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ABSTRACT
Contextual advertising supports much of the Web’s ecosys-
tem today. User experience and revenue (shared by the site
publisher ad the ad network) depend on the relevance of the
displayed ads to the page content. As with other document
retrieval systems, relevance is provided by scoring the match
between individual ads (documents) and the content of the
page where the ads are shown (query). In this paper we
show how this match can be improved significantly by aug-
menting the ad-page scoring function with extra parameters
from a logistic regression model on the words in the pages
and ads. A key property of the proposed model is that it
can be mapped to standard cosine similarity matching and
is suitable for efficient and scalable implementation over in-
verted indexes. The model parameter values are learnt from
logs containing ad impressions and clicks, with shrinkage
estimators being used to combat sparsity. To scale our com-
putations to train on an extremely large training corpus con-
sisting of several gigabytes of data, we parallelize our fitting
algorithm in a Hadoop [10] framework. Experimental eval-
uation is provided showing improved click prediction over a
holdout set of impression and click events from a large scale
real-world ad placement engine. Our best model achieves
a 25% lift in precision relative to a traditional information
retrieval model which is based on cosine similarity, for re-
calling 10% of the clicks in our test data.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

General Terms
Algorithms, Experimentation, Measurements

Keywords
Clickthrough rate, Modeling, Interaction Effects

1. INTRODUCTION
Web advertising provides financial support for a large por-

tion of today’s Internet ecosystem, catering to a diverse
set of sites like blogs, news, reviews etc. Spurred by the
tremendous growth in traffic in terms of volume, number of
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users, user engagement, content diversity, the last few years
have seen a tremendous growth in spending on web advertis-
ing. According to eMarketer [9] the total internet advertiser
spending in 2007 will reach almost 20 billion US dollars.
This establishes the Web as one of the top 3 advertisement
mediums, along with TV and print media.

A major part of the advertising on the web falls into
the category of textual ads: short textual messages usually
marked as “sponsored links” or similar. There are two main
types of textual ads on the web today:

1. Sponsored Search (SS) or Paid Search advertising places
ads on the result pages from a web search engine based
on the search query. All major current web search en-
gines support such ads and act simultaneously as a
search engine and an ad agency.

2. Contextual advertising or Context Match (CM) adver-
tising places ads within the content of a generic, third-
party web page. There usually is a commercial inter-
mediary, called an ad-network, in charge of optimizing
the ad selection with the twin goal of increasing rev-
enue (shared between publisher and ad-network) and
improving user experience. Here also the main players
are the major search engines; however, there are also
many smaller players.

While the methods proposed in this paper could be adapted
for both SS and CM advertising, we will focus in our analysis
and experiments on the CM scenario.

Studies have shown that displaying ads that are closely re-
lated to the content of the page1 provide a better user experi-
ence and increase the probability of clicks [4, 21]. This intu-
ition is analogous to that in conventional publishing, where
there are very successful magazines (e.g., Vogue) where a
majority of the content is topical advertising (fashion, in
the case of Vogue). Hence, estimating the relevance of an ad
to a page is critical in serving ads at run-time.

Previously published approaches estimated the ad rele-
vance based on co-occurrence of the same words or phrases
within the ad and within the page (see [18, 13, 3] and the
related work section for more details). The model used in
this body of work is to translate the ad search into a sim-
ilarity search in a vector space. Each ad is represented as
a vector of features, as for example, unigrams, phrases and
classes [3]. The page is also translated to a vector in the

1Ads can also be behaviorally targeted; however, without
loss of generality, we focus on contextual features.
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same space as the ads. The search for the best ads is now
translated into finding the ad vectors that are closest to
the page vector. To make the search efficient and scalable
to hundreds of millions of ads and billions of requests per
day, we can use an inverted index and an efficient similar-
ity search algorithm as the one reported in [2]. A drawback
of this method is that it relies on a-priori information and
does not use the feedback (a posteriori) information that is
collected in the form of ad impressions (displays) and clicks.

Another line of work uses click data to produce a CTR
estimate for an ad, independent of the page (or query, in the
Sponsored Search scenario [19, 17]). The CTR is estimated
based on features extracted from the ads that are then used
in a learning framework to build models for estimation of
the CTR of unseen ads. In this approach the assumption
is that the ads are selected by a deterministic method - by
matching the bid phrase to a phrase from the page (or the
query in Sponsored Search) and therefore to select the most
clickable ads we only need to estimate the CTR on the ads
with the matching bid phrase. This simplifying assumption
of the matching process is an obvious drawback of these
approaches. Another drawback is that these methods do not
account for differential click probabilities on different pages:
If some pages in the corpus attract an audience that clicks
on ads significantly more than average, then the learning of
feature weights for ads will be biased towards ads that were
(only by circumstance) shown on such pages.

