
Finding the Right Facts in the Crowd:
Factoid Question Answering over Social Media

Jiang Bian
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

jbian@cc.gatech.edu

Yandong Liu
Math & Computer Science

Department
Emory University

Atlanta, GA 30332
yliu49@emory.edu

Eugene Agichtein
Math & Computer Science

Department
Emory University

Atlanta, GA 30332
eugene@mathcs.emory.edu

Hongyuan Zha
College of Computing

Georgia Institute of
Technology

Atlanta, GA 30332
zha@cc.gatech.edu

ABSTRACT
Community Question Answering has emerged as a popu-
lar and effective paradigm for a wide range of information
needs. For example, to find out an obscure piece of trivia, it
is now possible and even very effective to post a question on
a popular community QA site such as Yahoo! Answers, and
to rely on other users to provide answers, often within min-
utes. The importance of such community QA sites is magni-
fied as they create archives of millions of questions and hun-
dreds of millions of answers, many of which are invaluable for
the information needs of other searchers. However, to make
this immense body of knowledge accessible, effective answer
retrieval is required. In particular, as any user can con-
tribute an answer to a question, the majority of the content
reflects personal, often unsubstantiated opinions. A rank-
ing that combines both relevance and quality is required to
make such archives usable for factual information retrieval.
This task is challenging, as the structure and the contents
of community QA archives differ significantly from the web
setting. To address this problem we present a general rank-
ing framework for factual information retrieval from social
media. Results of a large scale evaluation demonstrate that
our method is highly effective at retrieving well-formed, fac-
tual answers to questions, as evaluated on a standard factoid
QA benchmark. We also show that our learning framework
can be tuned with the minimum of manual labeling. Finally,
we provide result analysis to gain deeper understanding of
which features are significant for social media search and re-
trieval. Our system can be used as a crucial building block
for combining results from a variety of social media content
with general web search results, and to better integrate so-
cial media content for effective information access.

Categories and Subject Descriptors
H.3.3 [Information Search Retrieval]: Relevance feed-
back, Search process; H.3.5 [On-line Information Ser-
vices]: Web-based services

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

General Terms
Algorithms Measurement Experimentation

Keywords
Community, Question Answering, Ranking

1. INTRODUCTION
Online social media content and associated services com-

prise one of the fastest growing segments on the Web. Such
content includes social bookmarking (Delicious1), social photo
sharing (Flickr2), social video sharing (Youtube3), and many
other forms of user-generated content. This content is dif-
ferent from the traditional content on the web (web pages)
in style, quality, authorship, and explicit support for social
graphs. The explicit support for social interactions between
users, such as posting comments, rating content, and re-
sponding to questions and comments makes the social me-
dia unique and requires new techniques for analyzing and
retrieving relevant content.

Question-Answering (henceforth QA) is a form of informa-
tion retrieval where the users’ information need is specified
in the form of a natural language question, and the desired
result is self-contained answer (not a list of documents). QA
has been particularly amenable to social media, as it allows
a potentially more effective alternative to web search by di-
rectly connecting users with the information needs to users
willing to share the information directly. Some very success-
ful examples of community sites organized around Question
Answering are Yahoo! Answers4, and Naver5. In these por-
tals users can express specific information needs by posting
questions, and get direct responses authored by other web
users, rather than browsing results of search engines. Both
questions and responses are stored for future use by allowing
searchers to first attempt to locate an answer to their ques-
tion, if the same or similar question has been answered in the

1http://del.icio.us/
2http://flickr.com/
3http://youtube.com/
4http://answers.yahoo.com/
5http://www.naver.com/

467

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

past. As QA portals grow in size and popularity, searching
for existing answers for a given question becomes increas-
ingly crucial to avoid duplication, and save time and effort
for the users. For example, Yahoo! Answers now has tens of
millions of users, and stores hundreds of millions of answers
to previously asked questions. These databases of questions
and respective answers is an invaluable resource for specific
information needs not well served by general-purpose search
engines.

In particular, today’s search engines are not yet gener-
ally capable to automatically generate brief but precise sum-
maries that integrate information from multiple sources, or
to answer queries that require deep semantic understanding
of the query or the document. For example, consider a query
“When is the hurricane season in the Caribbean?”, which we
submit to both Yahoo! Answers and Yahoo! Web search en-
gine. Figure 1 and 2 show the best answer and top 5 search
results respectively. From those two figures, it is easy to see
that Yahoo! Answers supply one brief answer but with high
quality while for Yahoo! Search results people still need to
click into the webpage to find needed information. Thus,
QA sites and search services provides an alternative channel
for obtaining information more quickly and more precisely
on the web.

Figure 1: The question“When is hurricane season in
Caribbean?” in Yahoo! Answer and its best answer.

However, finding relevant answers of a new query in QA
archives is a difficult task that is distinct from web search
and web question answering. The main differences are the
availability of explicit user feedback and interactions, ex-
plicit authorship and attribution information, and organiza-
tion of the content around topical categories and past ques-

Figure 2: Top 5 results when searching “When is
hurricane season in Caribbean?” on Yahoo! Search.

tion threads. Furthermore, the quality of the content varies
even more than the quality of the traditional web content.
A large fraction of the content reflects often unsubstantiated
opinions of users, which are not useful for factual informa-
tion retrieval and question answering. Hence, retrieving the
correct factual answers to a question requires determining
both relevance and quality of answer candidates.

