavy workload, search engines use a
variety of performance optimizations including index compression,
caching, and early termination.

We focus on two techniques, inverted index compression and in-
dex caching, which play a crucial rule in web search engines as
well as other high-performance information retrieval systems. We
perform a comparison and evaluation of several inverted list com-
pression algorithms, including new variants of existing algorithms
that have not been studied before. We then evaluate different in-
verted list caching policies on large query traces, and finally study
the possible performance benefits of combining compression and
caching. The overall goal of this paper is to provide an updated dis-
cussion and evaluation of these two techniques, and to show how to
select the best set of approaches and settings depending on param-
eter such as disk speed and main memory cache size.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Content Analysis and Indexing—
Indexing methods; H.3.3 [Information Systems]: Information Search
and Retrieval—Search process.

General Terms
Performance, Experimentation.

Keywords
Search engines, inverted index, index compression, index caching.

1. INTRODUCTION
Web search engines are probably the most popular tools for lo-

cating information on the world-wide web. However, due to the
rapid growth of the web and the number of users, search engines
are faced with formidable performance challenges. On one hand,
search engines have to integrate more and more advanced tech-
niques for tasks such as high-quality ranking, personalization, and
spam detection. On the other hand, they have to be able to process
tens of thousands of queries per second on tens of billions of pages;
thus query throughput is a very critical issue.

In this paper, we focus on the query throughput challenge. To
guarantee throughput and fast response times, current large search
engines are based on large clusters of hundreds or thousands of
∗Research supported by NSF ITR Award CNS-0325777. Work by the second author
was performed while he was a PhD student at Polytechnic University.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

servers, where each server is responsible for searching a subset of
the web pages, say a few million to hundreds of millions of pages.
This architecture successfully distributes the workload over many
servers. Thus, to maximize overall throughput, we need to maxi-
mize throughput on a single node, still a formidable challenge given
the data size per node. Current search engines use several tech-
niques such as index compression, index caching, result caching,
and query pruning (early termination) to address this issue.

We consider two important techniques that have been previously
studied in web search engines and other IR systems, inverted index
compression and inverted index caching. Our goal is to provide an
evaluation of state-of-the-art implementations of these techniques,
and to study how to combine these techniques for best overall per-
formance on current hardware. To do this, we created highly op-
timized implementations of existing fast index compression algo-
rithms, including several new variations of such algorithms, and
evaluated these on large web page collections and real search en-
gine traces. We also implemented and evaluated various caching
schemes for inverted index data, and studied the performance gains
of combining compression and caching depending on disk transfer
rate, cache size, and processor speed. We believe that this provides
an interesting and up-to-date picture of these techniques that can
inform both system developers and researchers interested in query
processing performance issues.

2. TECHNICAL BACKGROUND
Web search engines as well as many other IR systems are based

on an inverted index, which is a simple and efficient data structure
that allows us to find all documents that contain a particular term.
Given a collection of N documents, we assume that each docu-
ment is identified by a unique document ID (docID) between 0 and
N − 1. An inverted index consists of many inverted lists, where
each inverted list Iw is a list of postings describing all places where
term w occurs in the collection. More precisely, each posting con-
tains the docID of a document that contains the term w, the number
of occurrences of w in the document (called frequency), and some-
times also the exact locations of these occurrences in the document
(called positions), plus maybe other context such as the font size of
the term etc. The postings in an inverted list are typically sorted by
docID, or sometimes some other measure.

We consider two cases: (i) the case where we have docIDs and
frequencies, i.e., each posting is of the form (di, fi), and (ii) the
case where we also store positions, i.e., each posting is of the form
(di, fi, pi,0, . . . , pi,freq−1). We use word-oriented positions, i.e.,
pi,j = k if a word is the k-th word in the document. For many
well-known ranking functions, it suffices to store only docIDs and
frequencies, while in other cases positions are needed.

On first approximation, search engines process a search query
“dog, cat” by fetching and traversing the inverted lists for “dog”
and “cat”. During this traversal, they intersect (or merge) the post-
ings from the two lists in order to find documents containing all (or
at least one) of the query terms. At the same time, the engine also

387

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



computes a ranking function on the qualifying documents to deter-
mine the top-k results that should be returned to the user. This rank-
ing function should be efficiently computable from the information
in the inverted lists (i.e., the frequencies and maybe positions) plus
a limited amount of other statistics stored outside the inverted index
(e.g., document lengths or global scores such as Pagerank). In this
paper, we are not concerned with details of the particular ranking
function that is used. Many classes of functions have been studied;
see, e.g., [5] for an introduction and overview.

2.1 Compressed Index Organization
In large search engines, each machine typically searches a sub-

set of the collection, consisting of up to hundreds of millions of
web pages. Due to the data size, search engines typically have to
store the inverted index structure on disk. The inverted lists of com-
mon query terms may consist of millions of postings. To allow
faster fetching of the lists from disk, search engines use sophisti-
cated compression techniques that significantly reduce the size of
each inverted list; see [26] for an overview, and [1, 11, 27, 21] for
recent methods that we consider in this paper. We describe some
of these techniques in more detail later. However, the main idea
is that we can compress docIDs by storing not the raw docID but
the difference between the docIDs in the current and the preced-
ing posting (which is a much smaller number, particularly for very
long lists with many postings). We can compress the frequencies
because most of these values are fairly small as a term often occurs
only once or twice in a particular document. In general, inverted
list compression benefits from the fact that the numbers that need
to be coded are on average small (though some may be larger).

We now describe in more detail how to organize a compressed
inverted index structure on disk, using as example our own high-
performance query processor. We believe that this is a fairly typical
organization on disk, though the details are not often described in
the literature. The overall structure of our index is shown in Fig-
ure 1. The index is partitioned into a large number of blocks, say
of size 64 KB. An inverted list in the index will often stretch across
multiple blocks, starting somewhere in one block and ending some-
where in another block. Blocks are the basic unit for fetching index
data from disk, and for caching index data in main memory.

Figure 1: Disk-based inverted index structure with blocks for caching
and chunks for skipping. DocIDs and positions are shown after taking
the differences to the preceding values.

Thus, each block contains a large number of postings from one or
more inverted lists. These postings are again divided into chunks.
For example, we may divide the postings of an inverted list into
chunks with 128 postings each. A block then consists of some meta
data at the beginning, with information about how many inverted
lists are in this block and where they start, followed by a few hun-
dred or thousand such chunks. In each chunk of 128 postings, it
is often beneficial to separately store the 128 docIDs, then the 128
corresponding frequency values, followed by the position values if
applicable. Chunks are our basic unit for decompressing inverted
index data, and decompression code is tuned to decompress a chunk
in fractions of a microsecond. (In fact, this index organization al-
lows us to first decode all docIDs of a chunk, and then later the
frequencies or positions if needed.)