Contributions. In this work we combine the two different
lines of work and propose a relevance based approach that is
augmented to use the the click data to produce a CTR esti-
mate. We adapt the vector space similarity formulation and
keep the format of the scoring formulas so that they are still
suitable for inverted index evaluation that has low cost and
high scalability. To incorporate the feedback, we modify the
scoring formulas with correction parameters that are learned
from the click data. We examine several scoring formulas
in order of increasing complexity and propose learning the
parameters by statistical learning methods. We overcome
the problem of learning from data with low click rates by
a sampling method that equalizes the sizes of clicked and
non-clicked portions of the data, and then solves the prob-
lem of the (page, ad) sparsity by explaining click propensities
(scores) of ads on pages in terms of the words that occur in
both. In summary our main contributions are:

• We propose a set of intuitive models of click propen-
sities in terms of the words that occur in the webpage
and ad. The basic model takes into consideration the
location of the words (title, main body, sidebar, etc.),
while the most complex model also considers word syn-
onyms, the tf-idf values of the words and relevance
measures, among others.

• The models were carefully chosen to extend scoring
formulas in current use so that they could be easily
implemented on top of existing systems. Thus, they
can be immediately used for efficient ad selection from
a very large corpus of ads.

• We describe a fast method for fitting the parameters
of these models, and prescriptions for picking the right
model given the dataset size and runtime execution
constraints.

• Extensive experiments on real-world datasets convinc-
ingly demonstrate the accuracy of our models.

2. RELATED WORK
Online advertising is an upcoming area of research and

the published literature is sparse. A study presented in [21]
confirms the intuition that ads need to be relevant to the
user’s interest to avoid degrading the user’s experience and
increase the probability of reaction. IR methods used in
web search engines are one of the most prominent methods
to ensure relevance of search results.

A pioneering report by Ribeiro-Neto et. al on contextual
matching [18] examines a number of strategies to match
pages to ads based on extracted keywords. Here also the ads
and pages are represented as vectors in a vector space. The
work first presents five strategies that use cosine similarity
to match page and the ad vectors. The authors explore using
different ad sections (bid phrase, title, body) as a basis for
the ad vector. The winning strategy out of the first five
requires the bid phrase to appear on the page and then ranks
all such ads by the cosine of the union of all the ad sections
and the page vectors.

While both pages and ads are mapped to the same space,
there is a discrepancy (impedance mismatch) between the
vocabulary used in the ads and in the pages. Furthermore,
since in the vector model the dimensions are determined by
the number of unique words, plain cosine similarity will not
take into account synonyms. To solve this problem, Ribeiro-
Neto et al expand the page vocabulary with terms from other
similar pages weighted based on the overall similarity of the
origin page to the matched page, and show improved match-
ing precision.

A follow-up work [13] proposes a method to learn impact
of individual features using genetic programming to produce
a matching function. represented as a tree. Arithmetic oper-
ators and the log function are internal nodes while different
numerical features of the query and ad terms can be leafs of
the function tree. The results show that genetic program-
ming finds matching functions that significantly improve the
matching compared to the best method (without page side
expansion) reported in [18].

In our previous work [3] we expand on the search of the ads
in a vector space by adding classes as additional dimensions.
This allows for having the ads topically match the content
of the page. We used tf-idf for weighting the unigram and
phrase features and class confidence score returned by the
classifier as weight of the class features. While the class
weights are trained over a labeled set of ads, there is no
direct use of the click data to improve on the ad selection.

All of these approaches share the use of similarity in a
feature space to relate ads to pages. However none of these
approaches uses statistical learning techniques to factor the
implicit relevance feedback in a form of click data to learn
how to better match pages to ads.

Another approach to contextual advertising is to reduce it
to the problem of sponsored search advertising by extract-
ing phrases from the page and matching them with the bid
phrase of the ads. In [22] a system for phrase extraction is
described that used a variety of features to determine the
importance of page phrases for advertising purposes. The
system is trained with pages that have been hand anno-
tated with important phrases. The learning algorithm takes
into account features based on tf-idf, HTML meta data and
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query logs to detect the most important phrases. During
evaluation, each page phrase up to length 5 is considered
as potential result and evaluated against a trained classifier.
In our work we also use phrases as feature and we learn pa-
rameters to determine the relative importance of a particular
phrase compared to other phrases and unigrams. Another
key difference related to this work is that we use multiple
features to select the ads.

Another line of research attempts to predict the click
through rate of ads using similar tools (clustering, keyword
matching and classification) for search advertising [17]. In
this work, the ads are clustered by their bid phrases. The
click through rate is averaged over each cluster. The CTR
estimate for new ads is obtained by finding the nearest clus-
ter and assuming that cluster’s CTR. Results show that this
improves over naive global CTR priors and CTR based on
the bid phrase deciles.

3. METHOD
Our proposed method to match relevant ads to pages is

based on logistic regression, a popular technique in statis-
tics and machine learning [14]. The regression enables us
to combine click feedback and semantic information avail-
able from both pages and ads to determine relevancy. This
is more general than a pure relevance based approach that
does not use click feedback in any form. Indeed, our experi-
ments convincingly demonstrate the usefulness of using click
feedback to find more relevant ads.

