
CompoWeb: A Component-Oriented Web Architecture
Rui Guo

Beihang University
Beijing, China

imguorui@gmail.com

Bin B. Zhu, Min Feng, Aimin Pan
Microsoft Research Asia

Beijing, China
{binzhu, minfeng, aiminp}@microsoft.com

Bosheng Zhou
Beihang University

Beijing, China
bszhou@acm.org

ABSTRACT
In this paper, client-site Web mashups are studied from
component-oriented perspective, and CompoWeb, a component-
oriented Web architecture, is proposed. In CompoWeb, a Web
application is decomposed into Web components called gadgets.
A gadget is an abstraction of functional or logical Web
component. It is isolated from other gadgets for security and
reliability. Contract-based channels are the only way to interact
with each other. An abstraction of contract-based channels
supported or required by a gadget is also presented. It enables
binding of gadgets at deployment, and promotes interchangeable
gadgets. Unlike the model of a normal function call where the
function logic is executed in caller’s context, CompoWeb ensures
that the function logic is executed in callee’s context so that both
the caller and callee are protected. Implementation of a prototype
CompoWeb system and its performance are also presented.
Categories and Subject Descriptors
D.1.5 [Object-oriented Programming], D.2 [Software
Engineering]: D.2.12 Interoperability – distributed objects, D.2.13
Reusable Software – reuse models; D.3.3 [Programming
Languages]: Language Constructs and Features – classes and
objects, frameworks, Inheritance. D.4.6 [Operation System]:
Security and Protection.

General Terms
Security, Standardization, Languages.

Keywords
Mashup, Web, browser, component, same-origin policy, security,
protection, isolation, encapsulation, reuse, delayed-binding, interface.

1. INTRODUCTION
We have witnessed dramatic progresses in Web applications in the
past decade. Web pages have evolved from static HTML documents
to dynamical content using client-side scripting, from creating content
from a single site to integrating contents from different Web sites
seamless to offer an enriched Web experience. For example,
housingmaps.com uses Web mashups to link the craigslist housing
database to the Google Maps, creating a new Web service that was
not originally envisaged by either source. Another mashup example is
iGoogle [1] and Windows Live [2] where gadgets from different
sources can be aggregated into a personally customized portal page. A
gadget is a component containing both HTML content and scripting
code. Due to its tremendous power and flexibility, Web mashups will
soon be widely adopted and prevail in Web applications.

In a Web mashup application, contents from different sources are
integrated together to achieve the desirable functionality. This can
be compared to a desktop application built on top of binary
components from different vendors. A component is a unit of
program structure that encapsulates its implementation behind an
interface used to communicate across the components. The
explicit declaration of a component's requirements increases reuse
by decoupling components from their operating environment.
Component-oriented programming has established itself as the
predominant software development methodology over the last
decade. It breaks a system down into binary components for
greater reusability, extensibility, and maintainability. Several
component technologies, such as COM/DCOM, CORBA, Java
Beans, and .NET, have been used widely to allow an application
with interchangeable code modules, and promote "black box
reuse", which allows using an existing component without caring
about its internals, as long as the component complies with some
predefined set of interfaces.

In this paper, we examine Web mashup applications from
component perspective. Component-oriented paradigm is
introduced and applied to Web applications for programming
efficiency, manageability, functionality, and security. A new Web
component called gadget1 is proposed in this paper. A gadget
plays the same role in Web applications as a component in
component-oriented programming paradigm. A gadget provides
an abstraction to a functional Web component isolated from
others except contract-based channels used to interact with others.
An abstraction of contract-based channels that a gadget can
implement or query is also introduced. The actual implementation
of a gadget is encapsulated. Gadgets can be nested: a gadget
contains another gadget. With gadgets, a complex Web
application can be decomposed into gadgets. Those gadgets,
possible distributed or hosted by other Web sites, can be easily
glued to deliver a designated functionality, which is exactly a
mashup application. Due to its efficiency in developing an
application, reusability, and ease in management, we believe that
more and more Web applications will be built with gadgets.

In our project CompoWeb, we aim to design and build a
component-oriented gadget system for rapid development of rich
Web applications. We focus on specifications and execution of a
gadget-level abstraction with contract-based interactions, and
protection of running environment from attacks and interference
by others.

1.1 Design Requirements
To achieve the goal of this project, a gadget should meet the
following requirements.

1 Note that gadget defined in this paper is different from the

gadget used by iGoogle or Windows Live, as it will become
apparent later in the paper.

Contact author: Bin B. Zhu (binzhu@microsoft.com).

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). Distribution of these papers is limited to classroom
use, and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

545

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

• Encapsulation: The implementation detail of a gadget should
be encapsulated. The actual data and code inside a gadget are
hidden from others. A gadget behaves like a black box to
others except the contract-based services it provides to others.
Separation of implementation and contract-based services are
highly desirable in Web applications.

• Delayed Binding: When a gadget is implemented, the
developer does not have to bind it to another gadget. An
abstraction of supported and required contract channels is
supported so that binding two gadgets together can be
delayed until running time. This delayed binding offers a
great flexibility in writing gadgets and gluing them
together for a Web application.

• Isolation of running environment: A gadget is an
abstraction in Web applications that no running state is
shared between two gadgets. Each gadget runs in its own
execution environment isolated from others. The only
communications between two gadgets are through the
contract-based channels. This guarantees the security of a
gadget at running time even if some gadgets come from
untrusted sources, and avoids any interference from other
lousily implemented and crash-prone gadgets. Therefore
security and reliability of the Web application are ensured.

• Easy adoption and incremental deployment. The design of
gadget-level abstraction should ensure easy adoption and
allow incremental deployment. Our system should be built
on top of the existing Web standards and browser
implementations with minimized changes. There should be
an easy way to provide a fallback mechanism for legacy
browsers which do not support our gadget-level
abstraction without undesirable consequences.

