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ABSTRACT
Easy reuse and integration of declaratively described infor-
mation in a distributed setting is one of the main motiva-
tions for building the Semantic Web. Despite of this claim,
reuse and recombination of RDF data today is mostly done
using data replication and procedural code. A simple declar-
ative mechanism for reusing and combining RDF data would
help users to generate content for the semantic web. Having
such a mechanism, the Semantic Web could better benefit
from user generated content, as it is broadly present in the
so called Web 2.0, but also from better linkage of existing
content.
We propose Networked Graphs, which allow users to define

RDF graphs both, by extensionally listing content, but also
by using views on other graphs. These views can be used
to include parts of other graphs, to transform data before
including it and to denote rules. The relationships between
graphs are described declaratively using SPARQL queries
and an extension of the SPARQL semantics. Networked
Graphs are easily exchangeable between and interpretable
on different computers. Using existing protocols, Networked
Graphss can be evaluated in a distributed setting.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; E.1 [Data]: Data Structures—
Distributed Data Structures; H.3 [Information Systems]:
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1. INTRODUCTION
Data reuse and integration is the basic idea behind the Se-

mantic Web effort. However, the extremely large and highly
distributed setting of the Web makes reuse and integration
a difficult task. Although the basic technologies of the se-
mantic web (URIs to denote things, shared ontologies) are
well suited for a distributed environment, data reuse and
integration today usually takes place in centralized settings.
For example, the book mashup1 and DBPedia2 connect var-
ious sets of semantic data. Although both services are based
on semantic web technologies and use freely available data,
integration is done by replicating all data to a single repos-
itory and connecting data sources using procedural code.
The semantic web suffers from a lack of user generated

content and from a lack of services to kick-start wide adop-
tion. One of the reasons for these deficiencies is a missing
mechanism for easy, distributed data reuse and integration:
As we are talking about quite large datasets in the exam-
ples listed above, already the necessary infrastructure for
holding the resulting amounts of data keeps many people
from offering such services. In order to encourage people to
build new services based on existing data, a more flexible
and distributed mechanism is needed.
There are two main approaches to data reuse on the se-

mantic web: replication plus procedural code and rule lan-
guages. Procedural code is harder to exchange than declar-
ative rules and its semantics is implicit. Replication leads
to problems with

1. staleness, as data is frequently updated,

2. scalability, as (combinations of multiple) large datasets
can not easily be handled,

3. access rights, as not all data will be available for copy-
ing and

4. information exchange, as information sources are con-
nected through programs having implicit semantics,
which can not be transferred easily (Webservers do
usually not provide the software used along with the
content they deliver.).

Rule languages such as the Semantic Web Rule Language
SWRL [10], N3 [3] and the upcoming Rule Interchange For-
1http://sites.wiwiss.fu-berlin.de/suhl/bizer/bookmashup/
2http://dbpedia.org/
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mat RIF [9] allow for defining how to reuse data in a declar-
ative way. However, they work best in a centralized setting,
because apart from N3, none of them allows users to specify
where the data to reason on comes from and which dataset
the result should belong to. Additionally, these languages
are unfamiliar for people without a background in logics —
and most people using semantic web technologies now and in
the future can be assumed not to have such a background.
Finally, they have not been designed to gracefully handle
recursion and negation in a dynamic environment like the
web. As we will see in our use case, these properties are
already desirable for simple scenarios.
We propose Networked Graphs as a declarative mecha-

nism to define RDF graphs both extensionally, by listing
statements, and intensionally using views on other graphs.
SPARQL and a small syntactic extension to RDF are used
to define views. The proposed mechanism is very powerful
and flexible, as it allows one to use almost all of the ex-
pressiveness of SPARQL CONSTRUCT queries, including
negation, and — when used inside Networked Graphs —
recursive views. Networked Graphs are designed to be eval-
uated in a distributed setting and are easily exchangeable.
Users of Networked Graphs do not need to learn a new rule
language, but can use the standard language SPARQL —
which we expect to be widely adopted soon.

