
Detecting Image Spam using Visual Features and Near
Duplicate Detection

Bhaskar Mehta
∗

Google Inc.
Brandschenkestr 110
Zurich, Switzerland

bmehta@google.com

Saurabh Nangia*
IIT Guwahati

Guwahati 781039
Assam, India

s.nangia@iitg.ernet.in

Manish Gupta*
IIT Guwahati

Guwahati 781039
Assam, India

m.gupta@iitg.ernet.in

Wolfgang Nejdl
L3S Forschungszentrum

Appelstrasse 4
Hannover, Germany

nejdl@L3S.de

ABSTRACT
Email spam is a much studied topic, but even though
current email spam detecting software has been gaining
a competitive edge against text based email spam, new
advances in spam generation have posed a new challenge:
image-based spam. Image based spam is email which
includes embedded images containing the spam messages,
but in binary format. In this paper, we study the char-
acteristics of image spam to propose two solutions for
detecting image-based spam, while drawing a comparison
with the existing techniques. The first solution, which uses
the visual features for classification, offers an accuracy of
about 98%, i.e. an improvement of at least 6% compared
to existing solutions. SVMs (Support Vector Machines)
are used to train classifiers using judiciously decided color,
texture and shape features. The second solution offers a
novel approach for near duplication detection in images.
It involves clustering of image GMMs (Gaussian Mixture
Models) based on the Agglomerative Information Bottleneck
(AIB) principle, using Jensen-Shannon divergence (JS) as
the distance measure.

Categories and Subject Descriptors
H.3 [Information Storage And Retrieval]: Information
Search and Retrieval.; G.3 [Mathematics of Computing]:
Probability And Statistics.

General Terms
Security

Keywords
Email spam, Image analysis, Machine learning.

∗This work was done when the author was at L3S
Forschungszentrum

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

1. INTRODUCTION
Email spam has been around for more than a decade, with

many covert companies offering mass emailing services for
product advertisements. It has become usual for people to
receive more spam email than relevant email. The design of
the SMTP protocol is one main reason for email spam: it is
possible to send millions of fake email messages via computer
software without any authentication. Lately, authentication
policies have been adopted by various web servers, where
webmasters can maintain a list of blocked web domains.
However, spammers keep registering millions of domain
names at a pace far greater than what system administrators
can cope up with.

The biggest step in the fight against spam has been the
successful design of spam filtering software. Such software
typically trains classifiers to identify spam and ham. For
the past decade, much progress has been made in designing
accurate classifiers for text emails. These classifiers are
trained to use two kinds of rules: (a), rules based on
connection and relay properties of the email, and (b), rules
exploiting the features extracted from the content of emails.
The former category of rules utilize publicly shared blacklists
of servers which have been known to transmit spam emails.
This information is frequently updated, requiring spammers
to change domain names and servers frequently. The second
type of rules use features extracted from spam text (e.g.
keywords, frequent words etc) which are compared with
corresponding features from ham text (normal emails) and
classifiers are learnt [6]. Such classifiers have proven to
be very useful and highly accurate, even though spammers
continue to devise novel ways of fooling them.

2. WHAT IS IMAGE SPAM?
Image based spam is a breakthrough from the spammers’

view point; it is a simple and effective way of deceiving
spam filters since they can process only text. An image
spam email is formatted in HTML, which usually has only
non-suspicious text with an embedded image (sent either as
an attachment or via the use of self referencing HTML with
image data in its payload). The embedded image carries the
target message and most email clients display the message

497

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

Figure 1: Examples of Image Spam. Notice the high amount of text used in combination with pictures used
to make images resemble web pages.

in their entirety. Since many ham emails also have similar
properties (using HTML, carrying embedded images, with
normal text) as image-based emails, existing spam filters can
no longer distinguish between image-based spam and image
ham. A whitepaper released in November 2006 [12] shows
the rise of image spam from 10% in April to 27% of all email
spam in October 2006 totaling 48 billion emails everyday. It
is thus imperative to devise new approaches for identifying
image-based spam in email traffic which are both fast and
accurate. Clearly, identification of image-based email spam
(referred as I-spam here onwards) requires content analysis
of the attached image. Since images are a large and
heterogeneous data format, it is essential to understand
characteristic properties of I-spam in order to identify them
successfully. I-spam has been studied very recently by some
researchers and it is possible to identify some common traits
of currently visible spam images; exploiting these properties
forms the basis of our solution to detection of I-spam.

• I-spam contains text messages: Almost all images
in spam emails contain text messages conveying the
intent of the spammer. This text is usually an
advertisement and often contains text which has been
blacklisted by spam filters (e.g. Cialis pills, drug store,
stock tip, etc).

• I-spam is usually noisy and different from one another :
It takes significant effort to design a spam image;
however spammers reduce the involved effort by gen-
erating spam images using algorithms which ensure
each generating image is distinct. To achieve this,
techniques used include rearranging the items in spam
emails, adding random noise, changing background
or font colors, using different fonts and sizes, using
random patterns like lines or circles, adding borders
and so on. While such changes might go unnoticed
by a human at the first glance, they cause significant
changes in the properties of images, resulting in
statistically different data. This obfuscation of original
data makes trivial content analysis unsuitable; in fact,
even sophisticated techniques like Optical Character
Recognition (OCR) can fail to recognize text in images,
a fact that is often used in designing CAPTCHAs.
This line of spam generation renders early i-spam
detection techniques [6] ineffective.

