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ABSTRACT
We consider the problem of ranking refinement, i.e., to
improve the accuracy of an existing ranking function with
a small set of labeled instances. We are, particularly, inter-
ested in learning a better ranking function using two comple-
mentary sources of information, ranking information given
by the existing ranking function (i.e., the base ranker) and
that obtained from users’ feedbacks. This problem is very
important in information retrieval where feedbacks are grad-
ually collected. The key challenge in combining the two
sources of information arises from the fact that the rank-
ing information presented by the base ranker tends to be
imperfect and the ranking information obtained from users’
feedbacks tends to be noisy. We present a novel boosting
algorithm for ranking refinement that can effectively lever-
age the uses of the two sources of information. Our empiri-
cal study shows that the proposed algorithm is effective for
ranking refinement, and furthermore it significantly outper-
forms the baseline algorithms that incorporate the outputs
from the base ranker as an additional feature.

Categories and Subject Descriptors: H.3.3 [Infor-

mation Systems]: Information Search and Retrieval; I.2.6
[Artificial Intelligence]: Learning

General Terms: Design, Experimentation, Theory.

Keywords: Learning to Rank, Background Information,
Boosting, Incremental Learning.

1. INTRODUCTION
Learning to rank is a relatively new area of study in ma-

chine learning. It aims to learn an assignment of scores to
objects and rank the objects on the basis of the scores. It has
received much attention in recent years because of its impor-
tant role in information retrieval. Most research in learning
to rank is conducted in the supervised fashion, in which a
ranking function is learned from a given set of training in-
stances. The drawback with the supervised approach is that
they tend to fail when the number of training instances is
small.

In several real-world applications, in addition to the la-
beled training instances, a base ranker is available that can
be used to rank the objects. Then, the research question
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is how to exploit the outputs from the base ranker when
learning a ranking function from a small number of labeled
instances. We refer to this problem as Ranking Refine-
ment to distinguish it from supervised learning for ranking.
Below we show two examples for the application of ranking
refinement:

Relevance feedback In information retrieval, documents are
often ordered by a predefined relevance ranking func-
tion, such as BM25 [1] and Language Model for IR [2],
that assesses the relevancy of documents to a given
query. Relevance feedback techniques are proposed to
improve the retrieval accuracy by allowing users to pro-
vide relevance judgments for the first a few retrieved
documents. The research question here is how to en-
hance the accuracy of relevance feedback by combin-
ing the uses of the two types of information. In this
case, the base ranker is the relevance ranking function,
and the training instances are the documents that are
judged by the users.

Recommender system The goal of a recommender system is
to rank the items according to the interest of an active
user (i.e., the test user). Usually, a few rated items are
provided to indicate the preference of the active user.
Using the collaborative filtering techniques [3], we can
come up with a preliminary list of items ranked by
using the preference information of other users. The
research question here is how to enhance the final rank-
ing accuracy by leveraging the two types of informa-
tion. In this case, the base ranker is the collaborative
filtering algorithm, and the labeled instances are the
items labeled by the active user.

Furthermore, any online learning of ranking functions can
be viewed as a ranking refinement problem in that the rank-
ing function is updated iteratively with new training in-
stances collected on the fly.

A straightforward approach toward ranking refinement is
to view the scores of the base ranker as an additional fea-
ture, and learn a ranking function over the augmented fea-
tures. As will be shown in the experiments, this is not the
best approach for exploiting the information hidden in the
base ranking function. We believe that the most valuable
information behind the base ranker is not its scores but the
ranked list of objects it produces. We therefore view the
base ranker and the labeled instances as two complemen-
tary sources of information. The key challenge in combin-
ing these two sources of information is that the ranked list
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generated by the base ranker tends to be imperfect while
the labeled instances tend to be noisy. In this paper, we
present a boosting algorithm for ranking refinement that can
effectively utilize the two types of information. Our empiri-
cal study with relevance feedback and recommender system
show that the proposed algorithm is effective for ranking
refinement, and it significantly outperforms the baseline al-
gorithms that incorporate the outputs from the base ranker
as an additional feature for the objects.

2. RELATED WORK
Most learning to rank algorithms are designed for the

setting of supervised learning, in which a ranking function
is learned from labeled instances. The problem of learn-
ing to rank is often cast as a classification problem where
the goal is to correctly classify the ordering relationship be-
tween any two instances. Three well-known approaches in
this category are Ranking-SVM [4, 5], RankBoost [6], and
RankNet [7]. Ranking-SVM minimizes the number of incor-
rectly ordered pairs within the maximum margin framework.
Several variants [8, 9] are developed to further enhance the
performance of Ranking-SVM. RankBoost learns a ranking
model based on the same consideration, but by means of
Boosting. RankNet [7] is a neural network based approach
that uses cross entropy as its loss function. Recently, Xu
et al. [10] proposed another approach that is aimed at di-
rectly optimizing the performance measures in information
retrieval, such as Mean Average Precision (MAP) and Nor-
malized Discounted Cumulative Gain (NDCG). A special
group of ranking problem is called ordinal regression [4], in
which the output of the ranking function is restricted to a
few ordinal categories. Example algorithms for ordinal re-
gression include the maximum margin based approach [11]
and the Gaussian process based approach [12]. The rank-
ing refinement problem differs from the supervised ranking
problem in that an imperfect base ranker is provided in ad-
dition to the labeled training instances.