During query processing, it is often beneficial to be able to seek
forward in an inverted list without reading and decoding all post-
ings, and inverted index structures often store extra pointers that
allow us to skip over many of the postings; see, e.g., [18, 19, 7, 8].
This is easily achieved as follows: For each chunk, we separately
store the size of this chunk (in bytes or words), and in uncompressed
form the largest (last) docID in the chunk. This data can be stored
in separate smaller arrays in main memory, or in the meta data at
the beginning of each block. This allows skipping over one or more
chunks of postings by comparing the docID we are searching for to
the uncompressed values of the largest docIDs in the chunks; if the
desired value is larger, we can skip the chunk. We note that instead
of having a constant number of postings per chunk, one could also
fix the size of each chunk (say to 256 bytes or one CPU cache line)
and then try to store as many postings as possible in this space. This
has the advantage that we can align chunks with cache line bound-
aries, but for many compression schemes there are some resulting
complications, especially if positions are also stored.

In our implementation and experiments, we use this index orga-
nization on disk. For simplicity, we assume that during query pro-
cessing, all chunks of the relevant inverted lists have to be decoded.
In reality, we may only have to decode half or less of all the chunks,
as we may be able to skip over the other chunks. However, the
possible benefit due to skipping depends on the ranking function,
which is largely orthogonal to our work. We believe that our as-
sumption provides a good approximation of the real decompression
cost, which could be easily adjusted depending on the percentage
of chunks that are actually decoded1.

2.2 Caching in Search Engines
Caching is a standard technique in computer systems, and search

engines use several levels of caching to improve query throughput.
The most common mechanisms are result caching and list caching
[20]. Result caching basically means that if a query is identical
to another query (by possibly a different user) that was recently
processed, then we can simply return the previous result (assuming
no major changes in the document collection and no complications
due to localization or personalization). Thus, a result cache stores
the top-k results of all queries that were recently computed by the
engine. List caching (or inverted index caching), on the other hand,
caches in main memory those parts of the inverted index that are
frequently accessed. In our case, list caching is based on the blocks
described in the previous subsection. If a particular term occurs
frequently in queries, then the blocks containing its inverted list
are most likely already in cache and do not have to be fetched from
disk. Search engines typically dedicate a significant amount of their
main memory to list caching, as it is crucial for performance. Note
that the cached data is kept in compressed form in memory since
the uncompressed data would typically be about 3 to 8 times larger
depending on index format and compression method; as we will see
decompression can be made fast enough to justify this decision.

Figure 2: Two-level architecture with result caching at the query inte-
grator and inverted index caching in the memory of each server.
1For example, for conjunctive queries our query processor decoded the docIDs of
slightly more than half, and the frequencies of only about a third, of all chunks. But for
other types of queries the numbers would be higher, assuming no early termination.

388

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



Figure 2 shows a simple parallel search engine architecture with
two levels of caching. Queries enter the engine via a query integra-
tor that first checks its local result cache. If the result is in the cache,
it is returned to the user. Otherwise, the query integrator broadcasts
the query to a number of machines, each responsible for a subset
of the collection. Each machine computes and return the top-k re-
sults on its own data, and the query integrator determines the global
top-k results. In this architecture, list caching takes places at each
machine, which runs its own caching mechanism independent of the
other machines. In this paper, we focus on the list caching mecha-
nism. However, we account for the existence of result caching by
removing from our traces any duplicate queries that would usually
be handled by result caching. Note that keeping these duplicate
queries would result in better but unrealistic hit rates.

The performance benefits of result caching were previously stud-
ied in [15, 23, 13, 6, 10, 3, 4]. The benefits can vary significantly be-
tween search engines, however, based on whether term ordering in
queries is considered or stemming is performed. Early work on in-
dex caching in IR systems appears in [12], but with a somewhat dif-
ferent setup from that of current search engines. Two-level caching,
i.e., the combination of result caching and list caching, was studied
in [20], where an LRU policy was used for list caching, and in [6,
3], where several methods are compared but under somewhat dif-
ferent architectural models and objective functions. We will discuss
these differences in Section 5, where we compare LRU with several
other caching policies and show that there are in fact much better
list caching policies than LRU for typical search engine query traces
under our model. Finally, recent work in [14] proposes a three-level
caching scheme that inserts an additional level of caching between
result caching and list caching; we do not consider this scheme here.

3. CONTRIBUTIONS OF THIS PAPER
We study the problem of improving the query throughput in large

search engines through use of index compression and index caching
techniques. We implement a number of different techniques, in-
cluding some new variations, and show that very significant perfor-
mance benefits can be obtained. In particular, our contributions are:

(1) We perform a detailed experimental evaluation of fast state-
of-the-art index compression techniques, including Variable-
Byte coding [21], Simple9 coding [1], Rice coding [26], and
PForDelta coding [11, 27]. Our study is based on highly
tuned implementations of these techniques that take into ac-
count properties of the current generation of CPUs.

(2) We also describe several new variations of these techniques,
including an extension of Simple9 called Simple16, which
we discovered during implementation and experimental eval-
uation. While algorithmically not very novel, these variations
give significant additional performance benefits and are thus
likely to be useful.

(3) We compare the performance of several caching policies for
inverted list caching on real search engine query traces (AOL
and Excite). Our main conclusion is that LRU is not a good
policy in this case, and that other policies achieve signifi-
cantly higher cache hit ratios.

(4) Our main novel contribution is a study of the benefits of com-
bining index compression and index caching which shows the
impact of compression method, caching policy, cache size,
and disk and CPU speeds on the resulting performance. Our
conclusion is that for almost the entire range of system pa-
rameters, PForDelta compression with LFU caching achieves
the best performance, except for small cache sizes and fairly
slow disks when our optimized Rice code is slightly better.

4. INVERTED INDEX COMPRESSION
In this section, we study index compression methods and their

performance. We first describe the methods we consider and our
experimental setup, and then evaluate the performance of the var-
ious methods. We note that there are a large number of inverted
index compression techniques in the literature; see, e.g., [26] for
an overview. We limit ourselves to techniques that allow very fast
decompression, say, in excess of a hundred million integers per sec-
ond. While techniques such as Gamma or Delta coding or various
local models are known to achieve good compression [26], they are
unlikely to be used in web search engines and other large scale IR
systems due to their much slower decompression speeds.

4.1 Algorithms for List Compression
We implemented five different compression methods, Variable-

Byte coding (var-byte) [21], Simple9 (S9) [1], a new extension
called Simple16 (S16), PForDelta [11, 27], and the classical Rice
coding [26]. We now describe each of these algorithms briefly,
and then discuss our implementation. In all the methods, we as-
sume that the docID, frequency, and position values in each post-
ing pi = (di, fi, pi,0, . . . , pi,fi−1) have been preprocessed as fol-
lows before coding: Each docID di with i > 0 is replaced by
di − di−1 − 1, each fi is replaced by fi − 1 (since no posting
can have a frequency of 0), and each pi,j with j > 0 is replaced by
pi,j − pi,j−1 − 1.