• I-spam messages use HTML effectively : I-spam uses

MIME to transport attached image data along with
HTML formatting and non-suspicious text. However,
the text contained in I-spam images and the text
contained in the HTML body usually have no corre-
lation, a property which can be exploited to classify
i-spam. Regular text is usually taken from books
or standard documents used to fool text-based email
classifiers. Thus, the HTML text offers almost no help
to test classifiers, unless appearing too harmless can
be exploited as a feature.

• I-spam messages differ from natural images: Nat-
ural images tend to have smoother distribution in
RGB/LAB color-space than I-spam. This property
leads to better approximation of natural images by
artificial distributions (e.g. Gaussian) than i-spam
which often includes clear and sharp objects. This
property is difficult to exploit in practice; nevertheless
it is a significant property since ham emails with
attached images contain very often natural images (e.g.
photographs).

• I-spam messages are template based : A large number
of I-spam are near-duplicates, i.e. a base pattern is
permuted to form large number of similar looking but
distinct I-spam images. Spammers exploit an existing
pattern for a certain time period before investing in a
new I-spam pattern. Such patterns are common in the
world of text email spam, and are normally tackled by
collaborative feedback from the user community. We
envision the application of similar methods for new
kinds audio-visual spam in systems like YouTube.

Available figures for 2006 suggest more than 30% of all
spam emails are image based, and most of these emails
reach email inboxes undetected. Humans are easily able to
distinguish spam images from normal spam; moreover, they
can abstract from various versions of the same base image,
even though these images may have very different properties
like background, fonts, or different arrangement of sub-
images. Current feature based approaches have had some
success in identifying image spam [5]; extracted features
include file type and size, average color, color saturation,
edge detection, and random pixel test. However these
features do not seem to provide good generalization, since
spammers can easily modify these features; thus further

498

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

feature engineering is required. In particular, we observe
that computer-generated images do not have the same
texture as natural images; natural images like photographs
would likely be classified as ham. We therefore postulate
that low-level features which capture how an image is
perceived are likely to be better discriminants between spam
and ham. This is the first part of our detection strategy:
to find features which capture how humans perceive spam
images vs. ham images.

While some extracted features may provide good gener-
alization, a spammer can clearly realize this and mutate
spam images by using more natural/photographic content in
spam images. However, creating completely different image
spam each time is a costly activity; thus any spam image
is likely to have thousands of similar (though not same)
images, each generated from the same template image, but
modified using the usual spam tricks. Even though image
spam may evolve to defeat obvious give-away features (like
text), there are likely to be many near duplicates. This forms
the second part of our spam detection strategy: to detect
near-duplicates of spam images which have been labeled as
spam.

2.1 Low Level Features of Image Spam
As noted earlier, recent work has used feature-based

classification to detect I-spam. Dredze et al. [5] have
investigated the use of high-level features in classifying I-
spam. Table 1 lists the features used by the authors in this
work; the core idea is that high level features of the image,
for example file format, can be extracted much quicker than
lower level features like edges; thus there is an intrinsic
ordering of features we want to consider in order to build
fast classifiers. The approach is general and our work can
easily be extended to this framework.

Other researchers (cf. [16]) have discussed yet another
important aspect which we capture in our methodology:
they have investigated common obfuscation methods like
rotation, scaling, partial translation, font change etc. They
correctly identify the procedure used by spammers to gener-
ate image spam; they postulate that the two steps involved
are template generation and the randomization of template.
This procedure makes images sent to different users different
in nature, hence defeating simple techniques for checking
exact duplicates (e.g. hashing). However, their method is
limited in the features used, achieving an accuracy below
85%. In this work, we explore visual image features, while
using a simple and novel mechanism of dealing with various
obfuscation techniques. Table 2 lists obfuscation techniques
that the survey in [16] has identified.

2.2 Other Methods for I-spam filtering
Early methods for I-spam exploited the heavy use of text

in I-spam, a feature that is still present. However, spammers
hit back by exploiting the deficiencies of Optical Character
Recognition and modifying I-spam accordingly. Shortcom-
ings of OCR have been aptly demonstrated in the design
of CAPTCHAs1 which remain an effective mechanism of
telling humans and computer agents apart. To demonstrate
the ineffectiveness of OCR for (current) I-spam filtering, we
have compared our algorithm with OCR.