The ranking problem is essential to information retrieval,
whose goal is to rank a collection of documents by their
relevance to a given query. In particular, relevance feed-
back techniques [13] are developed to improve the accuracy
of the existing retrieval algorithms. There are two types of
relevance feedback. The first type, termed user relevance
feedback, enhances the retrieval accuracy by collecting the
user relevance judgments for the documents that are ranked
on the top of the list. As pointed out in the introduction
section, the user relevance feedback problem can be treated
as a problem of ranking refinement. In the empirical study,
we will show that the proposed algorithm for ranking re-
finement significantly outperforms the standard relevance
feedback algorithm (i.e., the Rocchio algorithm) over sev-
eral datasets. The second type of relevance feedback, often
termed pseudo relevance feedback, does not explicitly col-
lect the user relevance judgments. Instead, it treats the
top ranked documents as relevant to the given query, and
the documents ranked at the bottom as irrelevant. These
pseudo relevance judgments are used to improve the existing
ranking function. It is well known in information retrieval
that pseudo relevance feedback may result in degradation of
retrieval performance given the high probability of errors in
pseudo relevance judgments [13]. This is similar to the noise
of training instances in ranking refinement.

3. RANKING REFINEMENT

3.1 Problem Definition
Let D = (x1,x2, . . . ,xn) denote the set of instances to

be ordered, where each instance xi ∈ Rd is a vector of d
dimensions. Let G : Rd → R denote the base ranking func-
tion (base ranker), and gi = G(xi) denote the ranking score
assigned to xi by the base ranking function G. Instance xi

is ranked before xj if gi > gj . To make our problem gen-
eral, we assume the label information collected from user
feedback is presented as a set of ordered pairs, denoted by
O = {(xik Â xjk )|k = 1, . . . , m} where each pair xi Â xj

indicates that instance xi is ranked before xj
1. The goal of

ranking refinement is to learn a ranking function F : Rd → R
by exploiting both the labeled pairs in O and the ranking
information given by G.

3.2 Encoding Ranking Information
The first important question for ranking refinement is how

to encode the ranking information provided by the base
ranking function G. A straightforward approach is to use
the ranking scores computed by G as an additional feature,
and apply the existing algorithms, such as RankBoost and
Ranking-SVM, to learn a ranking function from the labeled
instances. The drawback of this approach is twofold:

• First, this approach only utilizes the ranking scores of
the labeled instances. The ranking information gen-
erated by the base ranking function for the unlabeled
instances is completely ignored by this approach. Since
the number of labeled instances collected from users’
feedbacks is considerably smaller than the number of
unlabeled instances, this approach is not optimal in ex-
ploiting the information provided by the base ranking
function.

• Second, we believe that the ranking orders generated
by the base ranking function is substantially more re-
liable than the numerical values of the ranking scores.
Similar observation is found in the study of meta search
whose goal is to combine the retrieval results of multi-
ple search engines to create a better ranking list [14].
Empirical studies [14] showed that the meta search
algorithms based on the document ranks often out-
perform the algorithms that directly use the relevance
scores.

To address the above problems, we encode the order in-
formation generated by the base ranking function G with
matrix W ∈ [0, 1]n×n. Each Wi,j in the matrix represents
the probability of ranking xi before xj and is defined as
follows

Wi,j =
exp(λgi)

exp(λgi) + exp(λgj)
(1)

In the above, Wi,j is defined by a softmax function and
the parameter λ ≥ 0 represents the confidence of the base
ranking function. To see the effect of λ, we consider two
extreme cases:

• λ = 0. In this case, we have Wi,j = 0.5, which indi-
cates that the ordering information generated by the
base ranker is completely ignored.

1This is because any labeled instances can be converted into
ordered pairs while the converse is not true.
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• λ = ∞. In this case, we have

Wi,j =





1 gi > gj

0.5 gi = gj

0 gi < gj

(2)

Thus, W is almost a binary matrix, which implies that
we completely trust ranked list generated by the base
ranking function.

By varying the parameter λ, we are able to alleviate the
negative effect from the base ranking function. In our ex-
periment, we set λ to be inverse to the standard deviation
of ranking scores of the first 10 retrieved documents.

Similarly, we encode the ordering information inside the
set O with matrix T as follows:

Ti,j =

{
1− η/2 (xi Â xj) ∈ O

η/2 otherwise
(3)

where parameter η ∈ [0, 1]. Ti,j represents the probability
of ranking ranking xi before xj in the training data. The
parameter η reflects the error rate of training data, and is
particularly useful when the labeled instances are derived
from implicit user feedback that is usually noisier. In our
experiment, we set η = 1/2.