Variable-Byte Coding: In variable-byte coding, an integer n is
compressed as a sequence of bytes. In each byte, we use the lower 7
bits to store part of the binary representation of n, and the highest bit
as a flag to indicate if the next byte is still part of the current number.
Variable-byte coding uses blog128(n)c+1 bytes to represent a num-
ber n; for example, n = 267 = 2 · 128 + 11 is represented by the
two bytes 10000010 00001011. Variable-byte coding is simple to
implement and known to be significantly faster than traditional bit-
oriented methods such as Golomb, Rice, Gamma, and Delta coding
[26]. In particular, [21] showed that variable-byte coding results in
significantly faster query evaluation than those previous methods,
which were CPU limited due to their large decompression costs.

The disadvantage of variable-byte coding is that it does not achieve
the same reduction in index size as bit-aligned methods. The main
reason is that even for very small integers, at least one byte is
needed; this puts variable-byte coding at a disadvantage when com-
pressing frequencies, or docIDs in very long lists where the dif-
ferences between consecutive docIDs are small. Variations such
as nibble-oriented coding have been proposed [21], but with only
slight additional benefits.

Simple9 (S9) Coding: This is a recent algorithm proposed in [1]
that achieves much better compression than variable-byte coding
while also giving a slight improvement in decompression speed.
Simple9 is not byte-aligned, but can be seen as combining word
alignment and bit alignment. The basic idea is to try to pack as
many integers as possible into one 32-bit word. To do this, Simple9
divides each word into 4 status bits and 28 data bits, where the data
bits can be divided up in 9 different ways. For example, if the next 7
values are all less than 16, then we can store them as 7 4-bit values.
Or if the next 3 values are less than 512, we can store them as 3
9-bit values (leaving one data bit unused).

Overall, Simple9 has nine different ways of dividing up the 28
data bits: 28 1-bit numbers, 14 2-bit numbers, 9 3-bit numbers (one
bit unused), 7 4-bit numbers, 5 5-numbers (three bits unused), 4
7-bit numbers, 3 9-bit numbers (one bit unused), 2 14-bit numbers,
or 1 28-bit number. We use the four status bits to store which of the
9 cases is used. Decompression can be done in a highly efficient
manner by doing a switch operation on the status bits, where each
of the 9 cases applies a fixed bit mask to extract the integers.

389

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



Simple16 (S16) Coding: Simple9 wastes bits in two ways, by
having only 9 cases instead of the 16 that can be expressed with
4 status bits, and by having unused bits in several of these cases.
This motivated us to come up with a new variation that avoids this.
Consider for example the case of 5 5-bit numbers in Simple9, with
3 bits unused. We can replace this with two new cases, 3 6-bit num-
bers followed by 2 5-bit numbers, and 2 5-bit numbers followed by
3 6-bit numbers. Thus, if four of the five next values are less than
32, and the other one less than 64, then at least one of these two
cases is applicable, while Simple9 would we able to fit only four of
the numbers into the next word using 4 7-bit numbers. Overall, we
identified several such cases, including cases such as 10 2-bit num-
bers followed by 8 1-bit numbers and vice versa, for a total of 16
cases where each case uses all bits. This can again be implemented
using a switch statement and fixed bit masks for each case.

We note here that [1] also proposed two methods called Relate10
and Carryover12 that in some cases achieve slight improvements
over Simple9. We found that Simple16 fairly consistently outper-
formed these two methods, though some of their ideas could po-
tentially also be added to Simple16. We also experimented with
a number of variations of Simple16 that select the 16 cases differ-
ently; while some of these obtained improvements for the case of
small values (i.e, frequency values, or docIDs in very long lists),
overall the extra benefits were limited (up to 5% additional size re-
duction if we select the best settings for each list). Recent work in
[2] also proposed another variation of Carryover12 called Slide.

PForDelta Coding: Our next method is a very recent technique
proposed in [11, 27] for compression in database and IR systems.
It is part of a larger family of compression schemes, and here we
only describe and adapt the version that appears most suitable for
inverted lists. PForDelta is neither word-aligned nor byte-aligned.
It compresses integers in batches of multiples of 32. For example,
for our setup, we compress the next 128 integers in one batch.

To do so, we first determine the smallest b such that most (say at
least 90%) of the 128 values are less than 2b. We then code the 128
values by allocating 128 b-bit slots, plus some extra space at the end
that is used for the few values that do not fit into b bits, called excep-
tions. Each value smaller than 2b is moved into its corresponding
b-bit slot. We use the unused b-bit slots of the exceptions to con-
struct a linked list, such that the b-bit slot of one exception stores the
offset to the next exception (i.e., we store x if the current exception
is the i-th value and the next exception is the (i+x+1)-th value). In
the case where two exceptions are more than 2b slots apart, we force
additional exceptions in between the two slots. We then store the
actual values of the exceptions after the 128 b-bit slots. In [11, 27],
32 bits are used for each exception; instead, we use either 8, 16, or
32 bits depending on the largest value in the batch. Finally, we also
store the location of the first exception (the start of the linked list),
the value b, and whether we used 8, 16, or 32 bits for the exception.

Each batch of integers is decompressed in two phases. In the first
phase, we copy the 128 b-bit values from the slots into an integer
array; this operation can be highly optimized by using a hardcoded
bit-copy procedure for each value of b. That is, as suggested in
[11], we have an array of functions f [0]() to f [31](), where f [i]()
is optimized to copy (i + 1)-bit values in multiples of 32, and call
the right function based on the value of b. Note that for any value
of b, we have word-alignment at least after every 32 slots, allowing
efficient hardcoding of bit masks for copying a set of 32 b-bit num-
bers. (This is the reason for using batches of size a multiple of 32.)
In the second phase, called patch phase, we walk the linked list of
exceptions and copy their values into the corresponding array slots.

The first phase of decompression is extremely fast, because it in-
volves a hard-coded unrolled loop, with no branches that could be
mispredicted by the processor. The second phase is much slower

per element, but it only applies to a relatively small number of
exceptions. This is in fact the main insight behind the PForDelta
method, that significantly faster decompression can be achieved by
avoiding branches and conditions during decompression. In con-
trast, while variable-byte coding is conceptually very simple, it in-
volves one or more decisions per decoded integer, as we need to test
the leading bit of each byte to check if another byte is following.
This limits the performance of variable-byte coding on current pro-
cessors. Simple9 has to perform one branch for each compressed
word, i.e., typically every 6 to 7 numbers that are decoded.

We made two changes in our implementation compared to the
description in [11, 27]. We use 8 or 16 or 32 bits per exception
instead of always 32, and we allow any value of b while [11, 27]
prefers to use a minimum value of b = 8. Each of these changes re-
sulted in significant decreases in compressed size while we did not
observe significant decreases in decompression speed. The results
in [11, 27] show a larger compressed size than variable-byte coding
for PForDelta; our results will show a much smaller compressed
size, comparable to Simple9 (see Figures 4 and 7).

Rice Coding: Rice Coding is one of the oldest bit-aligned meth-
ods. It performs well in terms of compressed size, but is usually
fairly slow compared to more recent methods. Our goal here was to
try to challenge this assumption, by developing a high-performance
implementation based on some new tricks.