1www.captcha.net

Feature Type No. Of Features
Average Color 44
Color Saturation 10
Edge Detection 32
File Format 332
File Size 6
Image Metadata 7195
Image Size 18
Prevalent Color Coverage 26
Random Pixel Test 11

Table 1: Features used for I-spam classification by
Dredze et al. [5]

Method Description
wave using wavy text to fool OCR
animate using animated frame
deform deforming text using irregular fonts
rotate rotate text to defeat OCR
shift move template image
crop cropping template image randomly
size same image on different canvas size
dots adding random pixels
bars adding random lines in the image
frame add a frame to the
font use different font or size
line color adding lines of random color
shape use random shapes in background
metadata randomize metadata
url use different urls in image

Table 2: Randomization Methods used for I-spam
generation by Wang et al. [16]

3. STRATEGIES FOR I-SPAM DETECTION

3.1 Near-duplicate Detection in Images
While technology may not be advanced enough for rec-

ognizing spam from random images without any explicit
instructions or rules, recent research in machine learning has
lead to efficient and accurate pattern recognition algorithms.
Our near duplicate detection algorithm is based on the
intuition that we can recognize a lot of images similar to
an identified spam image; since I-spam is usually generated
from a template (see Sec. 2), near duplicates should be
easy to detect. Given enough training data, we should be
able to detect large volumes of I-spam, while being open
to further training. We should additionally provide better
generalization performance than pure similarity search and
abstract from observer positive and negative samples.

Near-duplicate detection for images is an extreme form
of similarity search [7] which is a well studied topic. Recent
work in probabilistic image clustering has focused on similar
issues but from a different perspective, where a query image
is used to search for similar images in a large database.
Probabilistic image modeling is particularly suited to the
task at hand since we want to classify a family of images as
spam, while having observed only a few samples from the
family. We have chosen Gaussian Mixture Models (GMM)
as the starting point for our approach.

Gaussian Mixture Models model an image as coherent
regions in feature space. First, features are extracted

499

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

for each pixel, projecting the image to a high-dimensional
feature space. For each pixel, we extract a seven tuple
feature vector: two parameters for pixel coordinates (x, y)
(to include spatial information), three for color attributes in
the color space and two for texture attributes (anisotropy
and contrast [3]). We chose the (L∗, a∗, b∗) color space
(henceforth called as Lab) since it models most closely how
humans perceive colors. The Lab color space is perceptually
linear, meaning that a change of the same amount in a
color value produces a change of about the same visual
importance. For texture, anisotropy and contrast are
extracted from the second moment matrix defined as follows:

Mσ = Gσ(x, y) ∗ (∇I)(∇I)T , (1)

where Gσ(x, y) is a separable binomial approximation to a
Gaussian smoothing kernel with variance σ2, and (∇I) is the
gradient of the L channel in the Lab color-space. At every
pixel, Mσ is a 2 × 2 matrix, and can be eigen-decomposed
very simply. Considering a fixed scale σ, we compute
the eigenvalues {λ1, λ2} for Mσ at (x, y). Anisotropy are
consequent defined as A = 1 − λ2/λ1 and contrast c =
2
√

λ1 + λ2.
Given this transformation, we now represent an image as

a set of 7-tuples:

I = {p1, p2, · · · , pn}, pi = (xi, yi, Li, ai, bi, Ai, Ci) , (2)

where n is the number of pixel in the image. Given this
representation with parameters , we model the probability
distribution of I with a mixture model with K gaussians,

f(p|Θ) =
KX

j=0

αjfj(p|θj), s.t.
kX

j=0

αj = 1 (3)

where p is a feature vector, representing each point of an
Image, and Θ = (α1, · · · , αK , θ1, · · · , θK), and each fj is
a multivariate Gaussian density function parameterized by
θj i.e., (μj and Σj). The probability distribution function
fj(p|θj) can then be written as

fj(p|θj) =
1q

(2π)d|Σj |
exp{−1

2
(p− μj)Σk

−1(p− μj)
T }

Additional constraints on the parameters of the above
model include αj > 0, and diagonal covariance Σj ; this
simplifies the model and avoids inversions of the covariance
matrix. We are now interested in finding the maximum
likelihood estimate (MLE) of the model parameters Θ, such
that:

ΘML = argmax
Θ∗

f(p1, p2, · · · , pn|Θ∗) (4)

Since no closed form solutions exist for the above maxi-
mization, Expectation Maximization [4] is used to find the
MLE. The EM procedure alternates between E-steps and
M-steps where the parameters are updated in the direction
of maximum gain in log-likelihood. The EM equations for
GMM are presented below:
E-step:

wij =
αjf(pi|μj , Σj)Pk
l=1 αlf(pi|μl, Σl)

(5)

M-step:

α̂j ← 1

n

nX
i=1

wij (6)

μ̂j ←
Pn

i=1 wijpiPn
i=1 wij

(7)

Σ̂j ←
Pn

i=1 wij(pi − μ̂j)(pi − μ̂j)
T

Pn
i=1 wij

(8)

The GMM framework allows us to learn probabilistic
models of images, but a hidden assumption is that the
images are similar in size. While this is not true for our
data, it offers an opportunity as well: at lower resolutions,
many obfuscation techniques are ineffective. Using this key
assumption, we scale every image to a resolution of 100×100.
The computational advantage of this method is obvious.
This scale has been selected empirically and strikes a balance
between loss of information and gain in performance. We
explore the effect of scale when extracting visual image
features in Section 4.1.

In order to ensure faster GMM fitting, we optimized
model fitting procedure; the EM model was parameterized
using K-means clustering. For all experiments, the number
of mixtures was fixed at K = 4. A smaller value of K
would have resulted in omission of important components
of an image, while a larger value would have taken into
consideration also the insignificant portions of an image.
After sufficient experimentation, the value of K was fixed
at 4 to ensure that noise was filtered out of the model.