By meeting the above requirements, gadget-oriented Web
development attains much greater reusability, extensibility, and
maintainability, and greatly improves security and reliability.
These benefits can, in turn, lead to shorter time to market, more
robust and highly scalable applications, and lower development
and long-term maintenance costs.

1.2 Similarity with Singularity
Although our approach to client-side Web mashups is from the
software component perspective, it is also possible to look at it
from the Operating System (OS) perspective. For a client mashup
application, a browser resembles a multi-user OS: mutually
distrusting Web sites interact programmatically in a single page
on the client side and share the underlying browser resources for
the browser, while mutually distrusting users share the host
resources for the OS. Such an OS approach has been adopted by
Wang et al. in their MashupOS [3][4] to build a browser-based
multi-principal operation system for client-side mashups. Looking
from the OS perspective, the system presented in this paper
resembles Singularity [5], a research OS with a more reliable and
flexible OS architecture, and offering the following three key
features as compared to a traditional OS:

• Software-Isolated Processes (SIP) for protection of
programs and system services.

• Contract-based channels for communications between two
SIPs.

• Manifest-based programs for verification of system
properties.

Our CompoWeb has much more in common with Singularity than
with a traditional OS:

• A gadget resembles a SIP in Singularity: a gadget runs in
an environment isolated from other gadgets by a browser.

• Contract-based channels are the only way to communicate
between two gadgets. This resembles contract-based
channels to communicate between two SIPs

• A gadget can describe what contract-based channels it
requires and supports, verifiable by a machine. This
property is used in CompoWeb to delay binding of a
gadget with other gadgets until its deployment. A gadget is
interchangeable with another one with the same required
and supported contract-based channels. This resembles the
Singularity’s manifest which describes the program’s
dependencies and desired capabilities, and is machine-
verifiable.

1.3 Organization of the Paper
This paper is organized as follows: Section 2 introduces the
background for the paper, including the method that current Web
applications are developed, the binary trust model that modern
browsers have adopted, and Web mashups. In Section 3 gadgets
and detailed specifications and design of CompoWeb are
presented. The implementation details for a prototype of
CompoWeb are provided in Section 4, and experimental results
with the implemented prototype are reported in Section 5. Related
work is presented in Section 6, and future work is described in
Section 7. The paper concludes in Section 8.

2. BACKGROUND
Rapid advance of Web technologies has completely changed the
Web from static, single-source HTML documents in the early
days to dynamic, interactive, and multiple-source services
nowadays. Applications delivered by the Web appear more and
more like desktop applications, and will rival even finally replace
desktop applications we are using today. Compared to the
technologies used in desktop applications, Web applications still
lags far behind. Although a Web page can mashup content from
different sources, the Web is still a monolithic architecture that
does not support component-level abstraction. A binary trust
model is used in access control of contents from different sources.
In this section, relevant Web technologies are briefly summarized.

2.1 Monolithic Architecture
Web applications are still implemented with a monolithic
architecture: each functional part is glued statically at
implementation time. With today’s Web standards and browsers,
scripting from other sources can be used and contents from
different sources can be aggregated, but the implementation is not
separated from the contract-based services that the
implementation provides. Delayed binding and module
interchangeability are not supported. Those unsupported features
are widely used in component-oriented software development.

2.2 Binary Trust Model
The binary trust model, either no trust or full trust, is used by
today’s Web standards and browsers, governed by the Same-
Origin Policy (SOP) which prohibits documents or scripts of one
origin from accessing documents or scripts of a different origin
[6]. SOP is needed to protect against Cross Site Scripting (XSS)
attacks. An origin consists of the domain name, protocol, and port.
Two Web pages have the same origin if and only of their domain

546

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

names, protocols, and the ports are all the same. Each browser
window, <frame> or <iframe>, is a separate document. Each
document is associated with an origin. A HTML document is
accessed through the platform- and language-neutral interface
Document Object Model (DOM). Programs and scripts can use
DOM to dynamically access and update the content, structure, and
style of documents [7]. Scripts enclosed by <script> in a
document are treated as libraries that can be downloaded from
different domains, but run as the document’s origin rather than the
origin from which they are downloaded. With SOP, a binary trust
model, either full trust or no trust at all, is used for today’s Web
applications. A site a.com either does not trust another site
b.com’s content at all by enclosing b.com’s content inside a frame,
thus a separate document, or trusts b.com’s scripts entirely by
embedding b.com’s scripts to grant them full access to a.com’s
resources.

2.3 Web Mashups
A Web mashup is defined as a Web page containing documents
from different sources. SOP prevents these documents from
interacting with each other, thus restricts the functionality that a
mashup page can possibly deliver. To work around SOP, a proxy
server can be used to aggregate the contents from different
sources before sending to the client so that the mashup contents
appear to be the same origin to the browser. Drawbacks of this
approach include that the proxy server can be a bottleneck and
unnecessary round trips are required.

AJAX (Asynchronous JavaScript and XML) has been widely used
to provide interactivity through client-side code with minimized
impact on network and server performance. AJAX makes client-
side mashups popular since client-side mashups reduce latency
and bandwidth as compared to the proxy approach described
above. A client-side mashup includes documents from various
sites and makes them interact with each other at the client side. To
circumvent SOP, a document in a client-side mashup embeds
scripts from the target sites in order to achieve cross-domain
interactions, which again requires full trust of those sites. SOP’s
binary trust model forces Web programmers to make tradeoffs
between security and functionality. Security is frequently
sacrificed for functionality.

Figure 1: Three gadgets aggregated into a page.