As has been shown in recent work, user interactions, in
particular explicit feedback from users, can provide a strong
indication of the content quality [2]. Examples of such feed-
back include the selection of the“best”answer by the original
question author, as well as the “thumbs up” and “thumbs
down” ratings from other users. What is not clear from
previous work is how to integrate explicit user feedback in-
formation and relevance into a unified ranking framework
to retrieve answers that are relevant, factual, and of high
quality.

In this paper we present a ranking framework to take
advantage of user interaction information to retrieve high
quality relevant content in social media. We focus on com-
munity Question Answering to explore how to integrate rel-
evance, user interaction and community feedback informa-
tion to find the right factual, well-formed content to answer
a user’s query. Our contributions in this paper include:

• An effective framework for learning ranking functions
for question answering that incorporates community-
based features and user preferences (Sections 3).

• Analysis of user interactions in community QA with
insights into the relationship between answer quality,
relevance, and factual accuracy (Section 5).

In summary, retrieving correct, factual, and well-formed
answers from community QA archives is a crucial and chal-
lenging task. In this work we make significant progress to-
wards this goal, allowing our system to find facts in the
crowd with accuracy substantially higher than the current
state-of-the-art.

2. RELATED WORK
Social media services provide popular web applications

such as photo sharing (Flickr), social bookmarking (Deli-
cious), and video sharing (Youtube), and, more recenlty,

468

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

popular community Question Answering sites such as Ya-
hoo! Answers and Naver. Question answering over commu-
nity QA archives is different from traditional TREC QA [22],
and applying QA techniques over the web [5]. The most
significant difference is that traditional QA operates over a
large collection of documents (and/or web pages) whereas
we are attempting to retrieve answers from a social media
archive with a large amount of associated user-generated
metadata [2]. This metadata (such as explicit user feedback
on answer quality) is crucial due to the large disparity of the
answer quality, as any user is free to contribute his or her
answer for any question.

Because of the explosive rise in popularity of Yahoo! An-
swers and Naver and other sites, community Question An-
swering has recently become an active area of research. This
area of QA can be traced to the research on answering
questions using Usenet Frequently Asked Questions (FAQ)
archives [7, 19, 17, 20]. Usenet FAQs could be viewed as
precursors to today’s community QA archives that fulfilled
a similar role but lacked intuitive support for explicit user
feedback and other user interactions. More recently, Jeon et
al. [10] presented retrieval methods based on machine trans-
lation models to find similar questions from Naver, a com-
munity QA service, but did not take quality of answers into
consideration. Jurczyk and Agichtein [14] show an applica-
tion of HITS algorithm to a QA portal. Zhang et al. [24]
analyze data from an on-line forum, seeking to identify users
with high expertise. Su et al. [21] analyzed the quality of
answers in QA portals and found that the quality of each
answers varies significantly. Jeon et al. [11] built a model
for answer quality based on features derived from the spe-
cific answer being analyzed. Recently, Agichtein et al. [2]
explored user interaction and content-based lexical features
to identify high-quality content, but did not address how to
retrieve relevant answers. In contrast, we propose a frame-
work to integrate the interaction features into the answer
retrieval.

Our work is similar in spirit to integrating user interac-
tions and feedback into web search [12, 13, 15, 1]. For exam-
ple, implicit feedback in the form of result clickthrough was
shown to be helpful for web search ranking. The main dif-
ference of our current work is that we focus on question an-
swering, which is a more precise form of search compared to
general-purpose web search explored in the past. As another
departure from previous work, we do not assume the exis-
tence of large amounts of expertly labeled relevance judg-
ments, but instead automatically generate relevance labels.
These differences in setting provide an interesting challenge
for learning ranking functions.

Many models and methods have been proposed for de-
signing ranking functions, including vector space models [3],
probabilistic models [4] and recently developed language mod-
els [18]. Some advanced machine learning methods are also
incorporated to learn ranking such as SVM and gradient
boosting [12, 23]. In recent years, once relevance judgments
are extracted from clickthrough data, several new learn-
ing frameworks, e.g. RankSVM [12], RankNet [6], Rank-
Boost [8] have been created to utilize preference data to
enhance ranking. Our work is also related to the recent
research of Ko et al. [16] that propose a probabilistic frame-
work for answer selection for traditional question answer-
ing.In this paper, we adapt a regression framework which
is based on Gradient Boosting [25, 9]. We now present our
ranking framework in more detail.

3. LEARNING RANKING FUNCTIONS FOR
QA RETRIEVAL

Ranking functions are at the core of an effective QA re-
trieval system. In this section, we will explore a learning-
based approach to the design of the ranking functions. We
will focus on the specific characteristics of Yahoo! Answers
and discuss how to employ user interactions and community-
based features in Yahoo! Answers to rank the answers. We
start with a more precise definition of the problem of QA re-
trieval, and then describe the different interactions available
in a state-of-the-art community QA portal. Then we discuss
how to represent textual elements and community-based el-
ements in Yahoo! Answers as a vector of features. We then
show how to extract preference data on answers from user
interactions with Yahoo! Answers. Based on the extracted
features and preference data, we apply the regression-based
gradient boosting framework [25] to the problem of learning
ranking function for QA retrieval.