After all the GMMs have been learnt (one for every im-
age), we need to cluster similar images together. Clustering
requires a similarity measure, and our task requires modeling
distance between two probability distributions. A commonly
used distance measure is Kullback-Leiber (KL) Divergence
defined as follows:

DKL(P ||Q) =
X

i

P (i) log
P (i)

Q(i)
(9)

Even though it gives a measure of closeness of two distri-
butions to each other, this measure is not symmetric. We
therefore choose Jensen-Shannon divergence as the distance
measure. The distance measure between clusters c1 and
c2 takes into account both the dissimilarity between the
probability distributions and the size of the two clusters as
shown by the equation

DJS(P ||Q) =
1

2
(DKL(P ||M) + DKL(Q||M)) (10)

where M = 1
2
(P + Q). Using this distance, we can perform

clustering (Labeled Agglomerative Clustering); the idea is
to find images which are similar enough in the training set,
and to replace them with one signature. New images from
the test set can now be compared to the already identified
signatures and if there is a close match, then a positive
identification can be made.

3.1.1 Labeled Agglomerative Clustering
In [8], the authors have described an agglomerative

clustering algorithm, where clusters are learnt from observed
data in an unsupervised fashion, i.e. the number of clusters
is initially unknown. To aid in clustering, the Information
Bottleneck principle is used. The information bottleneck

500

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

(IB) principle states that the loss of mutual information
between the objects and the features extracted should be
minimized by the desired clustering among all possible
clusterings. Using the IB principle, clustering of the object
space X is done by preserving the relevant information
about another space Y . We assume, as part of the IB
approach, that X̂ → X → Y is a Markov chain, i.e. given
X the clustering X̂ is independent of the feature space Y .
Consider the following distortion function:

d(x, x̂) = DKL(p(y|X = x)||p(y|X̂ = x̂)) (11)

where DKL is as defined above in (10).
Note that p(y|x̂) =

P
x p(x|x̂)p(y|x) is a function of

p(x̂|x). Hence, d(x|x̂) is not predetermined, but depends
on the clustering. Therefore, as we search for the best
clustering, we also search for the most suitable distance
measure.

Since the number of clusters may not be known apriori, we
use the agglomerative clustering. The Agglomerative Infor-
mation Bottleneck (AIB) algorithm for clustering is a greedy
algorithm based on a bottom-up merging procedure [13]
which exploits the IB principle. The algorithm starts with
the trivial clustering where each cluster consists of a single
point. Since we want to minimize the overall information
loss caused by the clustering, in every greedy step we merge
the two classes such that the loss in the mutual information
caused by merging them is minimized.

Note however, that we are still operating in the classi-
fication domain, i.e. the data available to us has a label
(ham/spam). The original AIB approach does not consider
data labels as input; therefore, we extend it here for handling
label data. We can use label information to restrict the
clustering to a similar data, thus speeding up the cluster
formation by distance comparison with data of the same
label. Since the base AIB algorithm is quadratic, this
information can result in a speedup of up to 4 times
(assuming labels are equally likely to be positive and
negative). Further optimizations are possible to make the
unsupervised clustering faster (e.g. merging more than two
clusters in an iteration or merging below a threshold); this
is a placeholder for replacement with better Labeled AIB
algorithms. Our presented algorithm consists of the two
phases GMM training and Labeled AIB clustering which
are summarized in Algorithms 1 and 2.

Algorithm 1 TrainGMM (Ii, i = {1..N}, k)

Require: Images Ii, i = {1..N}, No of Mixtures k

1: for i = 1 to N do
2: Resize Ii to 100× 100 pixels.
3: Extract (x,y,L,a,b,A,c) features for each pixel.
4: Perform K-means clustering on Ii.
5: Choose αj randomly, s.t on

Pk
j αj = 1.

6: Initialize μj to center of cluster j.
7: Initialize Σj to 1.
8: while Convergence not reached do
9: Repeat E-steps and M-steps (Eq. (5)-(8))

10: end while
11: end for

Ensure: Θ = (μj , αj , Σj)

Algorithm 2 LabeledAIB (θi, Li)

Require: GMMs θi, i = {1..N}, Label Li for each image

1: C = {c1, · · · cN} {N clusters }
2: for i = 1 to N do
3: f(p|ci) = {θi} {Each image in its own cluster}
4: end for
5: for each i, j pair, i, j = 1 to N do
6: Distance(i, j) = JSdist(f(p|ci), f(p|cj))
7: end for
8: for i = 1 to N − 1 do
9: repeat

10: Find {m, n} = argmin
m,n

|Distance(i, j)|
11: until Lm == Ln, else find next minimum
12: if Distance(m,n) ≤ Threshold then
13: Break
14: end if
15: Merge {cm, cn} = ĉ.

16: f(ĉ) = |cm|
|cm∪cn|f(cm) + |cn|

|cm∪cn|f(cn)

17: Update Distance(i, j)
18: end for

Ensure: f(p|cl), cl, l ← No. Of Clusters

3.1.2 Prediction Phase
New images, whose label have to be predicted, are fitted

to a GMM, and compared to the labeled signatures already
known from the trained cluster model. The closest cluster
to a new image, is found using the JS divergence distance,
and the label of the new image is the label of the cluster.
As a result, images similar to the signatures corresponding
to spam label will be marked as spam and images similar
to ham labeled signatures will be marked as ham. An
optimization of this algorithm is to introduce a new label
called unidentified. Images that are not similar to any of
the existing signatures (i.e. the JS divergence with the
closest cluster is larger than a particular threshold) can be
labeled as unidentified and may require user intervention to
be labeled appropriately into either of ham or spam data
sets. This way more accurate results are obtained while
also ensuring that the training phase continues even in the
testing phase.