Web gadget aggregators are used by iGoogle [1] and Windows
Live [2] to enable a user to customize his or her portal page by
selecting multiple third-party contents. Each content manifests as
a gadget. A gadget in these applications is a separate frame. SOP
isolates one gadget from another as well as from the gadget
aggregator. This has restricted the functionality of a Web mashup.
For example, a Web page shown in Figure 1 contains three
gadgets from different origins: the top left one is a people gadget
which lists people, the bottom left is a weather gadget which
shows a city’s weather, and the right one is a map gadget which

shows a map. SOP prevents the weather and map gadgets from
responding to a click on a person in the people gadget to show his
home on the map gadget and the weather of his home on the
weather gadget. To support this desired functionality, scripts from
a different source need to be embedded with a full trust being
granted. With CompoWeb, the described functionality can be
delivered with a few lines of code, as given in Section 3.3,
without sacrificing security.

2.4 Cross-Domain Communications
New technologies have been proposed to offer client-side cross-
domain communication mechanisms without sacrificing security.
These technologies include the <module> tag [11], Subspace [18],
URL fragment identifier [19][14], MashupOS [3][4], etc. More
can be found in Section 6.2.

Schemes for secure cross-domain communications from browser
to server have also been proposed [16][17][21][13]. Crockford
[21] proposed using JSONRequest with the following features that
allow it to be exempted from the Same Origin Policy: don’t send
or receive cookies [8] or passwords in HTTP headers; transport
only JSON text, drop responses from legacy server. This scheme
has also been adopted in CompoWeb.

3. COMPOWEB

3.1 Overview
3.1.1 New Concepts
CompoWeb applies the component-oriented software
programming paradigm to Web applications. Two key concepts
are introduced in CompoWeb: gadget and interface. A gadget is
an abstraction of a functional or logical Web component
supporting contract-based channels to communicate with others. It
is equivalent to a component in the component-oriented
programming paradigm. An interface is an abstraction of pre-
defined, machine-queryable contract-based channels through
which a gadget can communicate with others in a controllable
manner.

3.1.2 Key Features
CompoWeb meets the requirements described in Section 1.1 with
the following key features:

• Browser-Isolated Gadget: Each gadget runs under a private
environment isolated from others by the browser. This
ensures the integrity and guarantees the confidentiality of the
internal state of a gadget. Reliability is also improved since
the running status of one gadget does not affect other
gadgets. A gadget resembles a SIP in Singularity [5] which
runs under a software isolated environment.

• Safe Invocation: A gadget can invoke another gadget in the
same way as if invoking a normal JavaScript object, i.e.,
through latter gadget's exposed member properties, methods
and events, the so-called PME model [20]. Unlike invoking a
normal function call that the invoked function logic runs in
caller’s context, the invoked member method of a gadget
runs in its own context without interfering caller’s context.
The input arguments and the return values are exchanged
between the caller and callee as pure data.

• Delayed Binding Mechanism: This mechanism allows a
gadget developer to declare dependencies on an abstraction
of contract-based channels (i.e. gadget interfaces) and write
logic to collaborate with these channels, without statically

547

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

binding to actual gadget instances. Binding with actual
gadgets can be delayed until deployment, i.e., CompoWeb
supports dynamic binding of gadgets.

3.1.3 Extension to HTML and Scripts
Gadgets in CompoWeb are defined with HTML and JavaScript.
Our goals are:

1. Minimal modifications to convert a current Web page
into a gadget-based Web page.

2. Majority of a gadget’s content can be rendered by legacy
browsers which do not support CompoWeb.

CompoWeb extends the current Web standards to achieve the
design goals. A new HTML tag named <gadget> is added to define
a gadget, and three new HTML meta types, i.e.,
implementedInterfaces, internalUse, and usage, are added. Several
global JavaScript objects and functions shown in Figure 2 are added
in CompoWeb. Usage of these added terms will be explained in the
subsequent sections.

Figure 2: Added JavaScript objects and functions.

3.2 Gadgets
A gadget with an ID of “alice_news” is defined as follows:

<gadget src=”http://alice.com/news.htm”
id=”alice_news” width=”400” height=”300”>

This definition is similar to that of a frame. Like a frame, each
gadget is associated with an origin. Gadgets can be nested. When
the above gadget is instantiated, the browser creates an isolated
running environment, fetches the gadget content from the specified
source address http://alice.com/news.htm, processes the DOM
objects, and runs the script objects inside the gadget in a private
space isolated from other gadgets or frames.
For each source HTML file that implements a gadget, the following
<meta> tag is used to explicitly declare that the content is a gadget:

<meta name=”usage” content=”gadget” />

This statement tells a browser that the source HTML file intends
to be only a gadget. When a gadget file is embedded in an
<iframe> or <frame> tag, a browser still ensures that it behaves as
a gadget rather than a frame (i.e. only the exposed members can
be accessed by others, even if the access is from the same origin).
Persistent state of a gadget is stored in cookies, which are currently
handled in the same way as existing browsers. A cookie is
accessible by the Web pages of the same directory as or
subdirectories of the Web page which created the cookie. Therefore
two <gadget>s can share the persistent data in a cookie if and only
if their sources share the same domain and path. Our current design
that isolates the running environment of a gadget except its
persistent state does not compromise any security in practice since
the additional access specification of a cookie, i.e., the path, can be
used to isolate the persistent state of a gadget if necessary: placing
the creating Web page of the cookie, typically the gadget itself, in a
unique directory that no other Web page or gadget resides in that
directory or its subdirectories except the gadget itself.
It is informational to compare a gadget with a frame. Full or no
trust governs the accessibility of a frame: Its internal document
trees and scripts are fully accessible by other frames or gadgets
from the same origin, or not accessible at all if from different
origins. SOP is not applicable to govern accessibility to a gadget.
A gadget is not accessible by other gadgets or frames except
through its exposed contract-based channels, no matter those
gadgets or frames are from the same origin or not. Therefore a
gadget has a much finer access control.