Contribution
In this paper we define a syntactic extension to RDF which
allows for expressing views in RDF graphs in a declarative
way in section 4. We define the semantics of NGs through
an extension of the SPARQL semantics in section 5. We
describe a prototypical implementation in section 6 and fi-
nally shortly discuss the complexity of reasoning with NGs
is in section 7. Foundations and extensions are illustrated
using a running example. We start our description in the
following Section 2 with a use case from which we derive
requirements, and which serves as a running example in the
remainder of the paper. We introducw existing formalisms
in Section 3. In the following we use “NG” to abbreviate
“Networked Graph”.

2. USE CASE
Mike is project manager of a new semantic web research

project. As with most new projects, he needs to build
a project website containing information about the people
working in the project. We talk about a Semantic Web
project, so all information shall be available in RDF. All
project members are Semantic Web enthusiasts and provide
information about themselves in their personal foaf3 files on
the web. Mike would like to avoid replicating this informa-
tion. He also does not want to have to update the project
website, whenever one of the members changes her personal
information. Mike thinks a view mechanism for RDF would
be ideal to extract the information he needs.
Reusing Information. Mike’s first task is to build a page
containing contact information of all project members. He
sets up a graph mikesProject. He defines a view feeding into
mikesProject based on the foaf files of the project members.
It imports names, e-mail addresses, phone numbers and em-
ployers of all people working in the project.

3http://www.foaf-project.org/

Importing third-party data. After a couple of months,
Mike is asked to include all publications done within the
project to mikesProject. All project members work full time
for the project. Therefore Mike can assume that all their
publications done during the lifetime of the project are rel-
evant. He adds a view based on the DBLP RDF map-
ping4, including all publications by project members listed
in mikesProject within the time period of 2007-2009. When-
ever anything relevant is newly published, it will be included
in the project website automatically.
Negation. Mike thinks, it will be nice, if the project ac-
knowledges all those authors who have contributed to pub-
lications done in the project, but who do not work in the
project themselves. He sets up a new view, adding acknowl-
edgements to all those authors of papers, which have cre-
ators from the project, but where the persons acknowledged
are not listed as project members in mikesProject. Mike uses
the Semantic Web query language SPARQL, which allows
to formalize this rule using negation by failure.
Recursion. Bob works in the project. He finds the infor-
mation on the project website very useful. As the project is
rather small, he assumes he knows everybody in the project.
For this reason he adds a view to his foaf file bobFOAF, which
creates a foaf:knows relation between Bob and every person
listed as a project member in mikesProject. This results in
a circular dependency between bobFOAF and mikesProject.
Exchange of NGs. Mandy manages a similar project. To-
day she is faced with the task of creating a new project web-
site. Mandy likes Mike’s website a lot and would like to set
up something similar. Usually, her semantic web browser
immediately computes all views. She did not even notice
that Mike uses them. Today, however, she looks at mike-
sProject with a text editor and sees all the view definitions.
She replaces the datasets of the views such that the foaf
files of her own project’s members are used. After only five
minutes of work she has created a rich project description
in graph alicesProject.

Requirements
We observe the following requirements from the presented
use case:

1. RDF graphs shall be expressable directly, like DBLP in
our use case, and/or through views on other graphs,
like mikesProject of bobFOAF, which is a mixture of
both.

2. In a dynamic and distributed setting, like the Seman-
tic Web, it is difficult to avoid circular dependencies
among NGs, which therefore must be supported by the
semantics.

3. View definitions must support negation, as available
in SPARQL and as used here for the definition of ac-
knowledgements.

4. Definitions of graphs should be easily exchangeable
and, hence, must be self-describing, i.e. include all
necessary view definitions.

5. The extension needs to be upward compatible, i.e. it
should be based on existing Semantic Web building

4http://www4.wiwiss.fu-berlin.de/dblp/
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blocks. Downwards, it should at least not prevent ex-
isting RDF technology from working in the foreseen,
standardized way.