There has been recent work on using regression models for
determining relevant ads [19]. While it has the same flavor as
our work, only ad-specific features are learnt, which is only
a subset of the features we consider. In particular, in addi-
tion to page and ad specific features, we learn features that
capture interactions between pages and ads. Furthermore,
we combine word based features with traditional relevance
measures to enhance matching relevant ads to pages.

Our models are more granular and can incorporate larger
number of features, which reduces bias in CTR estimates
and leads to better performance. However, reduced bias
comes at the price of increased variance, which can become
a serious problem if the models become too granular and
start overfitting the training data. To balance these two
issues, we use a two-pronged strategy. First, we use a rela-
tively large but specially selected set of features, where the
selection mechanism ensures that the features have reason-
able support. We also provide a mechanism based on prior
probabilities to down-weight features that are too sparse.
The second strategy we use to prevent overfitting is to train
our models on an extremely large corpus (billions of records,
several thousand features) which automatically increases the
support of a large number of features. Fortunately, data is
plentiful especially for big ad-networks that serve a large
number of publishers and advertisers. However, increased
training size poses a difficult computational challenge of
scaling logistic regression to web scale data. We overcome
this by using an approximation based on a “divide and con-
quer strategy”, i.e., we randomly split our training corpus
into several pieces and fit a separate logistic regression to
each piece. The final result is obtained by combining esti-
mates from all the pieces. Our computation is carried out in
the software framework called MapReduce[12] that supports
large scale parallel computations using a cluster of commod-
ity personal computers.

Roughly speaking, our method consists of three broad
steps: (a) Feature extraction, (b) Feature selection, and (c)
Coefficient estimation for features through a logistic regres-
sion. We provide a detailed description of each below.

3.1 Feature Extraction
Pages and ads are treated as being composed of several

regions. For instance, a page is composed of page title, page
metadata, page body, page URL etc. Similarly, an ad is
composed of ad title, ad body etc. Within each region, we
extract a set of words/phrases after stop word removal. We
associate a score (e.g. region specific tf, tf-idf) to each word
that measures its importance in a given region. For a given
(page, ad) region combination, our model has three sets of
features described below.

Page region specific main effects. Web pages are usually
composed of multiple regions with different visibility and
prominence. The impact of each region on the ad selection
can thus vary. We follow the intuition of our previous work
[3] and we learn the effect of each region separately. For
a word w in page region p(r) with score tp(r)w, the region-
specific main effect is defined as

Mp(r)w = 1(w ∈ p(r)) · tp(r)w,

that is, if the word is present in the page region p(r), the fea-
ture contributes its score else it does not contribute. These
features provide an estimate of word popularity. They are
not useful at the time of selecting relevant ads for a given
page but help in getting better estimates of other terms in
the model after adjusting for the effect of popular words on
a page. For instance, if “camera” pages are popular in terms
of click-through rates and 90% of our corpus consists of cam-
era pages, “camera” ads that were the ones mostly shown on
camera pages would tend to become popular even on “soc-
cer” pages which constitute only 1% of the total corpus. By
incorporating page words in the model, we adjust for this
effect and get the correct matching ads for “soccer” pages.

Ad region specific main effects. Ads are also composed
of multiple regions, some visible to the user (title, abstract)
and some used only in the ad selection (bid phrase, targeting
attributes). As with the page regions, the ad regions can
have different impact on the ad selection. For a word w in
ad region a(r) with score ta(r)w, this is defined as

Ma(r)w = 1(w ∈ a(r)) · ta(r)w.

Unlike page specific main effects, it does play an important
role when selecting relevant ads for a given page and provides
more weight to popular ads.

Interaction effects between page and ad regions. For
a word w1 in page region p(r1) and word w2 in ad region
a(r2) with score f(tp(r1)w1 , ta(r2)w2) for some function f ,
this is given as

Ip(r1)w1,a(r2)w2 = 1(w1 ∈ p(r1), w2 ∈ a(r2)) (1)

· f(tp(r1)w1 , ta(r2)w2).

In this paper, we confine ourselves to the case where w1 = w2

(i.e., the feature “fires” only if the same word occurs in
both the corresponding page and ad regions), but in gen-
eral, one can consider co-occurrences of synonyms or re-
lated words. Examples of f include the product function
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tp(r1)w1 × ta(r2)w2 , the geometric mean
p

tp(r1)w1 × ta(r2)w2

and so on. Interaction effects are important components of
our method and help in matching relevant ads to a given
page. For instance, occurrence of the word “camera” in the
ad body is a strong indication of the ad being relevant for
the page whose title contains the word “camera,” with the
degree of relevance being determined by the regression.