We first describe Golomb coding, where an integer n is encoded
in two parts: a quotient q stored as a unary code, and a remainder r
stored in binary form. To encode a set of integers, we first choose
a parameter b; a good choice is b = 0.69 · ave where ave is the
average of the values to be coded [26]. Then for a number n we
compute q = bn/bc and r = n mod b. If b is a power of two, then
log(b) bits are used two store the remainder r; otherwise, either
blog(b)c or dlog(b)e bits are used, depending on r.

Rice coding is a variant of Golomb coding where b is restricted
to powers of two. The advantage is that the number of bits to store
r is fixed to be log(b), allowing for a simpler and more efficient im-
plementation through the use of bit shifts and bit masks. A possible
disadvantage is that the compressed data may require more space;
in practice the difference is usually very small.

Despite the restriction to powers of two, Rice coding is often sig-
nificantly slower than variable-byte coding (by about a factor of 4
to 5). This is primarily due to the leading unary term as we need
to examine this term one bit at a time during decompression. Influ-
enced by the PForDelta method, we designed a new implementation
of Rice coding that is significantly faster than the standard approach
as follows: As in PForDelta, we code 128 (or some other multiple
of 32) numbers at a time. We first store all the binary parts of the
Rice code, using log(b) bits each, in a (128 · b)-bit field. Then we
store the unary parts. During decompression, we first retrieve all
the binary components, using the same optimized codes for copy-
ing fixed bit fields used in PForDelta. Then we parse the unary parts
and adjust the decoded binary values accordingly. This is done not
one, but eight bits at a time, thus processing the unary codes belong-
ing to several numbers in a single step. In particular, we perform
a switch on these eight bits, with 256 cases, where each case hard-
codes the resulting corrections to the numbers. (The code for this
consists of about 1500 lines generated by a script.)

This approach indicates an interesting relationship between Rice
coding and PForDelta: Essentially, PForDelta chooses a value of
b large enough so that almost all numbers consist of only a binary
part, and then codes the few exceptions in a fairly sloppy but fast
way. Using the best choice for b in Rice coding, many of the num-
bers are larger than b and need to be adjusted based on the unary part
of the code; thus we have to be more careful on how to code these
cases (i.e., we cannot simply use 32 bits each or use a linked list to

390

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



identify such numbers). Note that by choosing b slightly larger in
our Rice code, we can get more speedup at a slight increase in size.

Implementation: All methods were implemented and optimized
in C++, taking into account the properties of current CPUs. The
code is available at http://cis.poly.edu/westlab/. Some
of the methods, in particular PForDelta and our implementation of
Rice Coding, are not suitable for very short lists, as they operate on
multiples of 32 or 128 numbers. To address this issue, we always
used variable-byte coding for any inverted list with fewer than 100
postings, while for longer lists we padded the inverted lists with
dummy entries as needed by the various compression methods. We
note that such short lists make up more than 98% of all inverted
lists, but that they contain less than 0.1% of all index postings.
Thus, our decision to use variable-byte on short lists did not have
a measurable impact on query processing performance. (However,
for Rice and PForDelta, padding very short lists to 128 postings
would increase index size by several percent.)

4.2 Experimental Setup
Before presenting our experimental results, we describe our setup,

which we also use in later sections. The data set we used in our ex-
periments is a set of 7.39 million web pages selected randomly from
a crawl of 120 million pages crawled by the PolyBot web crawler
[22] in October of 2002. The total compressed size was 36 GB (us-
ing gzip on files of about 100 pages each), and the total number
of word occurrences was 5,868,439,426 (about 794 words per doc-
ument). After parsing the collection, we obtained 1,990,220,393
postings (about 269 distinct words per document), and there were a
total of 20,683,920 distinct words in the collection. To evaluate our
compression algorithms and caching policies, we generated several
sets of inverted index structures using different compression meth-
ods. All our experiments are run on a machine with a single 3.2GHz
Pentium 4 CPU and 4 GB of memory. For caching, we chose a
block size of 64 KB as the basic unit. We use this experimental
setup throughout this paper.

Our query trace was taken from a large log of queries issued to
the Excite search engine from 9:00 to 16:59 PST on December 20,
1999. We removed 50 stopwords in the queries and eliminated any
duplicate queries as (most of) these would usually be handled by a
result caching mechanism. This gave us 1,135,469 unique queries
where each query has 3.43 words on average. Of these, we use
1,035,469 to warm up our cache, and the remaining 100,000 to mea-
sure the performance of our compression and caching algorithms.

In addition, we also experimented with two sets of queries ex-
tracted from a recent trace of over 36 million queries from about
650,000 AOL users. We processed the trace in two ways such that
the number of unique queries is equal to that of the Excite trace, by
limiting the time frame and by limiting the number of users consid-
ered, in order to get a similar trace length to that of the processed
Excite trace. Even though this trace is much more recent, we got
very similar statistics for the lengths of queries and accessed in-
verted lists. Moreover, when we ran our experiments on all three
sets, we obtained very similar numbers for the old Excite trace and
the much newer AOL data. Thus, we omit figures for the AOL data.

We comment briefly about our removal of duplicate queries. We
considered queries containing the same words in a different order to
be duplicates, which might decrease the hit ratio of our list caching
mechanism. Many current engines have to take word order as well
as maybe other features such as user location into account during
result caching. Also, by removing all duplicates we assume that the
result cache is large enough to cache all queries in the trace. Note
that our only goal here is to obtain query traces with realistic prop-
erties; on average queries after result caching have more terms than
the queries submitted by users, as shown in Figure 3, since shorter

Figure 3: Number of queries before and after removing duplicate
queries and stopwords in queries.

queries are more likely to be in the result cache. We are not con-
cerned with details of result caching such as cache size and eviction
policy, which should only have a minor impact on our experiments.

4.3 Comparison of Compression Algorithms
We now present our results from the experimental evaluation of

the different compression algorithms. We focus on two perfor-
mance measures, the sizes of the compressed index structures and
the time it takes to decompress them. We are not overly concerned
with compression speed, as this is a one-time operation while de-
compression happens constantly during query processing. All meth-
ods allow for reasonably fast compression, at least at rates of tens
of millions of postings per second, but we did not optimize this.

Figure 4: Total index size under different compression schemes. Re-
sults are shown for docIDs, frequencies, positions, an index with docIDs
and positions only, and an index with all three fields.

We first look at the resulting size of the entire index structure for
the 7.39 million pages, shown in Figure 4. In this figure, we add
one additional method called entropy that uses the global frequency
distribution of the compressed integers to provide a naive bound
on possible compression (assuming random assignment of docIDs
and no clustering of word occurrences within documents). We see
that Rice coding performs best, and that variable-byte performs the
worst in nearly all cases, with the exception of position data where
S9 is slightly worse and S16 and PForDelta are about the same. For
frequencies, variable-byte results in a size about 2 to 3 times larger
than the other methods, while for docIDs the differences are more
modest. We note that an index structure with positions is typically
2.5 to 3 times larger than one without, since when a word occurs in
a document there are on average about 3 occurrences of that word.
We now look at the results in more detail.