Further Possibilities for Applications
Apart from the rather simple use case we will use through-
out this paper, we have recognized several other application
areas, where NGs, will be extremely useful for describing
rules, views and data integration.
Linking Dataspaces. A new line of research in databases
aims at creating and linking dataspaces [6], i.e. hetero-
geneous spaces of information, such as available in small
databases and on PC desktops. While the gist of this work
is related to our objectives, they pursue their goals with
idiosyncratic mechanisms rather than by standardized lan-
guages as we do with our minor extension of RDF and
SPARQL towards NGs.
Distributed Rules for Policies. Alves et al. propose a
distributed, rule based policy mechanism [2]. Their language
extends Prolog in a proprietary way. Using NGs an elegant
integration of the policy mechanism with the semantic web
could be achieved.
Decentralized Data Integration. DBPedia integrates
various datasets, which are available in RDF. Among oth-
ers, links to the geonames ontology5 and to DBLP are in-
cluded. An aggregated dataset is published in irregular in-
tervals. This data could directly be integrated using net-
worked graphs, immediately including changes from any of
these datasets.

3. FOUNDATIONS
In this section we briefly describe existing foundations of

NGs.

3.1 RDF
RDF is a graph based knowledge representation language.

The nodes in a graph are URIs, blank nodes (a kind of exis-
tentially quantified variables) or literals. Arcs between the
nodes, labeled with URIs, represent their relationships. We
simplify the RDF graph model [14] here slightly in order to
come up with a more concise formal characterization. Anal-
ogous to the SPARQL specification [4] we allow literals as
subjects of statements.

Definition 1 (RDF Graph).
Let U be the set of URIs, L the set of RDF Literals and
B the set of Blank Nodes as defined in [14]. U , L and B
are pairwise disjoint. Let R = U ∪ L ∪ B. A statement is
a triple in R × U × R. If S = (s, p, o) is a statement, s is
called the subject, p the predicate and o the object of S. An
RDF graph G is a set of statements. For every two RDF
graphs G1 and G2 the sets of blank nodes used in G1 and in
G2 are disjoint.

[14] defines a model theoretic semantics for RDF graphs
and the RDF Schema Language RDFS. RDFS includes, for
example, transitivity of class subsumption, the instanceOf
relationship and others. We refer the reader to [14] for a
detailed description of RDF and the RDF Schema language
RDFS.

5http://www.geonames.org/

3.2 Named Graphs
While the RDF recommendation does not allow referring

to whole RDF graphs, named graphs introduced in [11] offer
means to group a set of statements in a graph and to refer
to this graph using a URI. This way information about the
graph can be expressed in RDF using its name as a subject
or object:

Definition 2 (Named Graph).
A named graph is a pair (n,G) of a URI n, called the name,
and an RDF graph G, called the extension.
The following example illustrates the triple structure of

RDF and the concept of named graphs using Trig notation6

The statements in a named graph are listed in curly brack-
ets, prepended by the name of the graph. Due to space
constraints we will use abbreviated URIs without names-
paces.

Example 1.
:DBLP {:NGPaper dc:creator :Alice.

:NGPaper dc:creator :Bob. }

:bobFOAF {
:bobFOAF foaf:primaryTopic :Bob.
:Bob foaf:name "Bob"^^xsd:String.
:Bob foaf:currentProject :K-Space.
:K-Space foaf:fundedBy :EU.
:Bob foaf:phone "+49-261-287-2868".}

:MikesProject {
:SemWebProj foaf:name "Networked Graphs".}

3.3 SPARQL
SPARQL is a query language for RDF based on graph

pattern matching, which is defined in [4]. In this paper we
are only interested in SPARQL CONSTRUCT queries. A
CONSTRUCT query matches a graph pattern against one
or more input graphs. The resulting variable bindings are
embedded into a graph template in order to generate new
RDF data. To further restrict the bindings produced by
pattern matching, filter expressions can be used, for example
to check for (in-)equality of variables, datatypes of literals
etc.
A SPARQL query is evaluated against a dataset consisting

of a set of named graphs (declared using FROM NAMED
clauses) and a default graph, which is the union of one or
more named graphs (declared using FROM clauses).
A query returning foaf:currentProject triples for all

persons with some foaf document in the dataset is shown
in example 2. It selects all persons from all foaf files Mike
uses to built mikesProject. Additionally, their phone num-
bers are included, if available.

Example 2.
CONSTRUCT {?member foaf:currentProject ?project.