3.2 Visual Features for Classification
Near-Duplication is likely to perform well in abstracting

base templates, when given enough examples of various
spam templates in use. However, the generalization ability
of this method will be limited, since we are not exploiting
global features of images; there are many likely giveaway
features as previous work has shown. We feel however
that the explored feature set does not identify a key
aspect: i-spam is artificially generated. In this section, we
explore visual features like texture, shape and color and
learn classifiers using these selected features. Notice that
we extract global features, i.e. each feature represents a
property of the entire spam image.

3.2.1 Color Features
Color models are used to classify colors and to qual-

ify them according to such attributes as hue, saturation,
chroma, lightness, or brightness. The Red-Blue-Green

501

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

(RGB) model is the most basic and well-known color model.
It is also the basic color model for on-screen display. Using
this color model, we chose the following features

• Average RGB : Average RGB represents the average
values in R, G and B channel of each pixels in an image.
The range of RGB is normalized to (0, 1).

• Color Histogram: For a given image, the color his-
togram HI is a compact summary of the image. A
color histogram H is a vector (h1, h2, · · · , hn), in which
each bucket hj contains the number of pixels of color
j in the image. Typically images are represented in
the RGB color-space, and a few of the most significant
bits are used from each color channel. We chose a 6-bit
color space leading to 64 feature vectors.

• Color Moment : The use of color moments is based
on the assumption that the distribution of color in
an image can be interpreted as a probability distribu-
tion. Probability distributions are characterized by a
number of unique moments; [14] uses three central
moments of a image’s color distribution; they are
mean, standard deviation and skewness. Using RGB
channels and 3 moments for each channel, we get 9
feature vectors.

• Color Coherence Vector : An image’s color coherence
is the degree to which pixels of that color are members
of large similarly-colored regions. We refer to these
significant regions as coherent regions and aim to
classify pixels as coherent or incoherent. We first blur
the image slightly by replacing pixel values with the
average value in a small local neighborhood (currently
including the 8 adjacent pixels). This eliminates
small variations between neighboring pixels. We then
discretize the color space, such that there are only n
distinct colors in the image. The next step is to classify
the pixels within a given color bucket as either coherent
or incoherent. A coherent pixel is part of a large group
of pixels of the same color, while an incoherent pixel
is not. We determine the pixel groups by computing
connected components. Note that we only compute
connected components within a given discretized color
bucket. This effectively segments the image based on
the discretized color-space. We classify pixels as either
coherent or incoherent depending on the size in pixels
of its connected component(C). A pixel is coherent if
the size of its connected component exceeds a fixed
value T (e.g. 1% of number of pixels); otherwise, the
pixel is incoherent. 128 feature vectors are chosen in
this manner.

3.2.2 Texture features
Image texture, defined as a function of the spatial varia-

tion in pixel intensities (gray values), is useful in a variety
of applications and has been a subject of intense study by
many researchers (cf. [15]). The intuition behind choosing
texture features for classification is that natural images
have a different quality of texture as compared to textures
in computer generated images. We extract the following
features from the images in our data set:

• Autocorrelation: Autocorrelation measures the coarse-
ness of an image by evaluating the linear spatial rela-
tionships between texture primitives. Large primitives

Figure 2: Examples of Ham images chosen by us
for training the classifier. Note that we chose some
ham images with text as well, other categories of
ham images used company logos, cartoons and wall
papers.

give rise to coarse texture (e.g. rock surface) and small
primitives give rise to fine texture (e.g. silk surface). If
the primitives are large, the autocorrelation function
decreases slowly with increasing distance whereas it
decreases rapidly if texture consists of small primitives.
If the primitives are periodic, the autocorrelation
function increases and decreases periodically with
distance.

• Edge Frequency : A number of edge detectors can be
used to yield an edge image from an original image. We
can compute an edge dependent texture description
function E as follows:

E =|f(i, j) − f(i, j + d)|+ |f(i, j)− f(i, j − d)|
+|f(i, j) − f(i + d, j)|+ |f(i, j)− f(i− d, j)|

This function is inversely related to the autocorrela-
tion function. Texture features can be evaluated by
choosing specified distances d and averaging over the
entire image. We vary the distance d parameter from
1 to 25 giving us a total of 25 features.

• Primitive Length (Run Length): A primitive is a
continuous set of maximum number of pixels in the
same direction that have the same gray level. Each
primitive is defined by its gray level, length and
direction. Primitive length (run length) uses lengths
of texture primitives in different directions as texture
description. Coarse textures contain more long tex-
ture primitives, and fine textures contain more short
texture primitives.