Figure 5 shows how the compression ratio for docIDs depends
on the lengths of the inverted lists. (Here, we divide the range of
list lengths between the shortest and longest list into five intervals
of equal size to define the 5 groups of lengths.) When lists are
very short, the gaps between the docIDs are large and consequently
more bits per docID are needed. As lists get longer, compression
improves significantly. However, improvements for variable-byte
are limited by the fact that at least one byte is needed for each com-

391

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



Figure 5: Comparison of algorithms for compressing DocIDs on in-
verted lists with different lengths.

pressed number, while the other methods use only around 4 bits
per docID on the longest lists. For frequencies (not shown due to
space constraints), the numbers to be compressed increase with the
lengths of the lists, since there is a higher chance of a term occur-
ring several times in a document. In this case, variable-byte almost
always uses one byte per frequency value, while the other meth-
ods usually use less than 4 bits, with slight increases as lists get
longer. The values of the positions (also not shown) tend to be
much larger than the docID and frequency values; thus variable-
byte is less disadvantaged by its restriction to byte boundaries, and
overall the differences between the methods are much smaller, as
we saw in Figure 4.

Figure 6: Times for decompressing the entire inverted index.
Next, we look at the decompression speed, which is extremely

important as it impacts the speed of query processing. In Fig-
ure 6, we show the times for decompressing the entire inverted in-
dex structure using our methods. (The numbers assume that the in-
dex data is already in main memory, and are based on total elapsed
time on a dedicated machine.) While Rice coding obtains the best
compression ratio among the realistic algorithms (i.e., excluding
entropy), it is slowest when decompressing docIDs and frequencies.
Note that variable-byte, which was worst in terms of compression
ratio, is the second-slowest method on docIDs and frequencies, and
even slower than Rice on position data. The poor speed of variable-
byte on position data is primarily due to the fact that position values
are larger and more often require 2 bytes under variable-byte; this
case tends to be much slower due to a branch mispredict. We also
note that PForDelta is the fastest of all the methods on all three data
fields, by a significant margin. S9 and S16 take about twice as long,
but are still faster than Rice and variable-byte.

These results are based on compressing and decompressing the
entire index. However, not every inverted list is equally likely to
be accessed during query processing. Certain terms occur more
frequently in user queries, and the likelihood of a term occurring
in queries is often not related to that of occurring in the collection.
To investigate the performance of the compression methods during
query processing, we used the last 100,000 queries of the trace.

In Figure 7, we look at the average amount of compressed data
that is accessed for each query. Here, we assume that the com-

Figure 7: Average compressed size of the data required for processing
a query from the Excite trace.

plete inverted lists of all terms are decompressed during execution
of a query, without skips or early termination during index traver-
sal. (Otherwise, the total cost would be lower though we would
expect the same relative behavior of the different methods.) While
the overall picture is similar to that in Figure 4, there are also a few
differences. In particular, we find that the amount of data that is
accessed per query is now more than 4 times larger for an index
with positions than for one without, while the difference in overall
index size was only a factor of 2.5 to 3. This is due to the fact that
longer lists are used more frequently than shorter lists during query
processing, and such longer lists also tend to have multiple occur-
rences of the word in a single document. For the same reason the
difference in compressed size between docIDs and frequencies is
now much smaller. Finally, we note that while the graph for docIDs
may seem almost flat in the figure, this is not quite the case; the to-
tal docID cost per query decreases from 1.69 MB for variable-byte
to about 1.05 MB for PForDelta, a reduction of almost 38%.

Figure 8: Average decompression time (CPU only) per query, based
on 100, 000 queries from the Excite trace.

Figure 8 shows the average time for decompressing all inverted
lists accessed by a query, based on 100,000 queries from the Excite
trace. Overall, the relative ordering of the methods is similar to that
for the entire index in Figure 6.2 For docIDs and frequencies, the
times of variable-byte, S9, and S16 are similar, while PForDelta
is about twice as fast and Rice coding is two times slower. For
position data, however, Rice is slightly faster than variable-byte,
while PForDelta is about three times faster than S9 and S16 and
five times faster than variable-byte.

Algorithm Total w/o Pos Total w Pos DocID Freq Pos
VByte 441.99 174.55 424.68 460.78 125.26

S9 461.36 285.13 437.29 488.25 228.39
S16 460.75 301.91 425.47 502.41 246.62

PForDelta 889.14 798.38 889.69 888.59 748.68
Rice 185.60 196.30 191.23 180.30 203.95

Table 1: Decompression speeds in millions of integers per second.
2Note that the cost of decompressing the entire index is similar to that for about 1000
queries, since many of the query terms are fairly common words.

392

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



Finally, in Table 1 we show the decompression speeds of the dif-
ferent algorithms in millions of integers per second. We see that
PForDelta not only has the highest speed, but its speed is also not
much affected by the average values of the integers that are de-
coded. In contrast, variable-byte and to a lesser extend S9 and S16
become significantly slower for larger integer values such as posi-
tion values. Rice coding is also not much affected by the values.
In summary, it appears that variable-byte coding does not perform
well when compared to other recent techniques, which outperform
it in terms of both compression ratio and speed, and that PForDelta
in particular performs very well overall.

Finally, we also studied optimizations for frequency data. An im-
portant difference between docIDs and frequencies (or positions) is
that a frequency value only needs to be retrieved when a score is
computed. Also, decompressing a value does not necessarily re-
quire decompression of all previous values in the chunk. If query
processing is based on intersection of the query terms, then only
relatively few frequencies need to be retrieved. This allows for a
variety of optimizations in organizing frequency data. One simple
approach combines pairs of consecutive frequencies into a single
value by “shuffling” their bits (i.e., “000” followed by “111” be-
comes “010101”), and then applies PForDelta to the resulting 64
pairs in each chunk. This resulted in about 10% better compres-
sion and almost twice as fast decompression. Of course, to actually
use the frequency, we have to select the relevant bits from the un-
compressed number, but this is fast if applied to only a few of the
postings (results omitted due to space limits).

5. LIST CACHING POLICIES
We now consider list caching policies. Search engines typically

use a significant amount of the available main memory, from sev-
eral hundred megabytes to multiple gigabytes per machine, to keep
the most frequently accessed parts of the inverted index in main
memory and thus reduce data transfers from disk during query pro-
cessing. Although modern operating systems also perform caching
of disk data, search engines tend to employ their own mechanisms
and policies for better performance.

In our implementation, the inverted index consists of 64KB blocks
of compressed data, and the inverted list for a word is stored in one
or more of these blocks. Inverted lists usually do not start or end at
block boundaries. We use these blocks as our basic unit of caching,
and our goal is to minimize the number of blocks that are fetched
from disk during query processing. We note here that there are at
least three different objective functions that have been used for list
caching in search engines: (a) query-oriented, where we count a
cache hit whenever all inverted lists for a query are in cache, and
a miss otherwise, (b) list-oriented, where we count a cache hit for
each inverted list needed for a query that is found in cache, and (c)
block- or data size-oriented, where we count the number of blocks
or amount of data served from cache versus fetched from disk dur-
ing query processing.