?member foaf:phone ?phone}
FROM NAMED :bobFOAF FROM NAMED :chrisFOAF FROM NAMED...
WHERE {
GRAPH ?foafFile {
?foafFile foaf:primaryTopic ?member
OPTIONAL { ?member foaf:phone ?phone } } }

SPARQL can be used to model negation by failure us-
ing a combination of OPTIONAL graph patterns and the
BOUND filter, which checks whether a variable has been
bound during graph pattern matching. We will call such a
construct in a query bound negation. Example 3 illustrates
6http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/
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the use of bound negation to select co-authors of project
members, whom Mike wants to thank for contributing to
papers. In this query we first find all co-authors of project
members. We then try to find an (optional) foaf:current-
Project relation between the project and the co-authors. If
this fails (i.e. the co-author is not a project member), the
variable ?x is left unbound, and the filter expression at the
end of the query succeeds. The obtained variable bindings
are embedded in the CONSTRUCT template to add an ac-
knowledgement to the co-author7.

Example 3.
CONSTRUCT {:SemWebProject :acknowledges ?author}
FROM NAMED :DBLP FROM NAMED :mikesProject
WHERE {
GRAPH :DBLP {
?paper dc:creator ?author.
?paper dc:creator ?member }.

GRAPH :mikesProject {
?member foaf:currentProject :SemWebProject
OPTIONAL { ?x foaf:currentProject :SemWebProject

FILTER (?x = ?author) }
FILTER (!BOUND(?x)) } }

4. INTRODUCING NETWORKED
GRAPHS

We propose NGs to fulfil the requirements listed in section
2 by extending the technologies listed in the previous sec-
tion. To address requirement (1) on expressing RDF graphs
by extensional and intensional means, we extend RDF with
a SPARQL based view mechanism. To support exchange-
ability and backwards compatibility (requirements 4 and 5),
we define a syntax based on named graphs. By this exten-
sion it becomes possible to define the meaning of such a
network of graphs by the way they reference each other. To
deal with negation and cycles (requirements 2 and 3), we
adapt a suitable semantics from logic programming in sec-
tion 5 and explain how it can be computed in a distributed
setting in section 6.
In this section we start by defining NGs using an abstract

syntax, before we introduce the RDF and SPARQL based
syntax for NGs.

4.1 Abstract Syntax
In the previous section we have seen how SPARQL can

be used to express a single view in a dataset. What is still
missing is a link between the view definition and the graph,
which shall include the view. This link is given be NGs:

Definition 3 (Networked Graph).
A NG is a quadruple GW = (n,G,

ˆ
GW

1 , ..., GW
n

˜
, GW ),

where n is a URI called the name of the NG, G is an RDF
graph,

ˆ
GW

1 , ..., GW
n

˜
is a list of NGs and v is a mapping

from a list of NGs to an RDF graph called the view defini-
tion of GW .
We define a function deref to access the contents of a

NG given a NG definition. deref carries out dereferencing
7Using negation in SPARQL puts a heavy burden on the
user. As negation is available in SPARQL, it should be avail-
able in an easily understandable way — unlike it is specified
today. We do not target at new language constructs for
negation in SPARQL here, but we must still show how to
deal with the existing specification. Thereby, negation adds
substantially to the complexity of the formalism. A future
improvement of SPARQL in this direction would be benefi-
cial for the syntactic clarity of Networked Graphs.

of NGs as a logical operation, i.e. given a NG it computes
the content of the NG. This logical operation is opposed to
dereferencing as an addressing operation, i.e. given a URI,
accessing the corresponding file or SPARQL endpoint. In
contrast to named graphs, NGs are not necessarily listed in
a single file or at a single endpoint, as parts of them are
inferred. In Section 5 we will describe, how deref can be
computed for a set of NGs.

Definition 4 (deref).
Let V = (n,G,

ˆ
GW

1 . . . GW
n

˜
, v) be a NG.

Then deref is a function mapping from networked graphs
into a set of statements, i.e. a graph:
deref(GW ) = G ∪ v(deref(GW

1 ), ...,deref(GW
n ))

From these definitions it is clear, that named graphs are
a special case of NGs with GW = (n,G, [], ∅). In our use
case scenario, the graph mikesProject could be formalized as
follows:

Example 4.
Let bobFOAF, chrisFOAF and DBLP be NGs. Then mike-

sProject is a NG:
mikesProject = (:mikesProject,

{(:SemWebProj foaf:name "Networked Graphs")},
[bobFOAF, chrisFOAF, DBLP, mikesProject], v),

with v(bobFOAF, chrisFOAF,DBLP,mikesProject) =
{(:Bob foaf:currentProject :SemWebProject),
(:Bob foaf:phone "+49-261-287-2868"),
(:Chris foaf:currentProject :SemWebProject),
(:SemWebProject :acknowledges :Alice)}

For reasons of simplicity, we will use the name of a NG
interchangeably with the NG itself. From the context it will
be clear, whether the name or the NG is meant.