3.3 Objective Function
The goal of ranking refinement is to learn a ranking func-

tion F : Rd → R from matrix W and T that produces a
more accurate ranked list than the base ranking function
G. In particular, the optimal ranking function F should be
consistent with the ranking information in W and T . To
this end, we measure the ranking errors of F with respect
to both W and F , i.e.,

errw =

n∑
i,j=1

Wi,jI(Fj ≥ Fi) (4)

errt =

n∑
i,j=1

Ti,jI(Fj ≥ Fi) (5)

In the above, we introduce Fi = F (xi) and the indicator
function I(x) that outputs 1 when the input boolean vari-
able x is true and zero otherwise. There are two problems
with directly using the ranking errors errw and errt as the
objective function:

• First, both error functions are non-smooth functions
since the indicator function I(x) is non-smooth. It
is well know that optimizing a non-smooth function
is computationally more challenging than optimizing
a smooth function because the derivative of a non-
smooth function is not well defined [15].

• Second, with two objectives at hand, the problem is
essentially a multi-objective optimization problem [16].
Thus, another important question is how to combine
multiple objectives into one single objective.

In the following subsections, we will address these two ques-
tions separately.

3.3.1 Relaxation with Exponential Functions
To address the problem with non-smooth objective func-

tions, we follow the idea of boosting by replacing the indica-
tor function I(x ≥ y) with an exponential function exp(x−

y). The resulting new objective functions are:

êrrw =

n∑
i,j=1

Wi,j exp(Fj − Fi) (6)

êrrt =

n∑
i,j=1

Ti,j exp(Fj − Fi) (7)

Note that since exp(x − y) ≥ I(x ≥ y), by minimizing the
errors êrrw and êrrt, we are effective in reducing the orig-
inal ranking errors errw and errt. Another advantage of
using êrrw and êrrt comes from the theoretic result of Ad-
aBoost [17], i.e., by minimizing the exponential loss func-
tion, the resulting classifier will not only reduce the training
errors but also maximize the classification margin. The en-
larged classification margin is the key to guarantee a low
generalization error for testing instances [17].

Remark: It is interesting to examine the effect of the
smoothing parameter η on the ranking error êrrt. By sub-
stituting the expression (3) for Ti,j in (7), we have êrrt ex-
pressed as follows:

êrrt = (1− η)
∑

(xiÂxj)∈O
exp(Fj − Fi)

+
η

2

n∑
i,j=1

[exp(Fi − Fj) + exp(Fj − Fi)]

≈ (1− η)
∑

(xiÂxj)∈O
exp(Fj − Fi) +

η

2

n∑
i,j=1

(Fi − Fj)
2

= (1− η)


 ∑

(xiÂxj)∈O
exp(Fj − Fi) +

η

2(1− η)
‖F‖2S


 (8)

where ‖F‖2S is a norm of vector F = (F1, . . . , Fn) defined as
follows:

‖F‖2S = F>(nI − ee)F

where I is the identity matrix and e is a vector of all ones.
The approximation of the second step in the above deriva-
tion follows the Taylor expansion of the exponential func-
tion. Clearly, the second term in (8), i.e., η‖F‖2S/2(1 − η),
is similar to the regularization term used by Support Vector
Machines (SVM) [18]. Thus, the parameter η plays the role
of coefficient in the regularized ranking error êrrt.

3.3.2 Combination of Two Objectives
The problem of optimizing multiple objectives is usually

called multi-objective optimization problem [16]. The most
common approach is to linearly combine objectives, which
in our case is to linearly combine the two error functions,
i.e.,

La = γêrrw + êrrt =

n∑
i,j=1

(γWi,j + Ti,j) exp(Fj − Fi) (9)

where parameter γ is used to combine two classification er-
rors. We refer to the approach based on the above objective
function as “Linear Ranking Refinement”, or LRR, for
short. The main problem with using the linearly combined
objectives is how to decide an appropriate value for γ. In
our experiments, we will show that different γ could result
in very different performance in information retrieval.
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To resolve the difficulty, we consider another approach
which makes combination of the two errors by their prod-
ucts, i.e.,

Lp = êrrw × êrrt

=

(
n∑

i,j=1

Ti,j exp(Fj − Fi)

) (
n∑

i,j=1

Wi,j exp(Fj − Fi)

)
(10)

We refer to the approach as“Multiplicative Ranking Re-
finement”, or MRR for short.

The first concern on using the product is whether the
resulting solution is Pareto efficient [16]. A solution F =
(F1, . . . Fn) is Pareto efficient for the objectives êrrw and
êrrt if there does not exist any other solution F′ = (F ′1, . . . , F

′
n)

that is either

1. êrrw(F ′) < êrrw(F ) and êrrt(F
′) ≤ êrrt(F ), or

2. êrrw(F ′) ≤ êrrw(F ) and êrrt(F
′) < êrrt(F ).