The query-oriented objective was recently studied in [3] and is
more appropriate for architectures where a node holding only a
cache of inverted lists can evaluate a query locally if all lists are
in its cache, and otherwise has to forward it to another machine
or backend search engine cluster. (Thus, the goal is to minimize
the number of forwarded queries.) The list-oriented objective is
appropriate when the cache is on the same machine as the index
and we want to minimize the number of disk seeks. This is suit-
able for collections of moderate size, where the cost of fetching a
list is dominated by the disk seek. In our experiments, we use the
third objective, which we feel is more appropriate for very large
collections of tens to hundreds of millions of pages per node (and
thus very long inverted lists), where the goal is to minimize over-

all disk traffic in terms of bandwidth. Thus our results here cannot
be directly compared to the recent work in [3] based on the query-
oriented approach. In a nutshell, the main difference is that good
policies for the first two objectives should give strong preference to
keeping short lists in cache, while in our case this is not the case.
One similarity with [3, 6] is that we also observe that fairly static
methods (LFU with a long history in our case vs. static assignment
of lists to the cache in their work) perform well as the term frequen-
cies in available query logs do not appear to change enough over
time to significantly impact caching performance.

Note that even though we do caching based on 64 KB blocks,
all blocks of one inverted list are kept sequentially on disk, but are
usually not kept sequentially in cache. Also, while we treat the
blocks of an inverted list as separate entities, it usually happens
that all blocks of a list are fetched together on a cache miss, and
are also evicted at (around) the same time under all our caching
policies (ignoring boundary blocks that also contain fragments of
other lists). We use blocks here to avoid having to deal with the
issue of cache space fragmentation that would arise if we cache
individual lists of variable size. This means that we cache an entire
64 KB block in order to access a short list with only a few postings.
However, for large collections most inverted lists that are accessed
extend over multiple blocks, and thus this is not such a major issue.
We now describe the caching policies that we study.

5.1 Policies for List Caching
Least Recently Used (LRU): This is one of the most widely used

caching policies, and often used as a baseline to compare against.
LRU discards the least recently used block first when the cache is
full and a new block needs to be loaded into cache. To do so, LRU
keeps track of the usage order of blocks in cache.

Least Frequently Used (LFU): LFU counts how often a block
was accessed during some limited time period, say since it was last
placed into cache or over some longer time. We evict the block
with the lowest frequency of use. Thus, we need to keep track of
the usage frequency of each block in cache, and possibly also some
blocks currently out of cache if we keep track for a longer period
of time. The performance of LFU depends on the length of the
history that we keep: Increasing the period of time over which we
track the frequency of a block may increase performance when the
query distribution is fairly stable, but makes it more difficult for the
cache to adapt to fast changes in the query distribution. We ex-
perimented with several settings for the length of the history. Note
that the space of the statistics is not much of a problem in our case,
since each block is fairly large. We also explored some variations
of LFU, in particular a weighted LFU policy where we give higher
importance to recent queries when computing the usage frequency.
However, despite trying various weighting schemes we did not see
any significant performance over basic LFU.

Optimized Landlord (LD): Landlord is a class of algorithms for
weighted caching that was proposed and studied in [9, 24], and re-
cently applied to another caching problem in search engines in [14].
When an object is inserted into the cache, it is assigned a deadline
given by the ratio between its benefit and its size. When we evict an
object, we choose the one with the smallest deadline dmin and also
deduct dmin from the deadlines of all remained objects. (This can
be implemented more efficiently by summing up everything that
has been deducted in a single counter, rather than deducting from
every deadline.) Whenever an object already in cache is accessed,
its deadline is reset to some suitable value. In our case, every object
has the same size and benefit since we have an unweighted caching
problem. In this case, if we reset each deadline back to the same
original value upon access, Landlord becomes identical to LRU.

However, when we follow a different rule for resetting the dead-

393

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



lines, we obtain a new class of policies that is in fact quite useful
for certain unweighted caching problems. This set of policies was
first proposed in [14], and we call it Optimized Landlord. We use
the following two modifications: First, in order to give a boost to
blocks that have already proven useful, we give longer deadlines to
blocks that are being reused compared to blocks that just entered
the cache. In particular, a renewed block gets its original deadline
(upon insertion) plus a fraction α of its remaining (unused) dead-
line. We use α = 0.5, which works well on our data as well as the
one in [14]. Second, we use a cache admission policy, as suggested
in [14], and only insert a block into cache if it was previously used
at least once during some suitably chosen time window. This avoids
inserting objects that are unlikely to be accessed ever again due to
the highly skewed distribution of terms in queries. (This issue was
also recently addressed in [4] for the case of result caching.)

Multi-Queue (MQ): MQ is studied in [25]. The idea is to use not
one but m (say, m = 8) LRU queues Q0, Q1, . . . , Qm−1, where
Qi contains pages that have been seen at least 2i times but no more
than 2i+1 − 1 times recently or that have been seen at least 2i+1

times but have been evicted from queues at a higher level. The
algorithm also maintains a history buffer Qout, which keeps the
frequency information about pages that were recently ejected. On a
cache hit, the frequency of the block is incremented and the block is
placed at the Most-Recently-Used (MRU) position of the appropri-
ate queue, and its expireTime is set to currentTime + lifeTime, where
lifeTime is a tunable parameter. On each access, the expireTime for
the LRU position in each queue Qi with i > 0 is checked, and if it
is less than currentTime, then the block is moved to the MRU posi-
tion of the next lower queue. When a new block is inserted into a
full cache, the LRU block in the lowest nonempty queue is evicted
and its frequency information is put into Qout.

Adaptive Replacement Cache (ARC): This policy was pro-
posed in [16, 17], and like Landlord and MQ also tries to balance
recency (LRU) and frequency (LFU). Conceptually, ARC operates
on two levels: it maintains (i) two lists L1 and L2 referring to c
pages each that were recently accessed but that may or may not be
in cache, and (ii) the actual cache of size c. L1 keeps track of pages
that have been recently seen only once, while L2 keeps track of
pages that have been seen at least twice. Thus, L1 and L2 together
keep track of 2c pages of which c are in cache while the others
were recently evicted. Of the pages actually in the cache, about p
are from L1 and c − p from L2, where p ∈ [0, . . . c] is a parame-
ter tuned in response to the observed workload. Eviction from the
actual cache is then done according to a (slightly involved) set of
rules that takes L1, L2, and p into account; see [16, 17] for details.

5.2 Comparison of List Caching Policies
In the following experiments, we use the same data and setup as

in the previous section. All results are based on an index without
positions compressed using PForDelta. (Overall behavior is very
similar for an index with positions, assuming cache size is scaled
with increased total index size.) We always make sure to warm
up the cache by first running over most of the query log, and then
measuring only the performance of the last 100,000 queries. Before
comparing all methods, we first run experiments to tune LFU with
respect to the history size that is kept.