3.1 Problem Definition of QA Retrieval
In QA systems, there are a very large amount of ques-

tions and answers posted by a diverse community of users.
One posted question can solicitate several answers from a
number of different users with varying degree of relevance
to the posted question. We abstract the social content in
QA system as a set of question-answer pairs:

〈qsti, ansj
i 〉

where qsti is the ith question in the whole archive of the QA
system and ansj

i is the jth answer to this question.
Given a user query, our goal is to order the set of QA pairs

according to their relevance to the query, and the ordering is
done by learning a ranking function for triples of the form,

〈qrk, qsti, ansj
i 〉,

where qrk is the k-query in a set of queries. We will first
discuss how to effectively extract features and preference
data for each triple of the above form and then discuss a
regression-based gradient boosting methods for learning a
ranking function for QA retrieval.

3.2 User Interactions in Community QA
Community QA is a particularly popular form of social

media, drawing millions of users to ask and answer each
others’ questions. Unlike other social media services, com-
munity QA services such as Yahoo! Answers provide dis-
tinct types of interactions among users that are specific to
the QA domain. Users in Yahoo! Answers do not only ask
and answer questions, but also actively participate in regu-
lating the system. A user can vote for answers of other users,
mark interesting questions and even report abusive behav-
ior. Therefore, a Yahoo! Answers user has a threefold role:
asker, answerer and evaluator. And there are respectively
three types of user interaction activities: asking, answering
and evaluating. We summarize elements and interactions in
Yahoo! Answers in Figure 3. The rest of this paper will
focus on how to utilize this information for QA retrieval.

In addition to facilitating the community question answer-
ing process, a community QA system must support effec-
tive search of the archives of past questions and answers.
In fact, one benefit of Yahoo! Answers to users and web
searchers is precisely the immense archive of hundreds of
millions of answers to past questions, with the associated
community feedback. Searching this archive allows users

469

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

Figure 3: Elements and interactions in Yahoo! An-
swers: Askers post questions on Yahoo! Answers;
Several users-answerers read questions and supply
their answers to them; Users can also read these
answers and give evaluations/votes; External users
can submit queries to Yahoo! Answers and receive
relevant questions with answers.

the benefit of community feedback and precise and specific
answers for many information needs not supported by gen-
eral web search. However, because of the disparity in answer
quality, and the difficulty in mapping user information needs
to past questions, the problem of retrieving both relevant
and high quality factual answers requires the integration of
both content features (to estimate relevance) as well as user
interaction and community features (to estimate quality).
Having introduced our setting, we now describe our features
for answer retrieval.

3.3 Features and Preference Data Extraction
We follow the general practice in information retrieval and

represent each query-question-answer triple (qr, qst, ans) as
a combination of textual features (i.e., textual similarity be-
tween query, question and answers), statistical features (i.e.,
independent features for query, question and answers) and
social features (i.e., user interaction activities and community-
based elements). In Yahoo! Answers, there is an additional
important type of user feedback — user evaluation in the
form of votes (represented as the “thumbs up” and “thumbs
down” metaphors). We can use this information to infer
preference relevance judgments for the set of answers. In
the following, we discuss features and preference data ex-
traction in more details.

3.3.1 Representing Textual Elements and User Inter-
actions as Features

Textual Elements Features: As we mentioned before,
there are three textual elements in Yahoo! Answers: ques-
tions, answers and queries (showed in Figure 3). We first
design features from each of these three elements indepen-
dently, such as “number of tokens for a query” for query,
“how long has the question been posted” for question, “num-
ber of received votes for an answer” for answer etc. (We
describe them as statistical features in Table 1)

Then, we also extract textual features from relationship
between questions, answers and queries. For example, the
number of overlapping terms and token number ratio be-

tween two of these three elements. We also introduce other
features describing similarity between these three elements.
(We describe them as textual features in Table 1)

User Interaction Features: As discussed before, there
are three kinds of roles each user in QA system may play,
namely Asker, Answerer and Evaluator. Figure 3 shows the
interactions between these three roles. Askers post their
questions on QA system in the hope that other users an-
swer these questions. Answerers submit their answers to
the question in the QA system. Some answers have high
quality while the majority are not useful. Evaluators give
positive and negative votes for an answer after they read an
answer and related question in the QA system. In the com-
munity of QA system, each user can play all of these three
roles at the same time.

For each user in the user community of a QA system,
there are several features to describe his or her activities,
such as the number of questions he or she asked, the num-
ber of answers he or she posted, the number of best answers
he or she posted etc. These features to certain extent can
approximate the user’s expertise in the QA community. And
user’s expertise within certain topics can in turn indicate the
quality of his or her answers to the questions about certain
topics. For example, in a query-question-answer triple, if
answerer tend to post useful answers or even best answers
in the past, he or she is more likely to give answers of high
quality this time. Similarly reputation of askers and eval-
uators can also indicate quality of answers. Therefore, in
each query-question-answer triple, we also extract features
indicating user’s activities in the QA system. As there is
no information about evaluators in Yahoo! Answer, we only
consider features for askers and answerers, such as “number
of questions the asker asked in the community”, “number
of best answers the answerer posted in community”. These
features are listed in Table 1.