4.2 An RDF Language Extension for
Networked Graphs

We now provide an RDF syntax for NGs based on named
graphs for the extensional definitions and SPARQL for the
intensional definitions.

Definition 5 (Networked Graphs Syntax).
A NG GW = (n,G,[GW

1 ,...,GW
n ], v) is defined in a named

graph with name n and extension G. The view definition is
included in statements of the form:
n g:definedBy <query>.8

where <query> is a literal containing a CONSTRUCT query.
The datatype of <query> is g:query. We call <query> a sub-
query of v. We call such a statement a view definition state-
ment. In general, a named graph may contain a number m
of such view definition statements. The overall view is then

defined by v(GW
1 , . . . , GW

n ) =
mS

i=1

vi(G
W
1 , . . . , GW

n ), where vi

is the evaluation function of the i-th subquery.
definedBy statements are intended to carry two mean-

ings. First, there is the extensional meaning that the state-
ments exists. Second, there is the intensional meaning, i.e.
the evaluation of the view it defines. The second meaning
will only be incurred, if the graph in which a definedBy
statement occurs is identical with the subject of this state-
ment. Existing machinery for working with named graphs
can be used for serialization and exchange of NGs. A non
NG aware repository can still interpret the extensionally

8As namespace for the NG vocabulary we propose
http://isweb.uni-koblenz.de/ontologies/2006/11/ng#
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listed statements in a NG, providing upwards compatibil-
ity.
Using this syntax, the definitions of bobFOAF and mike-

sProject are listed in example 5. In both cases, a named
graph holds the extensions introduced in example 1 and the
view definitions. In bobFOAF, foaf:knows relations are cre-
ated from Bob to all project members listed in mikesProject,
except for Bob himself. mikesProject contains view defini-
tions encoded in three queries. The first one adds project
members and their phone numbers, if available. The sec-
ond one analogously imports publications from DBLP, so
we only sketch it here. The third one adds acknowledge-
ments to all authors listed in DBLP, such that one of their
publications has an author, who is listed as project member
in mikesProject, but the acknowledged person herself is not
a project member, as explained in example 3.

Example 5.
:bobFOAF {
:bobFOAF foaf:primaryTopic :Bob.
:Bob foaf:name "Bob"^^xsd:String.
:Bob foaf:currentProject :K-Space.
:K-Space foaf:fundedBy :EU.
:Bob foaf:phone "+49-261-287-2868".
:bobFOAF g:definedBy

"CONSTRUCT {:Bob foaf:knows ?person}
FROM :mikesProject
WHERE { ?person foaf:currentProject :SemWebProject

FILTER (?person != :Bob) }"^^g:query.
}

:mikesProject {
:SemWebProj foaf:name "Networked Graphs".
:mikesProject g:definedBy

"CONSTRUCT {?member foaf:currentProject ?project.
?member foaf:phone ?phone}

FROM NAMED :bobFOAF FROM NAMED :chrisFOAF ...
WHERE { GRAPH ?foafFile {

?foafFile foaf:primaryTopic ?member
OPTIONAL {?member foaf:phone ?phone}}}"^^g:query.

:mikesProject g:definedBy
"CONSTRUCT {?paper dc:creator ?author}..."^^g:query.

:mikesProject g:definedBy
"CONSTRUCT {:SemWebProject :acknowledges ?author}
FROM NAMED :DBLP FROM NAMED :mikesProject
WHERE {

GRAPH :DBLP { ?paper dc:creator ?author.
?paper dc:creator ?member}.

GRAPH :mikesProject {
?member foaf:currentProject :SemWebProject
OPTIONAL { ?x foaf:currentProject :SemWebProject

FILTER (?x = ?author) }
FILTER (!BOUND(?x)) } }"^^g:query.