3.3 Encapsulation
As we have mentioned, a gadget appears as a black box to others
except the contract-based channels it supports. A contract-based
channel is an exposed member method, property, or event. The three
extended global JavaScript functions, i.e., exposeMethod,
exposeProperty, and exposeEvent, can be used to define a
communication contract with a member method, property, and event,
respectively. For example, the source of a map gadget may contain
the following code to expose a method named “setLocation” for other
gadgets to show a specific location on the map gadget:

function setLocation(loc) {
 innerMapControl.goto(loc);
 return innerMapControl.getCenter();
}
exposeMethod(‘setLocation’);

Another gadget can manipulate the map gadget through the
exposed member method to set the map gadget to display a
location such as Beijing:

// NOTE: ‘map1’ is the id of the map gadget.
var newLocation = map1.setLocation(‘Beijing’);

These few lines of code can fulfill the function to let the map
gadget to show on the map the home of the person clicked in the
people gadget in Figure 1, as we desired in Section 2.3.
Although the above code looks exactly the same as a normal
JavaScript function call in syntax, they have a fundamental
difference with implication in security. In the above call, the caller
gadget marshals the input arguments (i.e. ‘Beijing’) to the map
gadget. The function logic is then executed in callee’s context. At
the end of the execution, the result is marshaled back to the caller.
The “exposeMethod” exposes only the name of the method, rather
than the method handle. This is very different from calling a
JavaScript function where the called function logic is executed in
the caller’s context.

548

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

This difference of running in different contexts has a great impact
on security. As we mentioned previously, calling a JavaScript
function from an untrusted origin has security implication. Many
XSS attacks have exploited this method to launch successful
attacks. On the contrary, the same syntax is basically secure to use
when it is applied to gadgets in CompoWeb. When gadget A calls
a method exposed by gadget B, A is secure since the called
function logic is executed in B’s context. Of course, A should be
cautious about the returned result, which should be checked and
validated before using. B is also secure when its member function
is called by another, possibly untrusted, gadget since the function
logic of its member function is executed in its own context, and
B’s internal state keeps isolated during the function call.
A careful reader may notice that we have not specified the
arguments in exposing a member method. This is because that
every function in JavaScript has essentially a variable length of
argument list no matter how many arguments appear in the
function declaration. This makes specification of arguments for an
exposed method meaningless. As a result, only the method name
is exposed when exposing a member method.
A gadget can also expose its property. A property is exposed as
follows:

function get_Name() {
 return …;
}
function set_Name(value) {
 …
}
exposeProperty(‘Name’, ‘get_Name’, ‘set_Name’);

The first argument in exposeProperty is the name of the exposed
property, the second and third arguments of exposeProperty are
the getter method and setter method, respectively. The last two
arguments are optional. When they are omitted, the default names
are used. The default names for the getter and setter methods are
the property name prefixed with “get_” and “set_”, respectively.
Reading or writing a gadget’s property is just like reading or
writing an object’s field, e.g., gadgetId.Name =’Alice’,
which is then translated to calling getter or setter method,
resulting in a higher level of encapsulation.
Gadgets can also provide notifications about an occurrence of a
specific event, such as a successful completion of a method, to
other objects. Events are exposed with “exposeEvent” and
triggered with “fireEvent”:

exposeEvent(‘CalcCompleted’);
function calc() {
 …

fireEvent(‘CalcCompleted’, result);
}

fireEvent is also a global function in CompoWeb. Its usage is self-
explained.
A gadget can register or unregister handlers to another gadget’s
event notifications with “addEventListener” and
“removeEventListener”. These two methods are fixed member
methods of every gadget. For example, gadget A can register or
unregister a handler “someScriptMethod” to gadget B as follows:

B.addListener(‘CalcCompleted’,
someScriptMethod);

B.removeListener(‘CalcCompleted’,

someScriptMethod);

It is possible that multiple gadgets respond to a single event. This
is easily done by registering their handlers to the event. When an
event fires, the associated handlers are called. CompoWeb
guarantees that a handler registered to respond to an event of a
gadget cannot be accessed by the gadget which fires the event. A
browser maintains a list of handlers responding to an event. When
an event is fired, the browser executes all the handlers registered
to respond to the event. As a result, a gadget can register private
member method as a handler to respond to an event of another
gadget without sacrificing security. Like method calls, a handler
runs in the context of the gadget which registers the handler to
respond to an event. A handler does not run in the context of the
gadget which fires the event.
The event mechanism described above can be used to deliver rich
Web experience easily. For example, if we would like the map
gadget and the weather gadget shown in Figure 1 to respond to a
click of a person in the people gadget to show the location and the
weather of the home of the person being clicked, we can simply
write the following two lines of code to realize the functionality:

list.addEventListener('locationChanged',
map.setLocation);
list.addEventListener('locationChanged',

weather.queryByLocation);

3.4 Scope of Exposed Members
By default, an exposed member is visible and callable by any
gadget. Such an exposed member is said to be of global scope.
Global scope may be undesirable in some cases. A gadget may
want to restrict an exposed member to be viewable and accessible
by a specific gadget or group of gadgets. This is supported by
CompoWeb but only at the granularity of an origin. Two levels of
scopes are supported by CompoWeb: the global scope and the
Same Origin Scope (SOS). When a gadget is of SOS, its exposed
members can be viewed and called only by the gadgets of the
same origin. The gadget seems to have exposed nothing to
gadgets of a different origin.
There are two ways to specify the scope of gadget. The first
method is to specify in the source file of a gadget. The syntax is:

<meta name=”internalUse” content=”true|false”/>

When internalUse is set to true, the gadget’s scope is SOS.
Otherwise the scope is global. If internalUse is not specified, the
default scope is applied. In CompoWeb, the default scope is the
global scope.
The other method to specify a gadget’s scope is within the
<gadget> tag:

 <gadget … internalUse=”true|false”/>

Like the first case, the default value is false, i.e., the global scope,
if not specified.
The two methods in specifying a gadget’s scope have different
effects. If the scope is specified inside the source code of a gadget,
any instance of the gadget is of the same origin scope. If the scope
is specified inside <gadget>, only the instance of the gadget
specified by the tag <gadget> is of that scope. A same gadget
specified by another <gadget> may have a different scope.