3.3.2 Representing Users Evaluations as Preference
Data

One of the user interactions in a QA community, especially
in Yahoo! Answers, is their evaluations for the existing an-
swers. In Yahoo! Answers, after reading existing answers
for a question, user can give his or her judgment as the eval-
uation for the answers. If he or she considers the answer as
useful and of high quality, he or she can add a plus vote to
this answer. Otherwise, a minus votes may be added to the
answer.

We examine users evaluation data and extracted a set of
preference data which can be used for ranking the answers as
follows. For each query qr, under the same question qst, we
consider two existing answers ans1 and ans2 from Yahoo!
Answers. Assume that in the users evaluation data, ans1

has p1 plus votes and m1 minus votes out of n1 impressions
while ans2 has p2 plus votes and m2 minus votes out of n2

impression. We want to consider answer pairs ans1 and ans2

to see whether ans1 is preferred over ans2 in terms of their
relevance to the question qst. To this end, we assume that
plus votes obey binomial distribution, showed as following:

B(k; n, p) =

(
n
k

)
pk(1− p)n−k

We use the approach in [25] and apply likelihood ratio test
to examine whether a pair of answers is significant or not,
i.e., whether there are enough votes to compare the pair. In

470

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

Table 1: Features used to represent textual elements and user interactions
Textual Features of Questions, Answers and Queries

Query-Question Overlap Overlapping terms between query and question
Query-Answer Overlap Overlapping terms between query and answer
Question-Answer Overlap Overlapping terms between question and answer
Query-Question length ratio Ratio between number of tokens in query and question
Query-Answer length ratio Ratio between number of tokens in query and answer
Question-Answer length ratio Ratio between number of tokens in question and answer

Statistical Features of Questions, Answers and Queries

Query Length Number of tokens in query
Question Length Number of tokens in question
Answer Length Number of tokens in answer
Question Lifetime How long has this question been posted
Answer Lifetime How long has this answer been posted
Yahoo! Question Rank The rank of question in Yahoo! Answers
Yahoo! Answer Rank The rank of answer in Yahoo! Answers
Question Popularity How many answers are received under the question
Votes Number Number of votes for answer

User Interaction/Social Elements Features

Asker Total Points Points calculated by Yahoo! based on Asker’s activity history
Asker Total Answers How many answers does the asker submit in Yahoo! Answers
Asker Best Answer How many best answers does the asker propose in Yahoo! Answers
Number of Questions Asked by Asker How many questions does the asker post in Yahoo! Answers
Number of Questions Resolved by Asker How many questions are resolved by the asker in Yahoo! Answers
Asker stars received How many stars does the asker receive in Yahoo! Answers
Answerer Total Points Points calculated by Yahoo! based on Answerer’s activity history
Answerer Total Answers How many answers does the Answerer submit in Yahoo! Answers
Answerer Best Answer How many best answers does the Answerer propose in Yahoo! Answers
Number of Questions Asked by Answerer How many questions does the Answerer post in Yahoo! Answers
Number of Questions Resolved by Answerer How many questions are resolved by the Answerer in Yahoo! Answers
Answerer stars received How many stars does the Answerer receive in Yahoo! Answers

particular we compute the following statistic,

λ =
B(p1 + p2; n1 + n2, (p1 + p2)/(n1 + n2))

B(p1; n1, p1/n1)B(p2; n2, p2/n2)
→ −χ2

For a pair of answers ans1 and ans2, when the above value
is greater than a threshold, we say the pair is significant. If
ans1 and ans2 form a significant pair, we then extract a pref-
erence for the pair by comparing p1

p1+m1+s
with p2

p2+m2+s
,

where s is positive constant, i.e., if the former value is big-
ger than the later one, then we say ans1 is preferred over
ans2 which is denoted by ans1 Â ans2, and vice versa.

3.3.3 Representing Labeled data as Preference Data
Besides users evaluation information, we can also extract

preference data from labeled data. For two query-question-
answer items with the same query,

(qr, qst1, ans1) (qr, qst2, ans2),

let their feature vectors be x and y, respectively. If ans1 has
a higher labeled grade than ans2, we include the preference
x Â y while if ans2 has a higher labeled grade than ans1, we
include the preference y Â x. We will discuss how to obtain
labeled data in details in section 4.1.

3.4 Learning Ranking Function from Prefer-
ence Data

Once the features and preference data are extracted, the
next question is how to use them for the purpose of learning

a ranking function for QA retrieval. We apply a framework
for solving ranking problems from preference data developed
in [25]. This framework proposes a squared hinge loss func-
tion for learning ranking functions from preference data; it
also presents an algorithm that adapts functional gradient
descent for minimizing the loss function. We now briefly
describe the basic idea of the algorithm in [25].

Suppose the set of available preferences is

S = {〈xi, yi〉 | xi Â yi, i = 1, ..., N}.

Here each 〈x, y〉 ∈ S, x, y denote the feature vectors for two
query-question-answer triples with the same query. x Â y
means that x is preferred over y, i.e. x should be ranked
higher than y. In other words, the answer in x is considered
more relevant than that in y with respect to the same query
in both triples.