3.2 Feature Selection
For any given (page, ad) region combination, a large num-

ber of words occur in the training data. Using them all as
features might make the logistic regression ill-conditioned
and inflate variance of the coefficient estimates. Hence we
take recourse to variable selection techniques which select a
subset of important words to be used in our regression. Vari-
able selection in the context of regression is a well studied
area with a rich literature. Stepwise backward-forward auto-
mated variable selection algorithms are widely used for large
scale applications but these methods have drawbacks, espe-
cially when features are correlated [8]. The general recom-
mendation is to use as much domain knowledge as possible
instead of using an automated procedure to select relevant
variables. However, in large scale settings as ours, some level
of automation is necessary. For reasons of scalability, we ex-
plore a two-stage approach. In the first stage, we conserva-
tively prune non-informative features using simple measures
that can be computed using only a few passes over the train-
ing corpus. In the second stage, we fit a regression to all the
selected features from the first stage but down-weight them
through a specially constructed prior that pools data from
all the features, while putting more coefficient on those that
are less sparse. The latter approach will be described in
more detail in the next subsection; we discuss our variable
selection methods next.

We selected the variables using two methods, the first
based on clicks and views, and the second based on rel-
evance scores of words that are independent of any click
feedback. In the first approach (data-based), we rank words
based on a measure that quantifies the interaction between
words occurring in the page and ad regions. For a word w,
the interaction measure is defined as

iw =
CTRboth

w

CTRpage
w · CTRad

w

(2)

where CTRboth
w denotes the click-through rate (CTR) when

w occurred both on page region and ad region of an ad
displayed on a page, and CTRpage

w and CTRad
w denote the

marginal CTRs when w shown on the page and ad regions
respectively. Higher values of the ratio indicates stronger
interaction being induced by the presence of the word which
in turn should enhance the matching quality of ads to pages.
We also tried a variation of the measure above with a square
root of the denominator with no significant impact.

In the second approach (relevance-based), words are ranked
by computing the average tf-idf scores across the entire page
and ad corpus for the respective regions under considera-
tion. Here, we experiment with two measures: (a) create a
single corpus by treating page and ad regions as documents
and compute a single tf-idf average score for each word, and
(b) Treat the page and ad regions as different corpora and
use the geometric mean of tf-idf scores computed separately
from page and ad regions for each word.

For both measures, we picked the top 1000 words and used

Figure 1: Distribution of (page, ad) impressions:
Plots are on log-log scale but ticks are on the original
scale.

them in the logistic regression. To avoid noisy estimates of
CTRs in the ratio, we only consider words that were shown
simultaneously on ad and page regions at least 10 times and
had non-zero marginal probabilities. As our experiments
will show later, the data-based approach gives better results
for the same number of words.

3.3 Approximate Logistic Regression
Let yij denote the binary click outcome (1 for click, 0 for

no click) when ad j is shown on page i. We assume yij has
a Bernoulli distribution with CTR pij , i.e., the probability
distribution of yij is given by P (yij) = p

yij

ij (1−pij)
1−yij . To

determine relevant ads for a given page i, we need to esti-
mate pij ’s, with higher values indicating more relevant ads.
For ads that are shown a large number of times on a page,
the CTR can be estimated empirically by clicks per impres-
sion. However, in our application a large fraction of page-ad
pairs having a small number of impressions (Figure 1). In
fact, since the CTRs are typically low (0.1% − 20% with a
substantial right skewness in the distribution), number of
impressions required to get precise empirical estimates are
high. For instance, to estimate a 5% CTR, we need 1K
impressions to be even 85% confident that our estimate is
within 1% of the true CTR. Thus, we take recourse to fea-
ture based models, i.e., pij is a function of features extracted
from page and ad regions as discussed in section 3.1.

To allow for arbitrary real-valued coefficients for features,
it is routine to map pij onto the real line via a monotonically
increasing function. The most widely used function is the
logit which maps pij to logit(pij) = log [pij/(1 − pij)]. We
assume that logit(pij) is a linear function of features repre-
senting the main effects and interaction effects discussed in
section 3.1. For simplicity, consider a single (page, ad) re-
gion combination (p(r1), a(r2)). The linear function in the
logistic regression is given by:

logit(pij) = logit(qij) +
X
w

αwMp(r1)w (3)

+
X
w

βwMa(r2)w +
X
w

δw,r1,r2Ip(r1)w,a(r2)w

where w = (α, β, δ) are unknown feature coefficients to be
estimated by logistic regression, and logit(qij) are known
prior log-odds that could have been derived from a different
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model. For instance, a uniform prior would assume qij = p̂,
where p̂ is the average CTR on the entire training corpus.
Another possibility we explore is to derive prior log-odds qij

by combining relevance scores with click feedback.
To add new (page,ad) region combination, we only need

to augment equation 3 with the appropriate linear terms
for the page main and ad main effects. For the interaction
effects, we re-parametrize our model to facilitate indexing.
We explain our re-parametrization here and discuss the con-
nection to indexing later in section 4. For each (page,ad)
combination (r1, r2), a word w that occurs in both r1 and
r2 has a coefficient δw,r1 ,r2 which depends on the word, the
page region and the ad region. We assume the following
parametrization.