549

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

If the scope of a gadget is specified more than once, for example,
once inside the source code, and another inside the <gadget> tag,
the narrower scope prevails.

3.5 Interfaces
An interface is an abstraction of contract-based channels.
CompoWeb utilizes an XML-based file format to define an
interface. An interface defines a set of names for exposed
properties, methods, and events. For example, we can define an
IMap interface as follows:

<?xml version="1.0" encoding="utf-8"?>
<interface GUID="FCB5ED82-F243-44fc-974D-
A56248DB20AA">
 <exposedProperty name="Center" />
 <exposedMethod name="SearchLocation" />
 <exposedEvent name="LocationChanged" />
</interface>

Every interface has associated with a unique GUID to prevent
conflict of exposed names in difference interfaces.
A gadget is said to have implemented an interface if both of the
following two conditions are met:

1) The gadget has implemented all the members declared in
the interface definition;

2) The gadget has declared that it has implemented the
interface. Declaring implementation of an interface has
implicitly exposed all the members specified in the
interface. Therefore a gadget does not need to declare each
exposed member already defined in an interface declared
to be implemented by the gadget.

A gadget uses the following syntax to declare that it has
implemented an interface:

<meta name=”implementedInterfaces” content=
interfaceList />

Each element in the interfaceList declares an implemented
interface, which must specify a URL where the interface is
defined, and may optionally specify a hash value of the interface
definition file calculated at the implementation phase. This
calculation can be done with a developing tool. The hash value
helps a browser to verify whether the interface definition has been
modified after the gadget is deployed. The hash value should be
provided when the gadget developer does not fully trust the host
of the interface definition. Otherwise a malicious host may be able
to expose a private member of a gadget by adding the name of the
private member in the interface definition after the gadget is
deployed. Since the gadget has declared that it has implemented
the interface, which has implicitly exposed all the members
specified in the interface. Such a modification would result in
exposing the private function that the gadget developer has no
intention to expose, a potential security loophole. A browser
would produce an error message if an interface does not match its
hash value included in a gadget which implements the interface.
 A user can verify if a specific gadget has implemented a specific
interface by using the gadget member method named
“isInstanceOf”, which is a fixed member method of every gadget
as shown in Figure 2:

var flag = gadgetName.isInstanceOf(interfaceURL);

CompoWeb allows users to define an interface by reusing and
extending an existing interface:

<?xml version="1.0" encoding="utf-8"?>
<interface GUID="AAE65ED4-1152-4050-8F45-
CEDEC50D3ABB">
 <!--including IMap interface-->
 <include src="http://interfaces.com/imap.xml"
/>
 …
</interface>

If a gadget has implemented the outer interface, it should have
also implemented the included interfaces, such as the IMap
interface in the above example. When the hash value of the outer
interface is calculated at the implementation phase of a gadget, the
included interfaces are expanded and then the hash value of the
expanded file is calculated. Similarly, declaring implementation
of the outer interface implicitly declares implementation of the
included interface.

3.6 Delayed Binding
In CompoWeb, a gadget, say gadget A, can explicitly declare its
interest to communicate with other gadgets which have
implemented a certain interface (such as the IMap interface). This
can be accomplished by calling an extended global function
named “acquireInterface” inside the gadget:

var imap =
acquireInterface(‘http://interfaces.com/imap.xml’)
;

This function declares that the gadget depends on some contract-
based channels specified by the interface. It implies that the
gadget hopes to find another gadget which has implemented the
interface to complete its logic.
The declared requirement of dependency is met when a suitable
gadget, say gadget B, is attached to the requirement submitter:

//B has implemented the interface imap.xml
A.attachGadget(B);

“Suitable” means that gadget B has implemented the interface
acquired by gadget A earlier, and “attach” means that gadget A
can collaborate with gadget B through the acquired interface.
Such declarations enables an aggregator to bind gadgets, such as
binding gadget A which wants the IMap interface to complete its
logic with gadget B which has implemented the IMap interface,
without knowing the meaning the IMap interface or functionaries
of the gadgets. Such a binding does not require any modification
of a gadget, and can be done when the gadgets have been
published. CompoWeb also allows a gadget to decide through
scripts and configure files whether and how to connect with the
gadgets which are recommended by the aggregator and have
implemented the interface that the gadget requires.
The function of acquireInterface always returns an
acquireInterfaceResult object which has three members, as shown
in Figure 2. The first member, attachedGadgets, is a gadget array
storing the “suitable” and attached gadgets; the second member is
an event which is fired after attachedGadgets inserts a new
element, and the third member, also an event, will get fired after
attachedGadgets removes an existing element.
A gadget may communicate with its attached partners by
accessing the attachedGadgets member of the acquireInterface
result:

550

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

/*below code will call setLocation on all attached
IMap instances */
if (imap.attachGadgets.length > 0) {
 for (i = 0; i< map.attachGadgets.length; i++)

 map.attachGadgets[i].setLocation(‘Beijing’);
}

One of a gadget’s fixed members, the requiredInterfaces property,
stores all the interface requirements of the gadget, and gets
updated after every invocation of acquireInterface. Two gadgets
are able to examine each other’s dependency requirements via
their requiredInterface members.
For an aggregator gadget, it is possible to “auto-connect” its
children gadgets by inspecting and mapping their
requiredInterfaces and implementedInterfaces:

//Note: assume ‘g1’ and ‘g2’ are two gadget
objects
If (g1.implementedInterfaces intersects with
g2.requiredInterfaces)
{

g2.attachGadget(g1);
};

Such an auto-connection script helps the aggregator bind matched
gadgets together. When there is more than one possible way to
bind, scripts and configure files can be used to choose a binding,
as explained previously in this section.