• Co-occurrence Matrices: Whether considering the
intensity or gray-scale values of the image or various
dimensions of color, the co-occurrence matrix can

502

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

measure the texture of the image. Because co-
occurrence matrices are typically large and sparse,
often various metrics of the matrix are taken to
get a more useful set of features. Features gener-
ated using this technique are usually called Haralick
features [9]. Co-occurrence Matrices are based on
repeated occurrence of some gray-level configuration
in the texture; this configuration varies rapidly in fine
textures, though more slowly in coarse textures.

3.2.3 Shape features

• Geometric Moment : Image moments are certain weighted
averages (moments) of the image pixels’ intensities, or
functions of those moments, usually chosen to have
some attractive property or interpretation. When
normalized, they can be considered as a probability
distribution. If f(x, y) is a digital image, the central
moment is defined as follows:

μpq =
X

x

X
y

(x− x̄)p(y − ȳ)qf(x, y) (12)

The central moment is useful in representing the
orientation of the image content.

• Eccentricity : An approximate measure of eccentricity
or elongation of an object is given by

e =
(μ20 − μ02)

2 + 4μ11μ11

(μ20 + μ02)2
(13)

Where μij is the i, jth moment as defined in Eq. (12).

• Legendre and Zernike Momemts: Global moments are
employed as the invariant global features of an image
in pattern recognition due to their ability to recognize
shapes. The use of non-geometric moments has been
advocated in image reconstruction due to their better
resistance to noise and more accurate reconstruction.
Legendre moments use Legendre polynomials while
Zernike moments use Zernike polynomials.

3.3 An algorithm for Classification using Vi-
sual Features

Many approaches exist to train classifiers using extracted
features; however, Support Vector Machines(SVM) [2] have
been established as the best performing technique. In
particular, the use of the kernel trick allows SVM to
explore non-linear combinations of features by considering
dot products in a high dimensional Hilbert space. The
SVM classification is formalized as follows: We consider data
points of the form:

{(x1, c1), (x2, c2), . . . , (xn, cn)} (14)

where ci ∈ {−1, 1} and denotes the class that xi belongs
to (e.g. spam/ham).We can view this as training data, which
denotes the correct classification which we would like the
SVM to distinguish, by means of the dividing (or separating)
hyperplane, which takes the form

w.x− b = 1, |w| = 1 (15)

The kernel trick is used in the dual form of quadratic
problem solving the above optimization. The SVMlight

package [10] offers an efficient implementation of SVMs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
90

91

92

93

94

95

96

97

98

99

100
Classification accuracy of SVM using Visual features.

Fraction of Training data

P
re

di
ct

io
n

A
cc

ur
ac

y

Images downscaled to 50x50
Images downscaled to 100x100
Images downscaled to 400x400

Figure 3: Classification Accuracy of Visual Features
based-SVM compared at different resolutions.
Notice how higher resolutions provide better results,
but at much higher costs, since most texture and
shape features have non linear extraction time.

with many supported kernels. Since data might not be
separable, soft margin classification may be required. We
have used the radial basis function as a kernel function since
the corresponding Hilbert space is of infinite dimension.
Algorithm 3 summarizes the overall approach.

Algorithm 3 SVM-classify (Ii, Li)

Require: Images Ii, Label Li, i = {1..N},

1: for i = 1 to N do
2: Fcolor

i = ExtractColorFeatures(Ii)

3: Fshape
i = ExtractShapeFeatures(Ii)

4: Ftexture
i = ExtractT extureFeatures(Ii)

5: Fi = Fcolor
i ∪ Fshape

i ∪ Ftexture
i

6: end for
7: Classifier C = LearnSV MClassifier(F,L)

Ensure: Classifier C

3.4 Optical Character Recognition
Optical Character Recognition (OCR) was the first pro-

posed solution to I-spam; there are various commercial and
open source solutions (e.g. SpamAssasin’s FuzzyOCR plug-
in) using OCR libraries. We chose to use the well known
Tesseract OCR suite developed by HP labs, recently open
sourced by Google2. The OCR based algorithm we use is
a simple one: we classify an image as spam if the OCR
module can find more than 2 characters in the image. This
has low accuracy of around 80%; increasing the threshold to
5 characters leads to accuracies below 65%.

4. EVALUATION
To evaluate our algorithms, we have chosen three recent

public datasets; the first is due to [6] who collected over

2Tesseract is available at http://code.google.com/p/
tesseract-ocr/

503

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

65

70

75

80

85

90

95

100
Classification accuracy of SVM using Visual features.

Fraction of Training data

P
re

di
ct

io
n

A
cc

ur
ac

y

Personal Spam vs Ham
Spam Archive vs Ham
Spam Archive vs Ham* (Dredze et al)
All Spam vs Ham* (Dredze et al)
Personal Spam Archive vs Ham* (Dredze et al)
OCR on SpamArchive

80−20 Training vs Test Split
reported by Dredze et al

Figure 4: Classification Accuracy of Visual Features
based-SVM compared with previous results. Notice
a significant improvement over other approaches and
good generalization results at training sizes as low
as 10%.