In other words, if F is Pareto efficient, it guarantees that
no solution is able to further reduce the two objectives si-
multaneously than F. It is well known that, according to
multi-objective optimization theory [16], the solution found
by minimizing La is guaranteed to be Pareto efficient. Re-
garding the Pareto efficiency when minimizing Lp in (10),
we have the following theorem:

Theorem 1. The optimal solution F = (F1, . . . , Fn) found
by minimizing the objective function Lp is Pareto efficient.

The proof of this theorem can be found in Appendix A.
The main advantage of using Lp rather than La is that it
does not need a weight parameter. This will be revealed
in our empirical studies in that minimization of Lp usually
significantly outperforms minimization of La even when the
optimal combination weight γ is used for La.

In order to compare the properties of the two different
approaches for combination, we examine their first order
derivatives. Let ξ denote the parameters used by the ranking
function F (x). Then, the first order derivatives of La and
Lp with respect to ξ are given as follows:

∇ξLa =
n∑

i,j=1

(Ti,j + γWi,j) exp(Fj − Fi)(∇ξF (xj)−∇ξF (xi))

∇ξLp =

Lp

( ∑
i,j=1

(ai,j + bi,j) exp(Fj − Fi)(∇ξF (xj)−∇ξF (xi))

)

where

ai,j =
Wi,j exp(Fj − Fi)∑n

i,j=1 Wi,j exp(Fj − Fi)
(11)

bi,j =
Ti,j exp(Fj − Fi)∑n

i,j=1 Ti,j exp(Fj − Fi)
(12)

Note that both derivative shares similar structures. The key
difference between ∇ξLa and ∇ξLp is that in ∇ξLp, ai,j and
bi,j are used to weight the contribution from W and T for
instance pair (xi,xj) when computing the derivative. This
is in contrast to ∇ξLa where the weights for instance pair
(xi,xj) are γWi,j exp(Fj − Fi) and Ti,j exp(Fj − Fi). The

Algorithm 1 Boosting algorithm for minimizing Lp

1: Compute Wi,j and Ti,j based on the ranked list and the
set of labeled pairs

2: Initialize F (x) = 0 for all instances
3: repeat
4: Compute γi,j for each instance pair as

γi,j = ai,j + bi,j (13)

where ai,j and bi,j are defined in (11) and (12).
4: Compute the weight for each instance as

wi =

n∑
j=1

γi,j − γj,i (14)

4: Assign each instance the class label yi = sign(wi).
5: Train a classifier f(x) : Rd → {0, 1} that maximizes

the following quantity

θ =

n∑
i=1

|wi|f(xi)yi (15)

6: Predict fi for all instances in D
7: Compute combination weight α as follows:

α =
1

2
log

∑n
i,j=1 γi,jδ(fi, 1)δ(fj , 0)∑n
i,j=1 γi,jδ(fj , 1)δ(fi, 0)

(16)

where fi = f(xi). δ(x, y) outputs 1 if x = y and zero
otherwise. Break the loop if α ≤ 0

8: Update the ranking function as

F (x) ← F (x) + αf(x) (17)

9: until reach the maximum number of iterations

main advantage of using ai,j and bi,j comes from the fact
that they are normalized, i.e.,

∑n
i,j=1 ai,j =

∑n
i,j=1 bi,j = 1,

and therefore the contributions from W and T are naturally
balanced when calculating the derivative.

3.4 Boosting Algorithm for Ranking Refine-
ment

In this section, we will consider algorithms for learning
the ranking function F (x) by respectively minimizing the
objective function La and Lp. The objective function La is
similar to the objective function used by Rank-Boost except
that a weight (Ti,j+γWi,j) is used for each instance pair. We
thus can simply modify the Rank-Boost algorithm to learn
the optimal ranking function F (x). Hence, in the sequel, we
will focus on the boosting algorithm for minimizing Lp.

To learn the optimal ranking function F (x), we follow
the greedy approach of boosting algorithms. Since the in-
formation for training is a set of labeled instance pairs, a
straightforward boosting approach is to iteratively update
the weights of instance pairs and train a new ranking func-
tion for the given weighted pairs. This is the strategy em-
ployed in the Rank-Boost algorithm [6]. However, since the
number of instance pairs is O(n2), this approach could be
computationally expensive when the number of instance n
is large.

To address the above problem, we present a new boost-
ing algorithm that converts the weights of instance pairs
into weights for individual instances. The key idea behind
the new boosting algorithm is to derive an upper bound
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Figure 1: Reduction of the objective function Lp

using the OHSUMED Data Set

for the target objective that decouples functions for pairs of
instances into functions for individual instances. It is this
decoupling that makes it possible to infer weights for individ-
ual instances from weights for instance pairs. In addition,
the new boosting algorithm is able to derive an appropri-
ate binary class label for each instance using the computed
weights. Using both the weights and the class labels of in-
stances, we can train a binary classifier f : Rd → {0, +1} and
update the overall ranking function by F ′(x) = F (x)+αf(x)
where α is the combination weight. Note that by convert-
ing a ranking problem into a series of binary classification
problems, the new boosting algorithm avoids the high com-
putational cost arising from the large number of instance
pairs.