3.7 Incremental Deployment
Incremental deployment is critical in adopting a new technology
since it is impossible to replace overnight the existing browsers
with those that support CompoWeb. We must ensure that there
will be no undesirable effect or interaction between a
CompoWeb-enabled Web application and a legacy browser which
does not support CompoWeb. Web developers should have a safe
fallback mechanism to deal with the case that CompoWeb
extended HTML tags and JavaScript functions are not recognized
or supported by a legacy browser. A safe fallback can be
implemented as follows:

Firstly, a “Not Supported” notification should be added as the
inner text to every <gadget> tag:

<gadget id="..." src="...">
CompoWeb is not supported by your browser.

</gadget>

This message is ignored by CompoWeb-enabled browsers but
rendered as plain text by legacy browsers. We have exploited the
fact that a legacy browser ignores any unrecognized tags.

Secondly, we can examine our script blocks and embrace every
occurrence of CompoWeb extended functions and objects into a
conditional statement block, where the conditional statement
checks whether CompoWeb is currently supported or not by
examining whether some of the CompoWeb extended functions
are defined:

if (acquireInterface && exposeMethod)
{
 //code using CompoWeb functions and objects
}

Therefore the script engine in a legacy browser will not be
interrupted by CompoWeb functions and objects.

4. IMPLEMENTATION
We have implemented a prototype CompoWeb system to verify our
proposed concepts and evaluate its performance. Our prototype is based
on Internet Explorer 7. The prototype was tested on both Windows XP
SP2 and Windows Server 2003 SP1. Although we have not tested yet,
our methodology and techniques can also be applied or extended to
other browsers such as Firefox and Opera.
Instead of modifying IE’s source code directly, we leveraged the
browser extensions and public interfaces exported by IE to implement
the prototype without touching IE’s code base. Nevertheless we expect
that CompoWeb will be implemented directly inside modern browsers
instead of implemented as add-ons when CompoWeb is widely
adopted.
Our system consists of two major extensions to the IE architecture [10].
The first extension is an ActiveX control. The second extension is the
CompoWeb MIME filter, which is responsible for supporting our
HTML language syntax extensions. In addition, we have implemented a
set of COM objects to help implement various features in CompoWeb.
Figure 3 shows our implementation to support gadgets at run-time. Each
gadget is associated with an ActiveX instance, which processes the
gadget and provides an “isolated” running environment for a gadget.
The outmost part is an ActiveX control which wraps the native Web
browser control (ShDocvw). Most extensions of CompoWeb to the
current Web standards are implemented in the ActiveX. When a gadget
loads its source page, ActiveX enumerates all the <meta> tags in the
loaded document, and examines the interfaces that the gadget has
implemented. Then a set of functions and objects are attached to the
window object as its members to become global script functions and
objects (see Figure 2 for the whole list of these functions and objects).
Among these global script extensions, the three “expose” methods are
the most frequently used functions. Every invocation of them results in a
name entry added into the corresponding list of the exposed members.
Three separated lists are used to record the exposed properties, methods,
and events, respectively.

Figure 3. Implementation for run-time support of gadgets.

551

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

The gadget ActiveX control has implemented the IDispatch COM
interface, and interacts with the browser script engine through this
interface.
The gadget ActiveX control exposes both dynamically exposed
members and a set of fixed members (see Figure 4) through the
IDispatch COM interface, which can be recognized and invoked
by IE’s script engine.
When it invokes an exposed method, the script engine first queries
the IDispatch interface to check whether the target gadget has such
a method. Then the IDispatch interface looks up the method in the
list of exposed methods. If a corresponding entry is found, the
gadget control will try to invoke the script function resides in its
embedded Web browser control through a set of public interfaces
provided by IE. All invocations in our implementation are made by
value: All input arguments are copied with non-data fields of each
argument discarded, and the copied arguments are then passed to
the target gadget. The above processing steps are shown in Figure 4.

Figure 4. Processing an exposed method.

The second extension, i.e., the CompoWeb MIME filter, is an
asynchronous pluggable protocol handler at the software layer of
URLMon.dll, where various content (MIME) types are handled. The
filter takes as input an HTML stream and transforms new tags into
existing tags. For example, as we described above, each gadget is
processed by an ActiveX control. Therefore the filter should
transform all the <gadget> tags into <object> tags such as the gadget
shown below

<gadget
src="http://localhost/GadgetTest/timeline.htm"
width="450" height="380" id="timeline"></ gadget >

is translated by our MIME filter to

<object classid="clsid:FA1AB793-BE68-4DD6-AF8A-
81B67E5A7125" width="450" height="380"
id="timeline">
<param name="Src"
value="http://localhost/GadgetTest/timeline.htm"
/>
</object>

The current implementation of the prototype system was
programmed in C#/.Net since .Net framework has provided rich
libraries that make the implementation much easier. That said, the
performance of our prototype system might have been sacrificed.
The time cost overhead in our performance tests reported in
Section 5, although acceptable as a prototype, might be caused by
a complex interoperation between .Net runtime and the COM

objects. We are currently re-implementing some critical
components in C++ to achieve a better performance.

5. EVALUATION
The prototype implementation of CompoWeb described in
Section 4 has been tested on a Dell Optiplex GX 620 PC with 3.0
GHz Pentium-4 PC and 1 GB of RAM for performance
evaluation. The PC ran on Windows XP SP2 with the Web
browser Internet Explorer (IE) 7.
The first test was the standard JavaScript speed test with
Orendorff’s JavaScript benchmark [9]. This benchmark contains 77
test cases in 13 categories, ranging from text processing to object
handling. For each test case, the tester creates a function that
executes the test case code for N times in a tight loop. Then it calls
the function repeatedly, with N=1, then 2, then 5, 10, 20, 50, and so
on until the loop actually takes a significant amount of time to
execute (at least 200ms). It does this 5 times, throws out the worst
time, and averages the other four as the test result.
We ran benchmark either with or without our browser extension.
From the test results, we have observed negligible differences for
both cases. This is expected since there is no change to the script
engine in our implementation. Only a few methods are added into
the global script scope.
To have a better evaluation of the gadget wrapper’s overhead spent
to process exposed functions, a set of benchmarks was designed as
follows:
1. We designed a gadget which defines 4 JavaScript methods,

all of them exposed. These four methods were "Empty loop",
"Create nonempty function", "Populate 500 numbered
properties with object" and "Populate 500-element array of
numbers using push()", copied from Orendorff’s JavaScript
benchmark. These four methods are referred to as “Empty”,
“Function”, “Object”, and “Array”, respectively, in Table 1.