In [25], the problem of learning ranking functions is cast
as the problem of computing a function h, such that h match
the given set of preferences, i.e., h(xi) ≥ h(yi), if xi Â yi,
i = 1, ..., N , as much as possible. The following objective
function (squared hinge loss function) is used to measure
the risk of a given ranking function h,6

6This loss function can be considered as a smooth surrogate
of the total number of contradicting pairs in the given pref-
erence data with respect to the function h. We say x Â y is
a contradicting pair with respect to h if h(x) < h(y).

471

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

R(h) =
1

2

N∑
i=1

(max {0, h(yi)− h(xi) + τ})2,

and we need to solve the following minimization problem

min
h∈H

R(h),

where H is a function class, chosen to be linear combina-
tions of regression trees in our case. The above minimiza-
tion problem is solved by using functional gradient descent
discussed in [9]. We summarize the algorithm for learning
ranking function h using gradient boosting (GBrank) as fol-
lows:

Algorithm GBrank:
Start with an initial guess h0, for k = 1, 2, ...

1. Using hk−1 as the current approximation of h, we sep-
arate S into two disjoint sets,

S+ = {〈xi, yi〉 ∈ S|hk−1(xi) ≥ hk−1(yi) + τ}
and

S− = {〈xi, yi〉 ∈ S|hk−1(xi) < hk−1(yi) + τ}
2. Fit a regression function gk(x) using Gradient Boost-

ing Tree [9] and the following training data

{(xi, hk−1(yi) + τ), (yi, hk−1(xi)− τ)|〈xi, yi〉 ∈ S−}
3. Form the new ranking function as

hk(x) =
khk−1(x) + ηgk(x)

k + 1

where η is a shrinkage factor.

Two parameters need to be determined: the shrinkage factor
and the number of iterations, this is usually done by cross-
validation [25].

4. EXPERIMENTAL SETUP
This section presents our evaluation setup. First we de-

scribe our dataset including the queries and the correspond-
ing corpus of questions and answers. Then we describe our
evaluation metrics (Section 4.2) and the ranking methods to
compare (Section 4.3) for the experimental results reported
in Section 5.

4.1 Datasets
Factoid questions from the TREC QA benchmarks
We use factoid questions from seven years of the TREC QA
track evaluations (years 1999–2006)7 for the experiments re-
ported in Section 6. It is worth noting that TREC questions
from the years 1999 to 2003 are independent of each other:
each question is self-contained and we submit directly as
the query. Starting from 2004, however, the questions are
organized in groups with a ‘target’. For those questions,
we submit their ‘target’ as well as the questions themselves.
In total, approximately 3,000 factoid TREC questions were
compiled as the initial set of queries.

Since we need some candidate answers from Yahoo! An-
swers to estimate how well different ranking functions per-
form, we select the 1250 TREC factoid questions that have
at least one similar question in the Yahoo! Answers archive.
7http://trec.nist.gov/data/qa.html

Question-answer collection dataset
Our dataset was collected in order to simulate a user’s expe-
rience with a community QA site. We submit each TREC
query to the Yahoo! Answers web service8 and retrieve up
to 10 top-ranked related questions according to the Yahoo!
Answers ranking. For each of these Yahoo! questions, we
retrieve as many answers as there are available for each ques-
tion thread. There are, in total, 89642 〈query, question, answer〉
tuples. 17711 tuples (19.8%) are labeled as “relevant” while
71931 (81.2%) are labeled as non-relevant.
Relevance Judgments
In our experiment, the data are labeled in two ways: by us-
ing the TREC factoid answer patterns, and, independently,
manually in order to validate the pattern-based automatic
labels.

For automatic relevance labels we use the available regular
expression answer patterns for the TREC factoid questions.
We check every answer’s text body, and if the text matches
one of the answer patterns, we consider the answer text to
be relevant, and non-relevant otherwise.

In order to validate the accuracy of our automatically-
assigned relevance labels, we independently labeled a num-
ber of answers by hand. The manually labeled answers were
compared with the automatically generated labels, resulting
in over 90% agreement between the automatic and man-
ual methods. In the cases of disagreements were due to
the excessive strictness of the answer patterns, and to the
world changing (e.g., with a different correct answer for a
question “Who is the prime minister of Japan.”). This is
not surprising, as some of the answer patterns were created
years ago around the time of the TREC QA evaluation. In
summary, automatically generated labels, even though with
some small degree of noise, nevertheless exhibit high agree-
ment with manual relevance judgments, and serve as a good
proxy for comparing rankings.

4.2 Evaluation Metrics
We adapt the following information retrieval metrics to

evaluate the performance of the ranking function.

• Mean Reciprocal Rank(MRR): The MRR of each
individual query is the reciprocal of the rank at which
the first relevant answer was returned, or 0 if none
of the top N results contained a relevant answer.The
score for a sequence of queries is the mean of the indi-
vidual query’s reciprocal ranks. Thus, MRR is calcu-
lated as

MRR =
1

|Qr|
∑

q∈Qr

1

rq

where Qr is a set of test queries, rq is the rank of the
first relevant document for q.

• Precision at K: for a given query, P (K) reports the
fraction of answers ranked in the top K results that are
labeled as relevant. In our setting, we require a rele-
vant answer to be labeled “matched” for TREC pat-
tern. For this metric, the position of relevant answers
within the top K is irrelevant, while it measures overall
user potential satisfaction with the top K results.