Figure 9 compares the cache hit ratios of LFU with different his-
tory lengths. In particular, a history of k x Cache Size means that
we can keep frequency statistics for k times as many blocks as fit
into cache. For k = 1, we keep only stats about pages that are in
cache, while for larger k the history itself is also maintained using
LFU. For small cache sizes (up to 15% of the total index size), we
observe a measurable benefit (up to 4% higher hit rate) from having
a longer history. However, a value of k = 5 suffices to get almost

Figure 9: Impact of history size on the performance of LFU, using an
index compressed with PForDelta.

all the possible benefit. One drawback of a longer history is the
space overhead, but this is small since we only need a few bytes for
each 64 KB block. The impact of history size is negligible when
more than 25% percent of the index fits in cache.

Figure 10: Cache hit rates for different caching policies and relative
cache sizes. The graphs for LFU and MQ are basically on top of each
other and largely indistinguishable. Optimal is the clairvoyant algo-
rithm that knows all future accesses and thus provides an upper bound
on hit ratio. Each data point is based on a complete run over our query
trace, where we measure the hit ratio for the last 100,000 queries.

After tuning LFU, we now compare all algorithms in terms of hit
rate; results are shown in Figure 10. We see that LRU performs con-
sistently worst, while LFU and MQ perform best. Both Landlord
and ARC also come close to the best methods. Note that the im-
provements over LRU are quite significant, with hit rates increasing
by up to 10% in absolute terms (for small cache size), or conversely
with miss rates and thus total disk traffic decreased by up to a third.

Note that we plot on the x-axis not the absolute size of the cache,
but the percentage of the total index that fits in cache. Figure 10
was obtained on 7.36 million pages using PForDelta for list com-
pression, but we found that results were basically identical for other
compression methods and other (sufficiently large) collections sizes.
That is, the cache hit rate depends primarily on the caching policy
and the percentage of the index that fits into cache, and not on com-
pression method and absolute index size.

5.3 Burstiness, Static Caching, and a Hybrid
In our experiments, LFU at least slightly outperformed all other

methods. While LFU is a natural fit for traces where term frequen-
cies are fairly stable over longer periods of time, it is not good at
exploiting any local bursts where a particular item occurs repeatedly
over a short period of time. Such burstiness is known to be crucial
for the performance of result caching policies [15, 23], motivating
hybrid schemes such as SDC in [10]. We ran several experiments
to evaluate whether we could get an improvement over LFU by ex-
ploiting burstiness. An analysis of the gaps between occurrences
of terms in the trace showed almost no burstiness. An attempt to
design a hybrid scheme that uses the total number of occurrences

394

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



as well as the distance to the last occurrence and the gaps between
recent occurrences led to only tiny improvements (details omitted).

Figure 11: LFU, static block-based, and static list-based caching.
This seems to agree with recent work in [3] that suggests using a

static assignment of lists to the cache (though for a different caching
model). Thus, we ran another experiment that compares LFU to two
versions of a simple static scheme adapted from [3]: one that uses
blocks (as our LFU) and one that uses lists. (One advantage of a
static scheme is that cache fragmentation is not an issue, making
it more attractive to use lists rather than blocks.) We used the first
1,035,469 queries in our trace to compute a static cache assignment,
and the last 100,000 queries to test the assignment. The results
are shown in Figure 11, which indicates that the performance of
LFU is essentially identical to a static assignment. Using a list-
based static assignment results in a very slightly lower hit ratio, but
there is a catch: In our block-based schemes, slightly more data
will be fetched at the same hit ratio, since we fetch an entire block
whenever some part of it is needed for query processing. Overall,
all three schemes result in almost the same amount of disk traffic.
Note however that a static approach may not be suitable in scenarios
where query distribution changes periodically due to, e.g., users
from different countries and time zones doing searches in different
languages on the same engine.

Finally, we also experimented with a hybrid cost model and algo-
rithms where both disk seeks and data transfer times are taken into
account; we found that meaningful performance improvements (up
to 12% reduction in disk access time) can be obtained for our 7.39
million document collection by modifying LFU to take seek times
into account, particularly for large cache sizes.

6. COMPRESSION PLUS CACHING
In previous sections, we separately discussed and evaluated list

compression and list caching techniques. As we found, there are
significant differences between the methods, and also the choice of
the best caching policy does not depend on the choice of compres-
sion. However, this does not mean that the performance of caching
is independent of compression. In real systems, for a given collec-
tion size we have a fixed absolute amount of memory that can be
used for caching. Thus, a better compression method means that
a larger fraction of the total index fits in cache, and thus a higher
cache hit ratio should result. In this section, we study the impact of
combining index compression and index caching, which does not
seem to have been previously addressed. All experiments in this
section are run on an index without positions using the complete
query trace, but measuring only the last 100,000 queries.

6.1 Evaluation of the Combination
Figure 12 compares the performance of the LFU caching pol-

icy with different compression methods applied to the index. In
this case, the memory size is in MB, and thus a better compression
method results in a higher percentage of the index in cache. Conse-
quently, we see that variable-byte achieves the worst cache hit rate,

while Rice and the theoretical Entropy achieves the best. However,
S9, S16, and PForDelta are also significantly better than variable-
byte, and quite close to the optimal. Overall, absolute hit rates are
improved by about 3 to 5%. In fact, for a cache size of 1280 MB,
the cache miss rate, and thus total disk traffic, is almost cut in half
by switching from variable-byte to Rice coding. Thus, index com-
pression methods have an important extra benefit in caching when
disk bandwidth is a performance bottleneck.

Figure 12: Comparison of compression algorithms with different
memory size, using 100,000 queries and LFU for caching. Total index
size varied between 4.3 GB for variable-byte and 2.8 GB for Entropy.

Next, we try to analyze the combined performance of compres-
sion and caching using a simple performance model. Here, we as-
sume that the cost of a query consists of the time for disk access
(if any) and the time spent on decompression of the inverted lists
retrieved from either disk or cache. We note that this is a some-
what naive model, as it assumes that inverted lists are fetched from
disk in their entirety (no early termination), that they are decom-
pressed in their entirety (no skipping over compressed chunks), and
that other costs such as score computation are minimal. These as-
sumptions are not really realistic for large engines, but we could
modify the model to account for the percentage of each list that
is actual decompressed; the most suitable choice of modifications
however depends on various details of query execution and ranking
function and thus we stick to our simple model. We believe that it
does provide a useful benchmark of the lower search engine layer
involving index fetch and decompression. We also limit ourselves
to three methods, PForDelta, S16, and Rice coding, since the other
two methods are strictly dominated by these three.

Figure 13: Comparison of PForDelta, S16, and Rice coding, using
LFU caching and assuming 10MB/s disk speed.

Not surprisingly, as shown in Figure 13, query processing costs
decrease significantly with larger cache sizes when disk is slow. In
this case, Rice coding performs better than S16 and PForDelta on
small cache sizes, where its better compression ratio translates into
a higher cache hit rate. For larger cache sizes, disk is less of a factor
and thus PForDelta substantially outperforms the other two meth-
ods. The situation changes somewhat for faster disks (50 MB/s), as
shown in Figure 14. Here, PForDelta dominates for the entire range

395

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China



Figure 14: Comparison of PForDelta, S16, and Rice coding, using
LFU caching and assuming 50MB/s disk speed.

of cache sizes, followed by S16 and then by Rice coding. The rea-
son is that the slightly higher cache hit rates for S16 and Rice do
not make up for the much slower decompression.