Algorithm 1 summarizes the overall procedures for the
proposed boosting algorithm minimizing Lp. As the first
step in the iteration, we compute γi,j for every pair of in-
stances that measures the uncertainty of ranking instance xi

ahead of xj . Next, we calculate the weight for instance xi as
wi =

∑n
j=1 γi,j−γj,i. It is important to note that wi can be

both positive and negative. In particular, wi > 0 indicates
that it is more likely to have xi ranked on the top of the
ranked list than on the bottom of the list; wi ≤ 0 indicates
the opposite. Hence, we can derive the class label yi for xi

based on the sign of wi: a positive class for placing instances
on the top of the ranked list, and a negative class for placing
instances on the bottom of the list. Since |wi| indicates the
overall confidence in deciding the ranking position of xi in
the list, it is used to weight the importance of individual
instances. With this information, we will train a classifier
that maximizes θ in (15), which can be interpreted as a sort
of classification accuracy. Since most binary classifiers are
unable to take weights into consideration, we will divide the
training procedure into two steps: in the first step, we sam-
ple s instances according to the distribution that is propor-
tional to the weights |wi|; we then train a binary classifier
f : Rd → {0, +1} using the sampled instances. We manu-
ally set s = max(20, n/5) in our empirical study. A similar
strategy is employed in the AdaBoost algorithm [6] and its
effectiveness has been verified in empirical studies.

In the remaining of this section, we will give justification
to the proposed algorithm described in Table 1. The main
result is summarized in Theorem 2.

Theorem 2. Let fk(x) denote the binary classification
function obtained in the kth iteration, and γk

i,j denote γi,j

learned in that iteration. The objective function after T it-
erations, denoted by LT

p , is bounded as follows:

LT
p ≤

(
n∑

i,j=1

Ti,j

n∑
i,j=1

Wi,j

)
exp

(
−

T∑

k=1

(
√

µk −√νk)
2

)
(18)

where

µk =

n∑
i,j=1

γk
i,jδ(f

k(xi), 1)δ(fk(xj), 0)

νk =

n∑
i,j=1

γk
i,jδ(f

k(xi), 0)δ(fk(xj), 1)

The above theorem essentially shows that by using the pro-
posed algorithm, the objective function Lp will be reduced
exponentially.

The key to proving Theorem 2 is to establish the relation-
ship between the objective function Lp of two consecutive
iterations. This is because by upper bounding the log-ratio
between Lp of two consecutive iterations, i.e.,

rt ≥ log Lt
p − log Lt−1

p , (19)

we will have

LT
p = L0

p

T∏
t=1

Lt
p

Lt−1
p

≤ L0
p exp

(
T∑

t=1

rt

)
(20)

For the convenience of presentation, in the following, we only
consider two consecutive iterations without specifying the
index of iteration. Instead, we denote the quantities of the
current iteration by symbol˜to differentiate the quantities of
the previous iteration. In order to establish an upper bound
for the log ratio, we first introduce the following lemma

Lemma 1. Assume F̃ (x) = F (x)+αf(x) where F̃ (x) and
F (x) are the ranking functions of two consecutive iterations,
respectively. f : Rd → {0, 1} is a binary classifier and α is
the combination weight. We have the following inequality
hold for any F , f , and α:

log
L̃p

Lp
≤ −2 +

n∑
i,j=1

(ai,j + bi,j) exp(α(fj − fi)) (21)

where ai,j and bi,j are defined (11) and (12), respectively.

The proof of Lemma 1 can be found in Appendix B. Us-
ing the Lemma 1, we present the proof of Theorem 2 in
Appendix C.

Finally, we can show the relationship between the objec-
tive function Lp and the quantity θ (in (15)) that is used
to guide the training of binary classifiers in iterations. This
result is summarized in the following theorem:

Theorem 3. Let θk denote the value of the quantity θ
(in (15)) that is maximized by the binary classifier fk(x)
learned in the kth iteration. Assume that θk ≥ 0 for each
iteration. Then, the objective function after T iterations,
denoted by LT

p , is bounded as follows:

LT
p ≤

(
n∑

i,j=1

Ti,j

) (
n∑

i,j=1

Wi,j

)
exp

(
−

T∑

k=1

θk

)
(22)

The proof of the above theorem can be found in Appendix D.
Theorem 3 provides a theoretical justification for Algorithm 1.
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In particular, by maximizing θ, Algorithm 1 effectively re-
duces the objective function Lp. This is further confirmed
by our empirical study. Figure 1 shows an example of re-
duction in the objective function Lp. We clearly see that
the objective function is reduced exponentially and receives
the largest reduction during the first few iterations.

4. EXPERIMENTS
In this section, we evaluate the proposed algorithm for

ranking refinement by two tasks, i.e., user relevance feed-
back and recommender system. The objectives of our ex-
periments are: (1) to compare the proposed algorithm for
ranking refinement to the existing ranking algorithms, (2)
to examine the performance of the proposed algorithm for
ranking refinement with different numbers of training in-
stances, (3) to examine the effect of different base rankers
on the performance of the proposed algorithm, and (4) to
examine the time efficiency of the proposed algorithm for
ranking refinement.