13000 I-spam emails from the erstwhile SpamArchive3. The
second was created by Dredze et al. [5] (who also used the
SpamArchive dataset for evaluation) from their personal
emails. This is called the Personal Spam dataset by the
authors; they have also created a Personal Ham dataset
from their personal emails, representing true ham emails.
This is an important collection since most other researchers
have used general images and photos from the web (examples
of ham images are shown in Fig. 3.2.1). Both these datasets
are now publicly distributed at http://www.seas.upenn.

edu/~mdredze/datasets/image_spam/. The SpamArchive
Collection consists of 13621 files, out of which only 10623
are in image format. The other files are unreadable by
image processors; this is due to deliberate manipulation
by spammers to use other alternatives of image for e-mail
spam. The Personal spam collection consists of 3300 images.
In addition, we have also used the Princeton Image Spam
Benchmark4 which contains 1071 images with category
information. The utility of this dataset is that each category
contains permutations of the same base I-spam template
(See Fig. 6).
Baseline: For the sake of comparison, we use the same
datasets used previously by other researchers. In particular,
we use the approach for testing as used by Dredze et al. since
their results are the best reported so far in comparison to
other work. The above presented algorithms are compared
in identical conditions as in the experiments in [5]. OCR
results using Open Source Tesseract are also provided for
comparison.

4.1 Results
We first discuss the more general approach of binary

classification using visual features. We use our homegrown
ham data set consisting of images, photographs, logos,
wallpapers, emoticons and similar items used in real world

3The site was earlier available at http://www.spamarchive.
org/.
4http://www.cs.princeton.edu/cass/spam/spam_bench/

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
70

75

80

85

90

95

100
Comparision of Classification accuracy of SVM, AIB and OCR

Fraction of Training data

P
re

d
ic

tio
n

 A
cc

u
ra

cy

OCR based recognition
Visual features based SVM
GMM based Labeled AIB
 linear

Figure 5: Comparison of Classification Accuracy of
Visual Features based-SVM along with GMM based
AIB and OCR (Princeton Dataset).

GMM Based AIB
Original Clusters 178
Clusters Found 140
Total Images 1004
Images Correctly classified 760
Images Misclassified 244
% Error 24%

Table 3: Clustering Accuracy of GMM based
Labeled AIB on the Princeton Spam Benchmark

email exchanges. In all, this amounts to 5373 ham images
created from collected images including a large chunk of
Dredze et al.’s personal ham (which has not been released
in its entirety due to privacy reasons). We first resize the
images to 100 × 100 pixels; this simple mechanism makes
our method robust to random pixels, simple translation
and scaling. It also helps greatly with computational
requirements as texture and shape extraction are time
consuming non-linear routines. We then extract features
from all the images from the positive and negative test set.
A fraction α of the images are used for training the classifier
based on SVMlight while the tests are then carried out on
the remaining (1-α) fraction of images. Fig. 4 reports the
prediction accuracy over the positive and negative set as
function of α.

We observe that visual features are highly indicative of
spam images; our method reports a prediction accuracy of
over 95% in all cases. Even with large sets of over 15, 000
emails with only 10% data used for training, the prediction
accuracy is higher than best numbers reported by [5, 6]. At
a comparable fraction of training/test set as used by Dredze
et al., we achieved almost 98% accuracy, an improvement
of over 6%. With the Personal spam dataset, we achieve
comparable results as [5].

We also investigated the impact of resolution on our
approach; in particular we are interested to know if lower
resolutions can provide similar results at a cheaper compu-
tationally cost. Fig. 3 shows the results of this evaluation;
we notice small losses at lower resolutions and small gains
at higher resolutions. At 400 × 400, the approach is near

504

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

a) a)

b)b)

c) c)

c)

b)

Figure 6: Examples of two I-spam images from the same category in the Princeton dataset. In the figure
on top, (b) is the 100X100 image, and (c) is the reproduced image. In the figure below, the small figures
are GMM reconstructions of 100X100 thumbnails. Notice how close the reproduction of the low-res image
is to the actual low-res image. Even though the spam images are different in resolution and content (see the
figure below), the low res reproduction are almost identical to the GMM approximation.

perfect achieving more than 99.6%. Higher accuracies will
be practically impossible due to human errors in labeling
data.

It is important to point out that our results are nearly
completely comparable with the previous papers; all re-
searchers have used their own ham datasets, including us.
The choice of ham can have a big impact on the outcome
of prediction. However, the important issue is labeling
spam correctly over a large heterogeneous spam set. We are
currently procuring more spam by creating honeypots with
an aim of collecting over 100,000 spam emails. We are also
working on the creation of a SpamAssassin5 Plug-in using
our framework.

Results from GMM based AIB The Labeled AIB
approach is unlikely to reach the same generalization per-
formance; the approach is designed to identify permutations
of a base template. Since positive images do not necessary
follow this pattern and are potentially infinite, Labeled AIB
is expected to be clueless about images previously unseen.
Early experiments in settings as above lead to weak results.
However, the idea is still powerful; collaborative approaches
to spam filtering like Spamato [1] encourage users to share
manually-classified email spam, which can be used to train

5www.spamassasin.org

the spam filters of other users in the community. Our
approach fits very well into this framework, since AIB based
on GMMs can identify the base template. This makes
our approach also well suited to server deployment as an
identified pattern can be protected against for a large user
population before spam reaches individual inboxes. The goal
is to detect a new pattern in a manner similar to viruses and
make the pattern available to all subscribed email servers.
Further investigation of this idea is in progress.