• Mean Average of Precision(MAP): Average pre-
cision for each query is defined as the mean of the preci-
sion at K values calculated after each relevant answers

8http://developer.yahoo.com/answers/

472

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

was retrieved. The final MAP value is defined as the
mean of average precisions of all queries in the test set.
This metrics is the most commonly used single-value
summary of a run over a set of queries. Thus, MAP is
calculated as

MAP =
1

|Qr|
∑

q∈Qr

∑N
r=1(P (r)× rel(r))

|Rq|

where Qr is a set of test queries, Rq is the set of rel-
evant document for q, r is the rank, N is the number
retrieved, rel() is a binary function on the relevance
of a given rank, and P () is precision at a given cut-off
rank.

4.3 Ranking Methods Compared
To evaluate the Q&A retrieval quality, we compare the

quality of following methods:

• Baseline Yahoo(baseline1): In this method, we adapt
default ranking in Yahoo! Answers. Answers to a par-
ticular question are ordered by posting date. The older
one is ranked higher except that best answers always
come first.

• Baseline Votes(baseline2): In this method, similar to
our baseline1, we let best answers always be on top of
the answer list. However, following answers are ranked
in decreasing order by number of (positive votes - neg-
ative votes) received. If there is no vote for some an-
swers, we order them by Yahoo! default ranking.

• GBRanking: Ranking function with community/social
features: this is our method presented in Section 3.4

For Yahoo! Answers, since we first get a list of Yahoo!
questions for one TREC query, and each of these Yahoo!
questions has its own answers, there are multiple alterna-
tives for calculating MRR, Precision and MAP values for
Baseline Yahoo and Baseline Votes. First, we need to in-
troduce some nomenclature: for each TREC query TQ, we
retrieve a list of related questions from Yahoo! Answers
Y Qa, Y Qb... (as shown in Figure 4). After clicking on one
of these questions, we get the answers to each question, e.g.,
Y Qa, as Y Q1

a, Y Q2
a...Y Qn

a , as shown in Figure 1:

• MRR MAX: Calculate MRR value for each Y Qa,
Y Qb... and use the highest value as this TQ’s MRR.
This baseline simulates an ”intelligent” user who al-
ways selects the most relevant retrieved Yahoo! ques-
tion thread first (as measured by the corresponding
MRR for the thread).

• MRR STRICT: Calculate MRR value for each Y Qa,
Y Qb... and use the their average value as this TQ’s
MRR. This baseline simulates a user who blindly fol-
lows the Yahoo! Answer’s ranking and examines re-
trieved question threads and corresponding answers in
the order they were originally ranked.

• MRR RR(round robin): Use Y Qa’s first answer as
TQ’s first answer, Y Qb’ first answer as TQ’s second
answer and so on, then calculate this TQ’s MRR. This
baseline simulates a “jumpy” user who believes that
answers that come first, no matter to which questions,
are always better, and jumps between question threads
looking at the top-ranked answers for each tread in
order of the original ranking.

Figure 4: Top 5 results when searching “When is
hurricane season in Caribbean?” on Yahoo! An-
swers.

The variants for the other two metrics, Precision and MAP
(namely, PREC MAX, PREC STRICT,
PREC RR, MAP MAX, MAP STRICT,
MAP RR), are calculated similarly.

In summary, MRR MAX (and PREC MAX and
MAP MAX) represent the upper bound on Yahoo! Answers’
accuracy (with the current retrieval and ranking algorithms)
from the perspective of an intelligent searcher. This is an
extremely strong family of baseline metrics, as it assumes
an “oracle” that always makes the right decision to click on
the question threads that contain the correct answer in the
highest ranking position.

5. EXPERIMENTAL RESULTS

5.1 Learning Ranking Function
To learn the ranking function, we generate the training

and testing data as follows: we randomly select 400 TREC
queries from total 1250 TREC queries and collect all the re-
lated QA for these 400 queries. We use ten-fold cross valida-
tion to perform the training of the proposed ranking function
using the algorithm introduced above. Ten-fold cross valida-
tion involves dividing the judged data set randomly into 10
equally-sized partitions, and performing 10 training/testing
steps, where each step uses 9 partitions to train the ranking
function and the remaining partition to test its effectiveness.
Note that the following results were done on this smaller set
train the ranking function - the main evaluation will be per-
formed in the next section, over the remaining 850 TREC
questions that were not used in training in any way.

Figure 5 reports the Precision at K for the hold-out vali-
dation data against each iteration of our learning algorithm.
It can be clearly seen that Precision increases for the first

473

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

0 10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of iterations

P
re

ci
si

on
 s

co
re

Prec@1
Prec@3
Prec@5

Figure 5: Precision at 1, 3, 5 for testing queries
against GBrank iterations

60 iterations, after which the algorithm converges and addi-
tional iterations are not helpful.