4.1 Datasets
For the Relevance Feedback experiment, we used the

LETOR testbed [20] that includes the OHSUMED dataset
and the datasets from TREC 2003 and 2004. The OHSUMED
dataset consists of 106 queries. For each query, a number
of documents are retrieved and their relevance to the query
is given at three levels: definitely (2), possibly (1), or ir-
relevant (0). There are a total of 16, 140 query-document
relevance judgments. For each query-document pair, a total
of 25 ranking features are extracted. There are 50 queries
in the dataset of TREC 2003, and 75 queries in TREC
2004. For each query, about 1000 documents are retrieved,
which amounts to a total of 49, 171 query-document pairs for
TREC 2003 and 74, 170 query-document pairs for TREC
2004. A binary relevance judgment is provided for each
query-document pair. There are 44 features extracted for
each query-document pair. The detailed information about
OHSUMED and TREC data sets are available in [20].

For the Recommender System experiment, we used
the MovieLens dataset, available at [19], contains 100, 000
ratings (from 1 to 5) for 1682 movies given by 943 users.
Each movie is represented by 51 binary features: 19 features
are derived from the genres of movies and the rest 32 features
are derived from the keywords that are used to describe the
content of movies2.

4.2 Experimental Setup

4.2.1 Algorithms
To examine the effectiveness of the proposed algorithm

for ranking refinement, we compared the following ranking
algorithms:

Base Ranker: It is the base ranker used in the ranking
refinement.

Rocchio: This algorithm extends the standard Rocchio al-
gorithm for user relevance feedback and it creates a
new query vector by linearly combining the query vec-
tor and vectors of feedback documents. Given the ini-
tial query Q0, the relevant documents (R1, R2, ..., Rn1)

2We downloaded the keywords of each movie from the online
movie database IMBD. The 32 most popular keywords used
by the 1682 movies were selected.

and non-relevant documents (S1, S2, ..., Sn2), the new
query according to Rocchio is:

Q = Q0 + α

n1∑
i=1

Ri

n1
− β

n2∑
i=1

Si

n2
(23)

Note, in our case, that each document is not repre-
sented by a vector of word frequency, but a vector of
features that are computed based on its match to the
query. Hence, we don’t have Q0, i.e., the representa-
tion vector for query itself. We therefore set Q0 to be a
vector of all zeros. We used the inner product between
the new query and documents as the scores to rank the
documents. To obtain the best performance, we vary
α and β from 1 to 10 and choose the best setting.

SVM: This implements the Ranking-SVM algorithm using
the SVM light package. Note that it is commonly be-
lieved that Rank-Boost performs equally well as Rank-
ing SVM. The experimental results provided in the
LETOR collection also confirm this. Hence, we only
compare the proposal algorithm with Ranking-SVM,
but not Rank-Boost.

MRR: This is the Multiplicative Ranking Refinement al-
gorithm that minimizes Lp in (10).

LRR: This is the Linear Ranking Refinement algorithm
that minimizes La in (9). Since the performance of
LRR depends on the parameter γ, we run LRR with
100 different values from 0.1 to +10 and choose the
best and worst performance. We referred them to as
LRR-Worst and LRR-Best, respectively.

For a fair comparison, the output from the base ranker
is used as an extra feature when using SVM (i.e., Ranking-
SVM) and Rocchio.

4.2.2 Evaluation Metrics
To evaluate the performance of different algorithms, we

used precision and normalized discounted cumulative gain
(NDCG) at rank position k. Let (dR1 , dR2 , ..., dRn) denote
the top ranked documents according to the ranker R, and
(rR1 , rR2 , .., rRn) denote their binary judgments. The preci-
sion at rank position k measures the relevancy of the first k
documents and is defined as follows

PR@k =

k∑
i=1

rRi/k

For the OHSUMED dataset, a document is deemed relevant
when its score is two. In the case of MovieLense data, a
movie is deemed to be interesting to a test user when its
rating is no less than 43. Since the first top documents are
more important than the other documents, we also employ
the NDCG metric [21] that is defined as follows:

NDCGR@k =
DCGR@k

DCGT @k

3We have experimented with other thresholds and find simi-
lar results in our empirical study. We did not present results
for the other thresholds due to the space limitation.
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where T stands for the oracle ranker and DCGX@k is de-
fined as follows [21]:

DCGX@k =

{
rX1 if k = 1

rX1 +
∑k

i=2

rXi
log2 i

if k > 1

4.2.3 Evaluation Protocol
Unless specified, for all the experiments with relevance

feedback, we used the standard BM25 retrieval algorithm
(i.e., the 21st feature in OHSUMED data set and 16th in
TREC data sets) as the base ranker. We followed the com-
mon practice of user relevance feedback by collecting the
relevance judgments for the first 10 retrieved documents.
These user relevance judgments served as labeled instances
in ranking refinement.