δw,r1,r2 = δw · γp(r1) · γa(r2) (4)

i.e., the interaction of a word for a given page and ad re-
gion combination is factored into word-specific, page-specific
and ad-specific components. Thus, for M words, R1 page
regions, R2 ad regions, the number of parameters equals
M +R1 +R2 as opposed to M ·R1 ·R2 in the original model.
The estimate of coefficients is obtained by maximizing the
log-likelihood of the data as given by

X
ij

(yijlog(pij) + (1 − yij)log(1− pij)) (5)

where pij is given by equation 3. The optimization prob-
lem described above may become ill-conditioned and lead
to high variance estimates if features tend to be correlated
or are sparse or both. For exact technical details on neces-
sary and sufficient conditions that ensure convergence, we
refer the reader to [15]. This is a drawback in our scenario
where feature sparsity and correlations are routine. To pro-
vide a robust solution, we put additional constraints on the
coefficients in the form of priors.

A N(0, σ2) prior would mean that the parameter estimates
are pinned down in the range (−3σ, 3σ) with 99% probabil-
ity a-priori. In the absence of enough information about the
coefficient from data, this ensures that the coefficient esti-
mates do not diverge to the boundaries and cause numerical
instability. To put more stringent constraints on sparse fea-
tures, we down-weight the prior variance σ2 by a measure
of relative sparsity which we define to be the variance of the
feature occurrence process relative to average feature occur-
rence variance. The feature occurrence variance is given by
s(1− s), where s is the fraction of times the feature occurs.
In particular, we assume:

αw ∼ N

„
0, σ2 · sp(w)(1 − sp(w))

sp(1 − sp)

«

βw ∼ N

„
0, σ2 · sa(w)(1 − sa(w))

sa(1 − sa)

«

δw ∼ N

„
0, σ2 · sI(w)(1 − sI(w))

sI(1 − sI)

«

Note that separate averages are used for the main page and
ad effects, and interaction effects (indicated by the sub-
scripts p, a, and I). In all our experiments, we fix σ2 = 9;
experiments with several other values in the range of 3 to
20 did not yield much difference.

Now, the optimization problem reduces to estimating the
coefficients by maximizing the log-posterior which is the sum

of the log-likelihood (Eq. 5) and the log-prior of the coeffi-
cients, as discussed above. Next, we discuss the optimization
process itself.

Several approaches to optimize our objective function ex-
ist in the literature. Among the ones that have been used
in large-scale applications are iterative scaling [20], nonlin-
ear conjugate gradient, quasi-Newton (in particular, limited
memory BFGS) [7], iteratively-reweighted least squares [14],
truncated Newton [16], and trust-region Newton [5]. All the
methods are iterative and generate a sequence of estimates
that converge to the optimal solution. For all methods ex-
cept iterative scaling, cost per iteration is high but the con-
vergence is fast. For iterative scaling which updates one
component at a time, cost per iteration is low but conver-
gence is slower. For our application, the training corpus
typically has several millions data points and several thou-
sand features making it extremely slow to fit the model using
these approaches on a single machine.

To scale our computations, we adopt a simple paralleliza-
tion approach that randomly splits the data into several
parts, fits a logistic regression separately to each part and
then combines the estimates obtained from each piece. For
convenience, we perform our computation in a MapReduce
framework [12]. MapReduce is a programming model for
processing large data sets. It runs on a large cluster of
commodity machines; it is highly scalable processing sev-
eral gigabytes of data on thousands of machines and easy to
use. The run-time system automatically takes care of the
details of partitioning the data, scheduling job across ma-
chines, handling failures and managing inter-machine com-
munication.

To fit a logistic regression for a given piece, we use a simple
iterative scaling (also known as conditional maximization)
approach. The algorithm is as follows: We initialize the co-
efficients α’s, β’s, and δ’s to 0, and γp(.)’s and γa(.)’s to 1.
We update the value of each coefficient one at a time holding
the others fixed at the current value by maximizing the like-
lihood through a Newton-Raphson method. This completes
a single iteration. The procedure is continued through sev-
eral iterations until convergence. The method is guaranteed
to converge since every step can only increase the likelihood.
Along with a coefficient estimate, the Newton-Raphson pro-
cedure provides an estimate of the negative Hessian, the
inverse of which provides an estimate of variance of the co-
efficient from maximum likelihood theory. The results on
the various data partitions are combined using a weighted
average of the individual estimates, where the weight as-
signed to partition-specific estimate is its relative precision
obtained from the negative Hessian values. This weighting
scheme is the best way to combine estimates through a lin-
ear function [6]. Figure 2 describes our fitting procedure in
detail.

4. AD SEARCH PROTOTYPE
A key feature of the model proposed in this paper is that

it is suitable for efficient evaluation over an inverted indexes.
In this section we outline an implementation of a prototype
ad search engine based on the WAND [2] algorithm and
inverted indexing of the ads using the Hadoop distributed
computing framework [10].