5.2 Robustness to Noisy Labels

1 2 3 4 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

K

P
re

ci
si

on
@

K

Testing data with TREC pattern as labels
Testing data with manual labels

Figure 6: Precision at K for testing queries with
manual labels and labels generated by TREC pat-
tern

As mentioned in Section 4.1, the relevance judgments was
obtained by matching an answer with TREC answer pat-
terns. We have also found that 90% of items were given the
same labels under both manual labeling and TREC pattern
labeling and the remaining 10% of automatic labels were er-
roneous. To show that our learning framework is robust, we
experiment with training on the noisy automatically gener-
ated labels, and testing on the smaller set of “gold standard”
manually assigned relevance labels. For this experiment we
used 50 queries (testing data) which have been labeled man-
ually. Then, we randomly select the other 350 TREC queries
(training data) and related questions and answers to train
the ranking function. Figure 6 shows the Precision at K

for testing data based on manual labels and TREC pat-
tern labels respectively. While the accuracy when evaluating
against manual labels is slightly lower than automatic labels,
the differences are not substantial, which implies that our
algorithm still generates a nearly-optimal model even when
trained on noisy relevance labels. Furthermore, the high cor-
respondence of automatic and manual label accuracy results
validates our decision to use only automatic labels for the
remaining experiments, to enable experiments on the larger
scale.

5.3 Ablation Study on Feature Set
To gain a better understanding of the important features

for this domain we perform an ablation study on our fea-
ture set to explore which features are significant to answers
ranking.

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

K

P
re

ci
si

on
@

K

All features
No textual features
No community features
No statistical features

Figure 7: Precision at K for feature ablation study

1 2 3 4 5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K

P
re

ci
si

on
@

K

with preference from user evaluations
no preference from user evaluations

Figure 8: Precision at K without incorporating user
evaluations as preference data

As shown in Table 1, there are three major categories of
our feature set: textual features, community features and
statistical features. Figure 7 reports the Precision at K

474

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

when learning ranking function with removing each category
respectively. It is easy to see that removing both textual fea-
tures and community features cause a significant decreasing
on precision. While there is a slight reduction on precision
when removing statistical features, it is clear that these fea-
tures are not as important as the textual and community
features. Interestingly, textual features are less important
for Precision at 1. We hypothesize that for the top result
it is more important for an answer to be chosen as “best”
by the asker (one of the community features), than to have
appropriate textual characteristics.

In addition, we also test the effectiveness of preference
data from users evaluations. In order to test its effectiveness,
we learn a ranking function without incorporating preference
data from users evaluations. Figure 8 shows the Precision at
K of this new ranking function. From this figure, we can see
that users evaluations play a very important role in learning
ranking function.

5.4 QA Retrieval
In this experiment, we train our ranking function on the

whole training data (i.e., the 400 TREC queries from the
previous experiments) and test on the remainder hold-out
data of 850 TREC queries and associated community QA
pairs.

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K

P
re

ci
si

on
@

K

baseline1_STRICT
baseline1_MAX
baseline1_RR
GBrank

Figure 9: Precision at K for GBrank, base-
line1 MAX, baseline1 RR and baseline1 STRICT
for vary K

Figures 9 and 10 illustrate the Precision at K of GBrank
compared with the two baseline methods. These figures
show that the precision of two baseline methods are nearly
the same, while GBrank out-perform both of them. In par-
ticular, the Precision at 1 of GBrank is 76%, compared to
63% precision at 1 exhibited by the MAX baselines. We can
also see that PREC MAX performs better than PREC RR
and PREC STRICT, and GBrank has the similar perfor-
mance with PREC MAX the values of K larger than 3.

In Table 2 and 3, we illustrate the MAP and MRR scores
for two baseline methods as well as GBrank. From these two
tables, it is clear that MAX can perform better than the
other two metrics for baseline, but GBrank reaches much
better performance than all the metrics for two baseline

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K

P
re

ci
si

on
@

K

baseline2_STRICT
baseline2_MAX
baseline2_RR
GBrank

Figure 10: Precision at K for GBrank, base-
line2 MAX, baseline2 RR and baseline2 STRICT
for vary K

Table 2: Mean Reciprocal Rank (MRR) and Mean
Average Precision (MAP) for GBrank and other
metrics for baseline1

MRR Gain MAP Gain

STRICT 0.213 0.569 0.043 0.422
ROUND ROBIN 0.401 0.381 0.145 0.310

MAX 0.662 0.120 0.441 0.024
GBrank 0.782 - 0.465 -

Table 3: Mean Reciprocal Rank (MRR) and Mean
Average Precision (MAP) for GBrank and other
metrics for baseline2

MRR Gain MAP Gain

STRICT 0.214 0.568 0.045 0.420
ROUND ROBIN 0.403 0.379 0.159 0.306

MAX 0.664 0.118 0.443 0.022
GBrank 0.782 - 0.465 -

methods. In particular, GBrank achieves a gain of about
18% relative to the MAX metrics.

To understand how GBRank can outperform an “oracle”
baseline, consider that the ordering of answers within a ques-
tion thread remains fixed (either by date – as the default,
or by decreasing votes). In contrast, GBrank obtains a bet-
ter ranking of answers within each question thread, as well
as a global ranking of all answers. Then, improved rank-
ing within each Yahoo questions thread contributes to the
higher score than MRR MAX. Overall, applied on Yahoo!
Answers, our proposed framework achieves a significant im-
provement on the performance of QA retrieval over the Ya-
hoo! Answers’ default ranking and the supported optional
votes-based ranking. In addition, from the experiment, we
can find that our method is able to retrieve relevant answers
at the top of results. In summary, we have shown that
GBRank significantly outperforms extremely strong base-
lines, achieving precision at 1 of over 76% and MRR of over
0.78, which are high values even for traditional factoid QA.