2. We tested and recorded the time cost in invocating a cross-
frame (with the same domain) function (i.e., calling a
function with a script like
"frameName.document.funcName();"). This case is referred
to as “cross-frame” in Table 1 and in the remaining part of
this section.

3. We tested and recorded the time cost in invocating a function
exposed by the gadget, (i.e., calling the function with a script
like "gadgetName.funcName();"). This case is referred to as
“gadget” in Table 1 and in the remaining part of this section.

4. We reused some code of Orendorff’s JavaScript benchmark
to build our own test, and followed the same test procedure.

The average time costs for both “cross-domain” and “gadget” are
reported in Table 1. We can see from the table that the difference
between the two cases for each member function remains roughly
flat while the actual time cost rises over 10 times. The results show
that CompoWeb incurs almost constant overhead. This near-
constant overhead can be attributed to:

• The look-up time to find the designated exposed member in
the target gadget.

• The constant overhead in calling the IDispatch interface
(calling once for “cross-frame” and twice for “gadget”, see
Steps 1 and 3 in Figure 4)

552

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

Table 1. Time cost (µs) for each of the four member methods,
“Empty”, “Function”, “Object”, and “Array”, with both

“cross-frame” calls and gadget calls.

 Empty Function Object Array
Cross-
frame 111 118 594 1456

Gadget 187 203 686 1561

Differenc
e 76 85 92 105

Since the number of exposed methods would significantly affect the
efficiency in looking up an exposed function from the list of
exposed methods and calling IDispatch interfaces, it would be
interesting to study the relationship between the time cost in
invocating a gadget’s exposed function and the number of exposed
methods of a gadget. The "Empty loop" method was used for this
test. The test results are shown in Figure 5. The data in this figure
confirms that the time cost overhead incurred by CompoWeb
depends linearly on the number of exposed methods in our current
implementation.
As we described in Section 4, the performance overhead might be
mainly due to a complex interoperation between .Net runtime and
the COM objects since the current implementation of the prototype
was in C# and .Net. Better performance is expected when the
prototype is implemented in C++.

Figure 5: Time costs (µs) under various numbers of exposed

functions.

6. RELATED WORK

6.1 Component-Oriented Software
Development
Component-oriented software development provides a high level of
abstraction in software development. It separates specifications
from actual implementation and promotes reuse of components.
Many modern software technologies have used component-oriented
approach, such as COM/DCOM, Java Beans, and .NET, to develop
desktop, server-client and distributed applications. The component-
oriented program paradigm, however, has not been used in Web
applications and mashup systems.

6.2 Cross-Domain Communications for Web
Mashups
The new <module> tag was proposed by Crockford [11] to partition
a Web page into a collection of modules. A module is isolated
except that JSON [12] formatted messages are allowed to
communicate between a module and its parent document. By
simply defining and exposing the send and receive member
functions, we can have our gadget to mimic a module.

A similar scheme has been proposed for HTML 5 [13] to provide
cross-document communications, no matter if the documents belong
to the same domain or not. Since documents are arranged in
hierarchy structure, this proposal leverages the current abstraction of
a document instead of proposing a new isolation abstraction like the
<module>. Though cross-domain communications are supported in
this HTML 5 proposal, the communication receiver has to decide
the trustiness of the sender by itself. This requires every component
has its own access control system. Furthermore, DOM and
JavaScript resources are shared based on the same origin policy.
Therefore, a separate DNS domain per component would still be
required.

Flash Player framework uses cross-domain policy files [16] to
configure and give the Flash Player permission to access data from
a given domain without displaying a security dialog. Although this
approach provides more flexibility and controls than standard SOP
communication model, it depends on a configuration outside a
browser, and the service provider cannot distinguish whether the
requests originator comes from the same domain as the provider or
not.
Subspace [18] provides a cross-domain communication mechanism
without any browser plug-ins or client-side changes. Subspace splits
a site into sub-domains, using one of them to evaluate scripts from
other domains, and another page to hold a notification object. Then
the two sub-domain pages relax their domain to a common value to
exchange information, and send information back via the held
notification object. Subspace is complex to use, esp. for complex
mashups, and may not work for certain domains. For example it is
impossible to relax a domain such as “a.com” or “192.168.0.1” to
create a parallel domain to receive partially trusted information.
Therefore Subspace does not work in these cases.
Approaches to communicate between <iframe>s by using the
fragment identifier [19] of the frame URL have been proposed.
Modification of the URL fragment identifier dose not reload the
page, and can be observed by frames from different domain, thus
can be used to transport messages between frames. However, such
communication is limited to the size of fragment identifiers (the
maximum length of a URL in Internet Explorer is 2,083 characters),
and can be overheard by other frames.
In DOMLAC [15] a browser plug-in provides a fine-grained access
control on read, write, and traverse actions of the DOM tree of a
Web application. In order to safely isolate the DOM sub-tree of
each component, policies are associated with parts of the DOM tree
inside a Web page, such as defining a policy that only the
component and the event hub can access and modify a
communication zone between them. Therefore it prevents innocent
parts from accessing potentially malicious parts of the DOM tree.