}

Figure 1: An Interdependence Set

Figure 1 illustrates the interdependencies of NGs resulting
from the definitions in example 5. We call such a set of
interdependent graphs an interdependence set.

5. SEMANTICS
We now revisit the requirements from our use case to dis-

cuss requirements on the NGs semantics. Afterwards we

give an overview of the semantics. A detailed definition is
given in the appendix. For the understanding of the de-
tailed semantics, some knowledge of the SPARQL algebra
[4] and of the well founded semantics for logic programs [20]
is required. Unfortunately we do not have enough space to
repeat the these foundations in detail here.

5.1 Requirements on the Semantics of NGs
As we have pointed out when describing the use case, we

envision NGs to be a mechanism used by a broad range of
agents on the semantic web to recombine RDF data. In this
environment, it is not possible to pose restrictions on the use
of NGs (requirement 2), for example to ensure hierarchical
dependencies between NGs or stratified use of negation (i.e.
no view using negation directly or indirectly depends on
itself).
Cyclic Definitions of Networked Graphs. A scenario
that may lead to problems with naive interpretations is
given when you assume that Mikes assistant Anna persuades
all acknowledged authors to join the project. She adds a
view to mikesProject saying that everybody acknowledged
has :SemWebProject as a foaf:currentProject. Now obvi-
ously nothing can be inferred about acknowledged authors
anymore, because they are only acknowledged if they are not
members of the project. However, we still want to have con-
tact information and literature of everybody else available
on the website, as they are not affected by this contradic-
tion. The semantics of NGs must be able to handle such
mutual dependencies via negated premises.
SPARQL, Rules and Logic Programs. Networked
Graphs are quite similar to logic programs. In fact we show
how SPARQL can be mapped to acyclic Datalog with nega-
tion in [17]. Independently, Polleres defines a mapping to
logic programs under the stable model semantics [16]. We
define the semantics of NGs analogously to a fixpoint se-
mantics for logic programs. From a high level point of view
we treat SPARQL CONSTRUCT queries as rules with nega-
tion. While the encapsulation of SPARQL algebra expres-
sions into a fixpoint semantics may seem a bit complicated
at first, it has two clear advantages: First, it allows for us-
ing existing SPARQL endpoints. Second, NGs can auto-
matically benefit from future extensions of SPARQL such
as aggregates or user defined filter functions.
RDF Schema. SPARQL defines entailment regimes under
which a query can be evaluated. The standard entailment
regime is simple RDF entailment. However, more complex
regimes like RDFS are possible, the only requirement being
monotonicity of the entailment regime. Using a more com-
plex entailment regime, NGs can be evaluated taking RDFS
into account, without additional extensions to NGs. (Note
that NGs are expressive enough to alternatively model the
RDFS inference rules as view definitions.) Sirin and Par-
sia propose an entailment regime for a subset of SPARQL,
which can be used to query OWL ontologies taking into ac-
count OWL DL semantics [5]. Using such an entailment
regime could even bring the power of OWL to a subset of
NGs. Interaction with OWL, however, would need a de-
tailed investigation of the resulting combined language. In
the following we assume a basic RDF entailment regime.

5.2 High-Level View of the Semantics of Net-
worked Graphs

We address the requirements on the semantics, especially
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regarding reasoning in the presence of contradictions, by
adapting the well founded semantics (WFS) for logic pro-
grams [20] to NGs. In this section we describe the core idea
of the WFS. Details are given in the appendix.
Fixpoint Model for Well-founded Semantics. The
WFS is based on a three valued logic with truth values of
true, false and unknown. It assigns truth values of true
and false to as many facts as possible. For facts, where such
an assignment is not possible, the truth value assigned is
unknown. This is the case for non-stratifiable negation as
sketched above. The WFS treats true and false facts sym-
metrically, and is defined using the fixpoint of a direct conse-
quence operator T , which we briefly explain in the following
paragraphs.
The WFS for NGs assumes all extensionally listed state-

ments and everything we can follow from these statements
without using bound negation to be true and by assuming
all statements in the so called greatest unfounded set to be
false. To explain the unfounded set, we need the notion
of ground instantiated views. A view is ground instantiated
by replacing every variable in the view with an element of
the set of RDF Resources R. Hence, the statement patterns
in a ground instantiated view do not contain variables any
more.
We say an optional statement used in bound negation like