475

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

6. CONCLUSIONS AND FUTURE WORK
Community question answering is transforming the way

people search for information. We have presented a robust,
effective method for retrieving factual answers from commu-
nity QA archives, and have demonstrated our method to be
significantly more effective than the best possible accuracy
a user can achieve when interacting with the current state-
of-the-art question search on a major community QA site.
Furthermore, our large scale experiments demonstrate that
our method is robust to noise in the automatically gener-
ated training preference judgments. We have complemented
our study with an analysis of the results to gain insight into
the significant dimensions of fact retrieval from social media.
In particular, we found that textual features and community
features are crucial, and that user feedback, while noisy, pro-
vides sufficient relevance judgment to improve the learning
of the ranking functions.

By significantly improving the accuracy of retrieving well-
formed, factual answers, our work has the potential to trans-
form how users interact with community QA sites; to im-
prove the experience by reducing duplicate questions; and
to better integrate question answering and search over QA
archive with the mainstream web search results. In the fu-
ture, we plan to extend this work beyond factoid question
answering to complex questions and information needs. We
also plan to extend our techniques to gracefully blend the
results of social media search with organic web search results
for the appropriate information needs, such as question an-
swering. In summary, our work is a crucial component for
factual information seeking in the increasingly important so-
cial media environment.

ACKNOWLEDGEMENTS We are grateful for the sup-
port of the Yahoo! Answers team to allow extensive usage
of the Answers search API. We also thank Ke Zhou from
Shanghai Jiaotong University for letting us use his gradient
boosting code in implementing our ranking method.

7. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web

search ranking by incorporating user behavior
information. In Proceedings of SIGIR, 2006.

[2] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and
G. Mishne. Finding high-quality content in social
media with an application to community-based
question answering. In Proceedings of WSDM, 2008.

[3] R. Baeza-Yates and B. Ribeiro-Neto. In Modern
Information Retrieval, 1999.

[4] A. Berger. Statistical machine learning for information
retrieval. In Ph.D. Thesis, School of Computer
Science, Carnegie Mellon Univ., 2001.

[5] E. Brill, S. Dumais, and M. Banko. An analysis of the
askmsr question-answering system. In Proceedings of
EMNLP, 2002.

[6] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of ICML,
2005.

[7] R. Burke, K. Hammond, V. Kulyukin, S. Lytinen,
N. Tomuro, and S. Schoenberg. Question answering
from frequently asked question files: Experiences with
the faq finder system. In AI Magazine, 1997.

[8] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
In Journal of Machine Learning Research, 2003.

[9] J. Friedman. Greedy function approximation: a
gradient boosting machine. In Ann. Statist., 2001.

[10] J. Jeon, W. Croft, and J. Lee. Finding similar
questions in large question and answer archives. In
Proceedings of CIKM, 2005.

[11] J. Jeon, W. Croft, J. Lee, and S. Park. A framework
to predict the quality of answers with non-textual
features. In Proceedings of SIGIR, 2006.

[12] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of KDD, 2002.

[13] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In Proceedings of SIGIR), 2005.

[14] P. Jurczyk and E. Agichtein. Discovering authorities
in question answer communities using link analysis. In
Proc. of ACM Conference on Information and
Knowledge Management (CIKM2007), 2007.

[15] D. Kelly and J. Teevan. Implicit feedback for inferring
user preference: A bibliography. In SIGIR Forum,
2003.

[16] J. Ko, L. Si, and E. Nyberg. A probabilistic
framework for answer selection in question answering.
In Proc. of NAACL HLT, 2007.

[17] M. Lenz, A. Hubner, and M. Kunze. Question
answering with textual cbr. In Proc. of Third
International Conference on Flexible Query Answering
System, 1998.

[18] J. Ponte and W. Croft. A language modeling approach
to information retrieval. In Proceedings of SIGIR,
1998.

[19] E. Sneiders. Automated faq answering: Continued
experience with shallow language understanding. In
Proc. of the 1999 AAAI Fall Symposium on Question
Answering System, 1999.

[20] R. Soricut and E. Brill. Automatic question
answering: Beyond the factoid. In HLT-NAACL 2004:
Main Proceedings, 2004.

[21] Q. Su, D. Pavlov, J. Chow, and W. Baker.
Internet-scale collection of human-reviewed data. In
Proc. of the 16th international conference on World
Wide Web (WWW2007), 2007.

[22] E. M. Voorhees. Overview of the TREC 2003 question
answering track. In Text REtrieval Conference, 2003.

[23] H. Zha, Z. Zheng, H. Fu, and G. Sun. Incorporating
query difference for learning retrieval functions in
world wide web search. In Proceedings of CIKM, 2006.

[24] J. Zhang, M. Ackerman, and L. Adamic. Expertise
networks in online communities: Structure and
algorithms. In Proc. of International World Wide Web
Conference WWW2007, 2007.

[25] Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression
framework for learning ranking functions using
relative relevance judgments. In Proc. of SIGIR, 2007.

476

WWW 2008 / Refereed Track: Search - Applications April 21-25, 2008 · Beijing, China