 MashupOS [3] proposes to add several new elements to HTML.
Among them, <Sandbox> and <OpenSandbox> tags are designed to
consume unauthorized content without liability and over trusting.
The <ServiceInstance> tag creates an isolated region to hold related
memory and network resources. A <ServiceInstance> may also hold

553

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

multiple display area resources by possessing some <Friv> nodes in
the HTML document tree. MashupOS also provides browser-side
communication across domains. <ServiceInstance>s may declare
ports to listen to communication requests. Such a request can be
sent from any script block by using a CommRequest object
provided by MashupOS. Cross-gadget communications in
CompoWeb are through the PME model [20], which is more
convenient than the sending and receiving message model used in
MashupOS as well as in the <module> approach [11] and the
HTML 5 proposal [13]. CompoWeb also supports an abstraction of
contract-based channels to promote interchangeability among
gadgets and separation of a gadget’s implementation from its actual
deployment. MashupOS lacks these features.

7. FUTURE WORK
There are several possible ways to further study and extend the
current work. Although we have isolated executable environment of
a gadget, the persistent state is stored in cookies which are still
handled in a traditional manner. That may give two gadgets an
opportunity to share their persistent states. We may want to modify
the current cookie handling mechanism to provide a further
isolation of a gadget: the persistent state is also isolated.

The current access control to exposed members in CompoWeb is
very coarse. Only two scopes are supported. A gadget cannot
specify an arbitrary set of gadgets to see and access its exposed
members while disallowing other gadgets from knowing or
accessing the members it has exposed.

Like other proposals, the current scheme of CompoWeb lacks a
sophisticated mechanism to handle page refreshing and navigations
that occur in a gadget. These actions may pose some new challenges
such as unloading resources and dealing with potential attacks.
These issues will be addressed in the next phase of CompoWeb.

8. CONCLUSION
In this paper, we examined Web applications, esp. client-side Web
mashups, from component-oriented perspective, and proposed a
component-oriented Web architecture, CompoWeb, in which
gadgets are building blocks. A gadget offers an abstraction at a
functional or logical Web component level. Each gadget is isolated
from others for security and reliability, and communicates with
others through contract-based connections. Binding of a gadget with
others can be delayed until deployment to separate implementation
from the actual deployment. CompoWeb promotes component-level
abstraction, encapsulation, and isolation as well as
interchangeability and reuse.

9. ACKNOWLEDGMENTS
We would like to thank Sunava DUTTA, Xiaofeng FAN, Helen
WANG, and Zhenbin XU for their valuable helps, discussions, and
feedbacks to this project.

10. REFERENCES
[1] Google Inc. Google Gadgets API Developer Guide.

http://www.google.com/apis/gadgets/docs-home.html.
[2] Microsoft. Windows Live Gadget Developer’s Guide.

http://microsoftgadgets.com/livesdk/docs/default.htm.
[3] J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS:

Operating System Abstractions for Client Mashups. In 11th

Workshop on Hot Topics in Operating Systems (HotOS XI),
San Diego, CA, May 7-9, 2007.

[4] H. J. Wang, X. Fan, C. Jackson, and J. Howell. Protection
and Communication Abstractions for Web Browsers in
MashupOS. In 21st ACM Symposium on Operating Systems
Principles (SOSP), Stevenson, WA, October 2007.

[5] G. C. Hunt and J. R. Larus. Singularity: Rethinking the
Software Stack. Operating Systems Review (ACM SIGOPS),
Vol. 41, No. 2, pp. 37-49, April 2007.

[6] J. Ruderman. The Same Origin Policy.
http://www.mozilla.org/projects/security/components/same-
origin.html.

[7] Document Object Model. http://www.w3.org/DOM.
[8] D. Kristol and L. Montulli. HTTP State Management

Mechanism. IETF RFC 2965, Oct. 2000.
[9] Jason Orendorff. JavaScript speed test.

http://www.jorendorff.com/articles/javascript/speed-test.html.
[10] Internet Explorer Architecture.

http://msdn.microsoft.com/workshop/browser/overview/ie_ar
ch.asp.

[11] D. Crockford. The Module Tag: A Proposed Solution to the
Mashup Security Problem. http://www.json.org/module.html.

[12] D. Crockford. RFC 4627 The application/json Media Type
for JavaScript Object Notation (JSON).

[13] Web Hypertext Application Technology Working Group.
HTML 5 - Cross-document messaging.
http://www.whatwg.org/specs/web-apps/current-
work/#crossDocumentMessages.

[14] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S.
Yoshihama. SMash: Secure Cross-Domain Mashups on
Unmodified Browsers.
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115a
ea78b6e7c85256b360066f0d4/0ee2d79f8be461ce8525731b0
009404d?OpenDocument.

[15] N. Uramoto, S. Yoshihama, and F. De Keukelaere.
OpenAjax Security Work Session.
http://www.openajax.org/member/wiki/images/0/0c/2007_M
arch_Members_Meeting_Ajax_Security_Threats.pdf.

[16] Adobe, Adobe Flash Player 9 security white paper, July, 2006.
http://www.adobe.com/devnet/flashplayer/articles/flash_play
er_9_security.pdf.

[17] J. Couvreur. FlashXMLHttpRequest: cross-domain requests.
http://blog.monstuff.com/FlashXMLHttpRequest.

[18] C. Jackson and H. J. Wang: Subspace: Secure Cross-Domain
Communication for Web Mashups, WWW 2007, pp. 611-619,
Canada, May 2007.

[19] James Burke: Cross Domain Frame Communication with
Fragment Identifiers.
http://tagneto.blogspot.com/2006/06/cross-domain-frame-
communication-with.html.

[20] Borland Software Corp. PME: Properties, Methods and
Events. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2002/n1384.pdf.

[21] D. Crockford. JSONRequest.
http://www.json.org/jsonrequest.html.

554

WWW 2008 / Refereed Track: Security and Privacy - Web Client Security April 21-25, 2008 · Beijing, China