To explore how effective the GMM approach is in identi-
fying patterns pre-classified as spam, we find the Princeton
dataset very helpful. This dataset has various categories
of I-spam images clustered according to the base template;
descriptions of different strategies used by spammers are
also provided. Fig. 6 demonstrates that two spam images
produced by the same template are indeed modeled very
similarly to each other. Notice how well our chosen
features can model the low resolution thumbnails with
a simple parametric model. This provides the perfect
opportunity to raise the question: Can AIB Clustering based
on GMM identify the clusters correctly and demonstrate that
it recognizes the base templates? We performed a run with
our algorithm to test this hypothesis.

The Princeton dataset contains images in 178 categories,

505

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

however this categorization is very strict. Many of these
clusters can be merged and manual clustering resulted in
fewer than 150 clusters. Our approach found 140 clusters;
clearly some misclassification was also found. However,
the performance is better than indicated by the numbers;
clusters that were wrongly merged were classified as wrong,
though they are similar when manually observed. When
constrained to find exactly 178 clusters, the misclassification
rate falls to below 16%. This indicates that the predictive
performance for spam detection should still be high. Fig. 5
proves this empirically. GMM based Labeled AIB has high
accuracy when predicting spam in comparable conditions.
OCR does much worse, while the trained SVM has a
marginally better performance.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented two novel approaches to

fight the menace of image-based email spam by exploiting
visual features and the template-based nature of I-spam.
Experimental results heavily support our hypothesis that
low-level feature analysis can provide a more accurate
detection mechanism than previously known. Our work
complements earlier work, and it should be very easy
to incorporate visual features extracted by us into the
framework of [5]. The gain is likely to be better accuracy,
with a much improved running time by using the JIT
feature extraction suggested by them. Since research in I-
spam is recent, with less than one year since the emergence
of the problem, more work is likely to happen in the
future. In particular, spammers will notice the anti-spam
measures taken and innovate to produce new attacks. The
emergence of PDF based spam is one such innovation from
spammers; clearly, spammers try to exploit all popular
document formats to get their messages through. Till more
principled shifts in email (e.g. postage for email c.a. [11])
or improvements in the underlying protocols happen, anti-
spam research will remain a firefighting operation.

6. REFERENCES
[1] K. Albrecht, N. Burri, and R. Wattenhofer.

Spamato-An Extendable Spam Filter System. 2nd
Conference on Email and Anti-Spam (CEAS),
Stanford University, Palo Alto, California, USA, 2005.

[2] C. Burges. A Tutorial on Support Vector Machines for
Pattern Recognition. Data Mining and Knowledge
Discovery, 2(2):121–167, 1998.

[3] C. Carson, M. Thomas, S. Belongie, J. Hellerstein, and
J. Malik. Blobworld: A system for region-based image
indexing and retrieval. Third International Conference
on Visual Information Systems, pages 509–516, 1999.

[4] A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society, 39(1):1–38,
1977.

[5] M. Dredze, R. Gevaryahu, and A. Elias-Bachrach.
Learning Fast Classifiers for Image Spam. In
proceedings of the Conference on Email and
Anti-Spam (CEAS), 2007, pages 487–493, 2007.

[6] G. Fumera, I. Pillai, and F. Roli. Spam Filtering
Based On The Analysis Of Text Information
Embedded Into Images. The Journal of Machine
Learning Research, 7:2699–2720, 2006.

[7] J. Goldberger, S. Gordon, and H. Greenspan. An
efficient image similarity measure based on
approximations of KL-divergence between two
gaussian mixtures. Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on,
pages 487–493, 2003.

[8] J. Goldberger, H. Greenspan, and S. Gordon.
Unsupervised Image clustering using the Information
Bottleneck method. Proc. DAGM, 2002.

[9] R. Haralick, I. Dinstein, and K. Shanmugam. Textural
features for image classification. IEEE Transactions
on Systems, Man, and Cybernetics, 3:610–621, 1973.

[10] T. Joachims. Making large-scale SVM Learning
Practical. Advances in Kernel Methods-Support Vector
Learning.

[11] R. Kraut, J. Morris, R. Telang, D. Filer, M. Cronin,
and S. Sunder. Markets for attention: will postage for
email help? Proceedings of the 2002 ACM conference
on Computer supported cooperative work, pages
206–215, 2002.

[12] Secure Computing. Image spam: The latest attack on
the enterprise inbox. Secure Computing Whitepaper,
available online, Nov 2006.

[13] N. Slonim and N. Tishby. Agglomerative information
bottleneck. Advances in Neural Information
Processing Systems, 12:617–23, 2000.

[14] M. Stricker and M. Orengo. Similarity of color images.
Proc. SPIE Storage and Retrieval for Image and Video
Databases, 2420:381–392, 1995.

[15] M. Tuceryan and A. Jain. Texture analysis. Handbook
of Pattern Recognition and Computer Vision, pages
235–276, 1993.

[16] Z. Wang, W. Josephson, Q. Lv, M. Charikar, and
K. Li. Filtering Image Spam with Near-Duplicate
Detection. Proceedings of the 4th Conference on Email
and Anti-Spam (CEAS), 2007.

506

WWW 2008 / Refereed Track: Security and Privacy - Misc April 21-25, 2008 · Beijing, China