Our method allows for any kind of feature to be used in the
ad search. In our prototype we use unigrams, phrases and
classes as features. The inverted index is composed of one
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Figure 3: Ad search prototype architecture

Algorithm CondMax

Initialize coeffi = 0 for all word features i and coeffi = 1
for page-region and ad-region specific parameters in the
re-parametrized model of equation 4.
Iterate until convergence

Iterate i over the set of features
Set f ′(i) = f ′′(i) = loglik = 0
Iterate over all impressions, with the data
providing scorei for feature i

x =
P

i coeffi · scorei

p = 1.0/(1.0 + exp(−x))
f ′(i) = f ′(i) + (click or not − p) × scorei

f ′′(i) = f ′′(i) − p(1 − p) × score2
i

loglik = loglik + log p − x · (1 − click or not)
f ′(i) = f ′(i) − coeffi/σ2

i

f ′′(i) = f ′′(i) − 1.0/σ2
i

coeffi = coeffi − f ′(i)/f ′′(i) if loglik is lower
than previous

Return (coeffi, f
′′(i)) for all i

Algorithm CombineCoeffs

Randomly split the data
Call CondMax on each split
Iterate over all features i

C(i) =

P

splitj
coeffi·|f ′′(i)|

P

splitj
|f ′′(i)|

Return C(i) as the final coefficient value for feature i

Figure 2: Implementation of Logistic Regression.

postings list for each feature that has one entry (posting) for
each ad that contains this feature. The ads are represented
by adIDs - unique numeric identifiers assigned to each ad.

Figure 3 shows the architecture of our ad search proto-
type. We produce the inverted index over a grid of machines
running the Hadoop framework [10]. The indexing starts by
extracting features from the ads. Each feature is represented
by an unique numeric featureID. The resulting data file is
sorted by < adID, featureID >. Next we invert this file by
sorting the file by < featureID, adID > as a key. Finally
we write the delta compressed posting lists used at runtime
to evaluate the query.

There are a few important differences in the ad search
engine problem that require different approach compared
to web search engines. First, in web search, the queries are
short and the documents are long. In the ad search case, the
number of features per ad is usually lower than the number
of features extracted from a web page, which in our case
represent the ad space query. So it is almost never the case
that an ad will contain all the features of the ad search query.
Therefore the ad search engine performs similarity search in
the vector space with a long query and relatively short ad
vectors. In contrast for the majority of the web queries there
are many pages that contain all the query words and one of
the key issue is how to rank the pages containing the query.

Features are extracted from the input query. The query is
a bag of pairs < featureID,weight >. For each query fea-
ture, WAND opens a cursor over the posting list of this fea-
ture. During the evaluation the cursors are moved forward
examining the documents as they are encountered. WAND
is a document at the time algorithm [1] that finds the next
cursor to be moved based on an upper bound of the score for
the documents at which the cursors are currently positioned.
The algorithm keeps a heap of current candidates. The in-
variant of the algorithm is that the heap contains the best
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matches (highest scores) among the documents (ads) with
IDs less than the document pointed by the current minimum
cursor.

Cursors pointing on documents with upper bound smaller
than the minimum score among the candidate docs are can-
didates for a move. To find the upper bound for a document,
the algorithm assumes that all cursors that are before the
current will hit this document (i.e. the document contains
all those terms represented by cursors before or at that doc-
ument). It has been shown that WAND can be used with
any function that is monotonic with respect to the number
of matching terms in the document. It can also be easily
shown that some non-monotonic scoring functions can also
be used as long as we can find a mechanism to estimate the
score upper bounds.

One family of such functions is a set of functions where a
fixed subset of the features (known a priori) always decrease
the score. In such cases, the upper bound estimates just
assume that these features do not appear in the ad. An
example of such function is a cosine similarity where some
of the query coefficients are negative. The scoring function
proposed in this paper might have such coefficients and fits
well within the WAND framework.

Incorporating the logistic-regression based model in this
framework is simple. The scoring equation 3 is modified to
exclude the page effect and used as WAND scoring formula.
Figure 3 shows the stages in which the learned parameters
are factored into the evaluation framework. Ma(r) is used
at indexing time to calculate a static score for each individ-
ual ad. We use this score to assign an adID to the ads in
decreasing ad score order. This allows for estimating upper
bounds of the ads that are skipped by using scores by using
the score of the ad pointed by the preceding cursor in the
sorted cursor list.

After the page is parsed and the features are extracted
along with their TF-IDF scores, we apply the reweighing
based on the table Iw.

The Mp(r) table is not used in the ad selection but just to
adjust the final scores to calculate the probabilities accord-
ing to equation 3.

5. EXPERIMENTS
We now provide a detailed discussion of all our experi-

ments, conducted on a large-scale real-world dataset. After
a brief description of the data, we present results on the
different word selection schemes, followed by comparisons
of several variants of our model with a baseline model that
does not utilize any click feedback and is based solely on rel-
evance. The results convincingly demonstrate the improved
performance of models that use click feedback.

5.1 Data
To demonstrate the efficacy of our approach, we conduct

a series of experiments on retrospective data collected from
some back-end servers of a large contextual advertising sys-
tem. We would like to emphasize that the servers were cho-
sen subjectively and are not representative of the actual per-
formance of the entire advertising system. We conducted
our experiments on 30 days of data. The first 15 days of
data were used as our training corpus while the results were
evaluated on the remaining days.