For the experiment with recommender system, the base
ranker was created by applying a collaborative filtering al-
gorithm, more specifically, the Personality Diagnosis algo-
rithm [3], to the user rating data. In particular, 20 users
were randomly selected as the training users, and the re-
maining 923 users were used for testing. For each test user,
10 rated movies were randomly selected and were used by the
collaborative filtering algorithm to identify the 20 training
users who share the common interests with the test user.
Note that we did not compare the proposed algorithm to
other information filtering algorithms because the focus of
this study is to examine the effectiveness and the generality
of the proposed approach for ranking refinement.

4.3 Results for Relevance Feedback
Figure 2 and 3 show the performance results of different

algorithms in terms of precision and NDCG for the first 25
ranked documents. First, by comparing the performance of
the two variants of ranking refinement, we observed that
the Multiplicative Ranking Refinement (MRR) algorithm is
significantly more effective than the Linear Ranking Refine-
ment (LLR) algorithm. Indeed, MRR performs significantly
better than the best case of LRR (i.e., LRR-best). The
key difference between MRR and LRR is that MRR min-
imizes the product of the two error functions while LRR
minimizes the weighted sum. We believe it is the normal-
ization scheme brought by MRR (see equations in (11) and
(12)) that makes it performing better than LRR. Second,
comparing to the other three baseline algorithms, i.e., the
base ranker, Rocchio, Ranking-SVM, we observed that MRR
always significantly outperforms the baseline algorithms in
all the cases. More noticeable is the improvement made by
the ranking refinement over the first a few ranking positions.
We thus conclude that Multiplicative Ranking Refinement
is more effective than the baseline algorithms for user rele-
vance feedback in information retrieval.

4.4 Effect of Quality of Base Rankers
To examine the robustness of the proposed algorithm with

respect to the imperfectness of the base ranker, we tested
the MRR algorithms with three different base rankers. We
plotted the results of all different features and selected three
features which cover a good range of ranking quality. The
chosen base rankers for OHSUMED data set are the features
7, 11, and 21 and those for the TREC data sets are features
16, 21, and 36. Figure 4 shows how the MRR algorithm
performs using different base rankers (NDCG shows similar
results). The result indicates that the quality of base rankers

has a direct impact on the performance of the MRR algo-
rithm. We also observed that the proposed algorithm is able
to significantly improve the performance even with a poor
base ranker. More impressively, by comparing Figure 4 to
Figure 2, we observed that even using the worst base ranker
(i.e., feature 7 for OHSUMED, 21 for TREC 2003 ,and 36
for TREC 2004), the retrieval accuracy of MRR is compara-
ble to the other methods using the best base ranker (i.e., the
BM25 retrieval algorithm). We thus conclude that the MRR
algorithm is resilient to the imperfectness of base rankers.

4.5 Effect of Size of Feedback Data
To investigate the effect of the number of feedback doc-

uments on the performance, we ran the MRR algorithm by
varying the number of feedback documents from 5 to 20.
Figure 5 shows the result using varied number of feedback
documents. We clearly observed that the number of feed-
back documents have a direct effect on the performance of
ranking refinement. However, even with a small amount of
feedback, MRR is able to improve the retrieval performance
considerably, particularly for the accuracy of the first few
ranked documents. We thus conclude that the proposed al-
gorithm for ranking refinement is robust to the size of feed-
back data.

4.6 Results for Recommender System
We evaluated the generality of the proposed algorithm

by applying it to recommender system (movie recommenda-
tion). Figure 6(a) and Figure 6(b) show the results of differ-
ent algorithms when applied on the MovieLens dataset. It
is surprising to observe that the results of LRR, the linear
ranking refinement algorithm, even with the tuned param-
eter γ, is not even comparable to the the performance of
the base ranker. In contrast, the MRR algorithm is able
to significantly improve the accuracy of the base ranker and
outperform the other baseline algorithms considerably. This
result further indicates the importance of appropriately com-
bining the two information sources, i.e., the ranking infor-
mation behind the base ranker and the feedback information
provided by users.

Figure 6(c) shows the sensitivity of MRR to the size of
feedback data by varying the number of rated movies by the
test user from 5 to 20. Similar to the result for relevance
feedback, we observed that the size of feedback data affects
the performance of MRR considerably. However, even with
5 rated movies, the MRR algorithm is able to make a no-
ticeable improvement in the prediction accuracy compared
to the base ranker. This result further confirms the robust-
ness of the proposed algorithm for ranking refinement with
respect to the size of feedback data.