Figure 15: Comparison of query processing costs for different disk
speeds, using LFU and a 128MB cache.

Finally, we look at the impact of disk speed for a fixed cache size.
In Figure 15, we show results for a cache size of 128 MB and disk
speeds between 10 to 100 MB/s. We see that when the disk has a
transfer rate up to 20 MB/s, Rice is faster than the other compres-
sion algorithms, but otherwise PForDelta is best. (To be precise,
S16 is briefly the champion around 20 MB/s, by a very slim mar-
gin.) Looking at disk speeds of 20 MB/s or less may seem like
a useless exercise given that current cheap disks already achieve
transfer rates of about 60 MB/s, but we note that our results are
really based on the ratio between disk transfer rate and decompres-
sion speed: If CPUs increase in speed by a factor of 2 this would
have the same effect in relative terms as disk speeds being reduced
by a factor of 2. Thus, architectural trends in the future may make
techniques such as Rice coding relevant again. For current archi-
tectures, PForDelta plus LFU appears to be the best choice.

7. CONCLUDING REMARKS
In this paper, we studied techniques for inverted index compres-

sion and index caching in search engines. We provided a detailed
evaluation of several state-of-the-art compression methods and of
different list caching policies. Finally, we looked at the perfor-
mance benefits of combining compression and caching, and ex-
plored how this benefit depends on machine parameters such as disk
transfer rate, main memory, and CPU speed.

There are several interesting remaining open problems. First, the
recent work on PForDelta in [11, 27] shows that decompression
speed depends not so much on questions of bit versus byte align-
ment, but on the amount of obliviousness in the control and data
flow of the algorithm. Any approach that requires a decision to be
made for each decoded integer will be at a severe disadvantage in
terms of speed. We have shown here that ideas similar to PForDelta
can also be used to increase the speed of Rice decoding, implying a
trade-off between speed and compression. An interesting challenge

is to design other methods that improve on PForDelta in terms of
compression while matching (or coming close to) its speed.

Another interesting open question concerns the compression of
position data. As we saw in our experiments, an index with position
information requires about 4 to 5 times as much data to be traversed
per query than an index without positions, while the amount of data
fetched from disk is often an order of magnitude higher since a
much smaller fraction of such an index fits in cache. There are a
number of compression methods (see, e.g., [26]) that can signif-
icantly improve compression over the simple methods considered
here. However, these methods tend to be fairly slow, and it is also
not clear how to best apply them to position information in web
page collections. We plan to address this in future work.

8. REFERENCES
[1] V. Anh and A. Moffat. Index compression using fixed binary codewords. In

Proc. of the 15th Int. Australasian Database Conference, pages 61–67, 2004.
[2] V. Anh and A. Moffat. Improved word-aligned binary compression for text

indexing. IEEE Trans. on Knowledge and Data Engineering, 18(6), 2006.
[3] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and

F. Silvestri. The impact of caching on search engines. In Proc. of the 30th
Annual SIGIR Conf. on Research and Development in Inf. Retrieval, 2007.

[4] R. Baeza-Yates, F. Junqueira, V. Plachouras, and H. Witschel. Admission
policies for caches of search engine results. In Proc. of the 14th String
Processing and Information Retrieval Symposium, September 2007.

[5] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addision
Wesley, 1999.

[6] R. Baeza-Yates and F. Saint-Jean. A three-level search-engine index based in
query log distribution. In Proc. of the 10th String Processing and Information
Retrieval Symposium, September 2003.

[7] P. Boldi and S. Vigna. Compressed perfect embedded skip lists for quick
inverted-index lookups. In Proc. of the Int. Symp. on String Processing and
Information Retrieval, pages 25–28, 2005.

[8] St. Büttcher and C. Clarke. Index compression is good, especially for random
access. In Proc. of the 16th ACM Conf. on Inf. and Knowledge Manag., 2007.

[9] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Proc. of the
USENIX Symp. on Internet Technologies and Systems, 1997.

[10] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting the performance of
web search engines: Caching and prefetching query results by exploiting
historical usage data. ACM Trans. on Information Systems, 24, 2006.

[11] S. Heman. Super-scalar database compression between RAM and CPU-cache.
MS Thesis, Centrum voor Wiskunde en Informatica (CWI), Amsterdam, 2005.

[12] B. Jonsson, M. Franklin, and D. Srivastava. Interaction of query evaluation and
buffer management for information retrieval. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, pages 118–129, June 1998.

[13] R. Lempel and S. Moran. Predictive caching and prefetching of query results in
search engines. In Proc. of the 12th Int. World-Wide Web Conference, 2003.

[14] X. Long and T. Suel. Three-level caching for efficient query processing in large
web search engines. In Proc. of the 14th Int. World Wide Web Conference, 2005.

[15] E. Markatos. On caching search engine query results. In 5th International Web
Caching and Content Delivery Workshop, May 2000.

[16] N. Megiddo and D. Modha. ARC: A self-tuning, low overhead replacement
cache. In Proc. of the USENIX Conf. on File and Storage Technologies, 2003.

[17] N. Megiddo and D. Modha. Outperforming LRU with an adaptive replacement
cache algorithm. IEEE Computer, 37(4), 2004.

[18] A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM
Trans. on Information Systems, 14(4):349–379, 1996.

[19] G. Navarro, E. de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding
compression to block addressing inverted indexes. Inf. Retrieval, 3(1), 2000.

[20] P. Saraiva, E. de Moura, N. Ziviani, W. Meira, R. Fonseca, and B. Ribeiro-Neto.
Rank-preserving two-level caching for scalable search engines. In Proc. of the
24th Annual SIGIR Conf. on Research and Development in Inf. Retrieval, 2001.

[21] F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Compression of inverted
indexes for fast query evaluation. In Proc. of the 25th Annual SIGIR Conf. on
Research and Development in Information Retrieval, August 2002.

[22] V. Shkapenyuk and T. Suel. Design and implementation of a high-performance
distributed web crawler. In Proc. of the Int. Conf. on Data Engineering, 2002.

[23] Y. Xie and D. O’Hallaron. Locality in search engine queries and its implications
for caching. In Proc. of the Infocom Conference, 2002.

[24] N. Young. On-line file caching. In Proc. of the 9th Annual ACM-SIAM Symp. on
Discrete algorithms, 1998.

[25] Y. Zhou, J. Philbin, and K. Li. The multi-queue replacement algorithm for
second level buffer caches. In Proc. of the USENIX Annual Techn. Conf., 2001.

[26] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing
Surveys, 38(2), 2006.

[27] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar RAM-CPU cache
compression. In Proc. of the Int. Conf. on Data Engineering, 2006.

396

WWW 2008 / Refereed Track: Search - Corpus Characterization & Search Performance Beijing, China