Every display of an ad on a page is called an impression.
Thus, a single page view by a user generates multiple im-

pressions and equals the number of ads shown on the page.
There are approximately .5B − 1B page views on a day in
the portion of the data that we examined. Defining CTR
as the number of clicks per impressions, overall CTRs for
(page,ad) combinations are low and approximately in the
range of .1% − 20% with extreme right skew. Labeling the
clicks as 1 and non-clicks as 0, we have a learning prob-
lem with extreme class imbalance. The logistic regression
is known to provide biased estimates of weights in such sce-
narios [11]. A widely used strategy in such settings reduces
imbalance by sampling from the majority class. We also
adopt a similar strategy but our sampling scheme is as fol-
lows: we retain all impressions associated with clicked page
views and get a 1/2000 random sample from the pageviews
associated with non-clicked page views. All results reported
in this paper are on data sampled in this fashion.

5.2 Word selection schemes
We conducted experiments with several (page,ad) region

combinations but provide detailed analysis for experiments
conducted with one region combination, viz, page title (call
it pti) and ad title (call it oti). In the training corpus, we
obtained approximately 112K unique words after stop word
removal. To avoid introducing extremely sparse words in
our regression, we truncated our word list to consider only
those that had at least 100 impressions where the word oc-
curred both on the page and ad. Also, we further truncated
our list by considering only words that had at least 5 clicks
separately when shown on pages and ads. The truncation
left us with approximately 3.4K words to choose from.

We implemented one data based and two relevance-based
feature selection schemes. The data based feature selection
criteria was described in section 3.1 and given by the mea-
sure defined as iw in equation 2. We conduct two experi-
ments, one with the top 1K words and other with all 3.4K
words. Similar experiments were also conducted on words
selected using two relevance-based measures described pre-
viously in Section 3.2. Briefly, the first relevance-based mea-
sure assigns the average tf-idf score to a word. It is computed
from a single corpus which is the union of page title and ad
title regions. The second relevance-based measure is the ge-
ometric mean of average tf-idf scores of a word computed
separately from page region and ad region corpora. We also
conducted a set of experiments by randomly selecting a set
of 1K words from our list of words which performed very
poorly and hence its results are not reported.

5.3 Hybrid model
A pure relevance-based based model finds relevance by

using semantic information. More specifically, the relevance
of an ad for a page is quantified by a score which is a function
of page and ad content. We tested two such scores for region
combination (pti, oti), viz.

Relevance1 =
X
w

tf-idfw,pti · tf-idfw,oti

and

Relevance2 =
Relevance1qP

w tf-idf2w,pti ·
P

w tf-idf2w,oti

Relevance2 is the cosine of the angle between tf-idf vectors
for page and ad regions. The distribution of Relevance1
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Figure 4: Relationship between log-odds of CTR and
Relevance2.

was extremely right skewed with several outliers, hence we
conduct all our experiments with Relevance2.

In addition to a model based solely on Relevance2, we ex-
plore a hybrid model which combines our word-based logistic
regression with the relevance-based score model. We explore
two options: (a) use Relevance2 as an additional feature in
the logistic regression but without adding substantial over-
head to the indexing algorithm, and (b) use Relevance2 to
derive the priors qij in equation 3.

Both these options require understanding the relation-
ship between the log-odds of CTR and Relevance2; the
relevance score needs to be transformed on to the scale of
log-odds of probability. We empirically studied this rela-
tionship by plotting empirically estimated log-odds against
Relevance2 scores as follows: sort all positive Relevance2

values in the training data and create 100 bins. For each
bin, we compute the empirical log-odds and the average
Relevance2 score. Figure 4 shows the relationship. Ap-
proximately 90% of impressions had a Relevance2 value of
zero. Excluding those, the curve clearly reveals a quadratic
relationship. Thus, for scheme (a) above, we add quadratic
terms a + b ∗Relevance2 + c ∗Relevance2

2 to the logistic re-
gression and estimate parameters a, b and c. For scheme (b)
above, we derive qij ’s by using the approximate quadratic
curve shown in figure 4:

logit(qij) = −1.75 + 2.52 ∗ Relevance2 − 1.56 ∗ Relevance2
2.

5.4 Evaluation Criteria
Our test data had a total of 14.48M impressions. Of these,

12.8M had at least one word from our 1K word list or a pos-
itive tf-idf score when considering only words in pti and oti.
We only report results on this pool. We use the precision-
recall metric to measure the performance of our algorithms.
In our scenario, recall for a given threshold on the model

Figure 5: Precision-recall curves for the three word
selection schemes with the best hybrid model that uses
both words and relevance measure as features.

score is the fraction of all clicks that were present (recalled)
in the test cases above that threshold. Precision for a given
recall value is the CTR on the test cases above the threshold.
Since our end goal is to rank ads for a given page, we are
more interested in algorithms that recall the top fraction of
clicks (e.g 2%, 5%, 10%) with greater precision. Also note
that, for a random classifier that classifies a test case as a
click with a constant probability (overall CTR in training
corpus), the precision equals that constant probability value
for every recall value.