4.7 Time Efficiency of Ranking Refinement
Figure 7 shows the efficiency of the MRR algorithm in

terms of the running time for different numbers of rated
movies for each test user. We chose movies data set for the
experiment because it provides a good range for the number
of objects. We partitioned the test users into groups where
each group of users has a different number of rated movies.
The running time of MRR for each group is calculated by
averaging it across all the users in the group. As pointed in
Section 3.4 and seen in Figure 7, the running time is linear
in the number of instances. Note that the relatively long
running time is due to the MATLAB implementation.
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Figure 2: Precision of relevance feedback for different algorithms
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Figure 3: NDCG of relevance feedback for different algorithms
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Figure 7: Running time of the MMR algorithm for
different numbers of movies rated by test users

5. CONCLUSION
In this paper, we propose the problem of ranking refine-

ment, whose goal is to improve a given ranking function
by a small number of labeled instances. The key challenge
in combining the ranking information from the base ranker
and the labeled instances arises from the fact that the in-
formation in the base ranker tends to be inaccurate and the
information from the training data tends to be noisy. We
present a boosting algorithm for ranking refinement that is
resilient to the errors. Empirical studies with relevance feed-
back and recommender system show promising performance

of the proposed algorithm.
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APPENDIX
A. PROOF OF THEOREM 1

Proof. First, note that the objective function Lp is con-
vex in terms of F. This is because Lp can be expanded as
follows:

Lp =

n∑

i,j,k,l=1

Ti,jWi,j exp(Fj − Fi + Fk − Fl)

Since exp(Fj − Fi + Fk − Fl) is a convex function, Lp is
convex. Since Lp is a convex function, the solution found
by minimizing Lp will always be global optimal, instead of
local optimal.
Second, to show that the optimal solution found by min-
imizing Lp is Pareto efficient, we prove by contradiction.
Let F∗ denote the global minimizer of function Lp. By
assuming that Theorem 1 is not correct, there will exist
a solution F 6= F∗ that either (1) êrrw(F) < êrrw(F∗)
and êrrt(F) ≤ êrrt(F

∗), or (2) êrrw(F) ≤ êrrw(F∗) and
êrrt(F) < êrrt(F

∗). We can easily infer Lp(F) < Lp(F∗)
since (1) both êrrw and êrrt are non-negative for any solu-
tion F, and (2) Lp = êrrw × êrrt. Clearly, this conclusion
contracts the fact that F∗ is a global minimizer of Lp.
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Figure 6: Precision and NDCG of recommender system for different algorithms

B. PROOF OF LEMMA 1

Proof. Since F̃ (x) = F (x) + αf(x), we have

L̃p

Lp
=

(
n∑

i,j=1

Wi,j exp(Fj − Fi + α(fj − fi))

)
×

(
n∑

i,j=1

Ti,j exp(Fj − Fi + α(fj − fi))

)

=

(
n∑

i,j=1

ai,j exp(α(fj − fi)

) (
n∑

i,j=1

bi,j exp(α(fj − fi)

)

where ai,j and bi,j are defined in (11) and (12). Thus, we
have an upper bound of the log ratio as follows

log
L̃p

L
= log

(
n∑

i,j=1

ai,j exp(α(fj − fi))

)

+ log

(
n∑

i,j=1

bi,j exp(α(fj − fi))

)

≤ −2 +

n∑
i,j=1

(ai,j + bi,j) exp(α(fj − fi))

The second inequality follows the concaveness of the loga-
rithm function, i.e., log x ≤ x− 1 for any x > 0.

C. PROOF OF THEOREM 2

Proof. Using the upper bound expressed in Lemma 1,
we have

log
L̃p

Lp
+ 2 ≤

n∑
i,j=1

γi,j exp(α(fj − fi))

=

(
n∑

i,j=1

γi,jδ(fj , 1)δ(fi, 0)

)
exp(α)

+

(
n∑

i,j=1

γi,jδ(fj , 0)δ(fi, 1)

)
exp(−α)

Using the definition of α in (16), we have

log
L̃p

Lp
≤ −2+

2

√√√√
(

n∑
i,j=1

γi,jδ(fj , 1)δ(fi, 0)

) (
n∑

i,j=1

γi,jδ(fj , 0)δ(fi, 1)

)

= −2 + 2
√

µν

In the above, we use the definitions of µ and ν in Theorem 1
to simplify the expression. Since 2 =

∑n
i,j=1 γi,j ≥ µ + ν,

we have

log
L̃p

Lp
≤ −2 + 2

√
µν

≤ −µ− ν + 2
√

µν = − (√
µ−√ν

)2

We thus have

log
Lt

p

Lt−1
p

≤ rt = − (
√

µt −√νt)
2

Substituting the above expression for rt into (20), and fur-
ther using the fact

L0 =

n∑
i,j=1

Ti,j + Wi,j ,

we obtain the result in Theorem 2.

D. PROOF OF THEOREM 3
Proof. We rewrite the quantity θ as follows:

θ =

n∑
i=1

fiyi|wi|

=

n∑
i=1

fi

(
n∑

j=1

γi,j − γj,i

)

=

n∑
i,j=1

γi,j(fi − fj) = µ− ν

Since

µ− ν =
(√

µ−√ν
) (√

µ +
√

ν
)

≥ (√
µ−√ν

)2
,

we have θ ≥ (√
µ−√ν

)2
. Substituting this result into the

expression of Theorem 2, we have Theorem 3.

406

WWW 2008 / Refereed Track: Search - Ranking & Retrieval Enhancement April 21-25, 2008 · Beijing, China