5.5 Results
Our key results are as follows:

• Figure 5 shows the precision-recall curves for the three
word selection schemes for our best model, viz, the hy-
brid model that uses both words and relevance mea-
sure as features (results with other models were simi-
lar). Of the three word selection schemes we tried, the
data-based one using measure iw of equation 2 gave
the best results, especially for low values of recall. Of
the two relevance-based word selection criteria, the one
that uses the geometric mean of the average tf-idf score
was slightly better than the one that used average tf-
idf from the union of page and ad regions. However,
both the relevance schemes were inferior to the data-
based one. In addition, we found no significant differ-
ence in going from the top 1000 words to the top 3400
words in the data-based scheme; hence, those results
are not shown. This does indicate, however, that the
top few words according to our data-based measure iw
are enough to capture most of the signal in the data.

• We conducted experiments using both tf and tf-idf as
our scores for features in equation 3. We consistently
get better results with tf; all our subsequent results are
reported with this measure.

• Figure 6 shows the precision-recall curve for the hy-
brid, word-only and relevance-based models. Both our
word-only logistic regression using tf as feature scores
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(a) Truncated at 20% recall (b) All recall values

Figure 6: Precision recall curves for three methods. All curves are reported for the best word selection scheme.
The second curve was truncated at a recall value of 20% to provide a better summary of performance at small
recall values. Statistical error in all cases was less than 1% of the mean.

in equation 3 and the hybrid model that uses both
word-based and Relevance2 based features outperformed
the pure relevance model that ranks ads solely based
on Relevance2. In fact, the hybrid model is superior
to the word only model; especially for low recall val-
ues like 2%, 5% and 10%. The hybrid models that
use Relevance2 as features and prior have approxi-
mately similar performance. In fact, for a recall of
10%, the hybrid model provides 25% lift relative to a
pure relevance-based model and 100% lift relative to
random model in terms of precision. We notice sharp
spikes in the precision-recall curves, especially at low
recall values. This is indicative of high click density
regions in the test data when ranked by model scores.
On further scrutiny we discovered some of these high
density regions were caused by (page,ad) impressions
that had extremely high click rates (e.g in the range
of 30% − 60%). This can occur in our data due to a
number of reasons: popular ads, popular pages, sud-
den burst of heavy clickers, etc. The 95% confidence
intervals obtained by producing precision-recall curves
on several independent splits of test data was within
1% of the mean; hence, all our results are statistically
significant.

• Figure 7 shows histograms of parameter estimates ob-
tained from our best hybrid model. The histograms
show the distribution of coefficient estimate × average-
tf for words for page main effects, ad main effects and
page-ad interaction effects. Interestingly, the interac-
tion effects are small for a majority of words except for
a small fraction that have large positive values. This
ties in with the observation that using the top 1000
words was as accurate as using the top 3400 words; if
only a few words have significant interaction effects,
then adding more words as features into the logistic
regression will not help.

5.6 Summary of Results
Based on an extensive set of large scale experiments, we

demonstrated that using click feedback significantly improves
the accuracy of matching relevant ads to pages compared to
traditional relevance scoring models that are solely based on
semantic similarity. We incorporate click feedback through
a logistic regression by using the words on pages and ads as
features. We tested several variable selection schemes and
found a simple data based scheme performs the best. We
also proposed a hybrid model which uses words and rele-
vance scores as features and significantly outperforms the
traditional relevance based models in our experiments. Our
solution is scalable and can process several gigabytes of data
through a Hadoop parallelization framework. In addition, it
can be easily incorporated into existing ad-serving architec-
tures.

6. CONCLUSIONS
We proposed a new class of models to combine relevance

with click feedback for a contextual advertising system. Our
model is based on a logistic regression and allows for a large
number of granular features. The key feature of our model-
ing approach is the ability to model interactions that exist
among words between page and ad regions in a way that
is suitable for efficient evaluation over inverted indexes. In
fact, we employ a multiplicative factorization to model the
interaction effects for several (page, ad) regions in a parsi-
monious way that facilitates fast look-up of ads at run time.
Through large scale experiments, we convincingly demon-
strate the advantage of combining relevance with click feed-
back. In fact, we achieve a 25% lift in precision for a recall
value of 10% relative to a pure relevance based model in our
experiments.

In the future, we want to enrich our models to discover
interactions that are caused due to word synonyms both
using a supervised and unsupervised approach. We are cur-
rently experimenting with a wide range of feature selection
and model fitting scheme for the logistic regression proposed
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(a) Page Main Effects (b) Ad Main Effects (c) Page Ad Interaction Effects

Figure 7: Average estimated weight for page main effects, ad main effects and interaction effects. The distri-
bution is obtained as product of parameter estimate from regression and the average tf score associated with a
word in the training corpus.

in the paper. We are also exploring the application of our
method to other systems where there is implicit feedback in
the form of clicks, such as web search and search advertising.
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