(?x foaf:currentProject :SemWebProject) in example 3
is matched negatively. All other statements are matched
positively. A statement S is in an unfounded set U , if
for all ground instantiated views v with S in the CON-
STRUCT pattern one of the following holds: (1) All neg-
atively matched statements in v are known to be true or (2)
Some positively matched statement in v is known to be false
or (3) Some positively matched statement in v is in U . The
greatest unfounded set is the union of all unfounded sets.
The third condition applies to mutually dependent ground

instantiated views, where none of the views can be estab-
lished to be true or false first.
The sets of true and false statements are extended itera-

tively by computing the direct consequences of the known
true and false statements until a fixpoint is reached. The di-
rect true consequences are statements in the CONSTRUCT
patterns of ground instantiated views, which match the
known true and false statements from the previous itera-
tion. A new unfounded set based on the knowledge from
the previous iteration is determined. All statements in the
new unfounded set are direct false consequences.
Statements that are not assigned a value of true or false,

when the fixpoint is reached, are assigned a truth value of
unknown statements. We define the semantics of a NG GW ,
deref (GW ), as the set of true statements in the graph when
reaching the fixpoint.
Example. In our example, after Anna has added her new
view, all ground instantiations of this new view together
with the view defining the acknowledgements form an un-
founded set: every statement of the form (:semWebProject
:acknowledges sbd) negatively depends on a statement of
the form (sbd foaf:currentProject :SemWebProject),
which in turn depends on the first statement. Hence, no
statements about acknowledged authors are inferred. How-
ever, all views, which are not directly affected, are not in-
fluenced by the contradiction, because the statements they
generate are not part of an unfounded set.
Procedural Semantics. Obviously it is difficult to work

with all possible ground instantiated statements and to guess
an unfounded set, because of combinatorial explosion and
non-determinism. A procedural semantics is available, how-
ever, which we shortly explain in the next section.

6. IMPLEMENTATION
We have implemented a NG reasoner as an extension for

the Sesame 2 RDF repository. Implementation, public pro-
totype and test data are available at
http://isweb.uni-koblenz.de/Research/NetworkedGraphs.
The implementation uses a variation of the alternating

fixpoint algorithm for computing the WFS [7], which does
not require to guess an unfounded set. The algorithm is
initiated with true statements in an interdependence set.
It then alternates between an overestimation of the set of
true, inferred statements and an underestimation of this
set. Eventually, this alternation converges to the set of true
statements in the interdependency set.
In some more details, the procedure starts with the true

statements, which are extensionally listed, or which can be
derived from views, which do not use negation. We call this
underestimate U1. Statements in U1 are known to be true.
U1 is used to compute an overestimate O1 by evaluating all
views against this set of true statements. The result will be
an overestimate, because U1 was still incomplete and there-
fore bound negation will succeed in too many cases. O1

represents the set of potentially true statements. We do not
know for every statement in O1, whether it really is true,
but at least it is not definitely false. Now we compute a new
underestimate, using O1 to match negatively matched state-
ments and U1 to match all positively matched statements.
The result U2 is an underestimate of true statements that is
larger than U1.
When after some iterations we come up with the same

under- and overestimates as in the previous iteration, a fix-
point has been reached. The underestimate then equals the
true statements under the WFS, i.e. it represents the seman-
tics of the interdependence set.
The algorithm is combined with tabling to reduce the

amount of redundant work. Tabling means we save inter-
mediary results during the iterative computation, instead
of recomputing them when needed. Apart from saving re-
dundant work, this also reduces network traffic during dis-
tributed evaluation. Additionally, we apply heuristics to
filter out irrelevant parts of interdependence sets. NGs eval-
uation takes place at query time in the current prototype.

6.1 Initial Experiments
First tests have shown that the prototype works well with

medium sized datasets of up to 200,000 statements. Queries
against sets of 20 to 60 NGs with 20 to 60 views could be
answered within 3 to 120 seconds (depending on the size
and complexity of the problem) on a 2GHz Pentium M. A
scenario like our use case can be evaluated in three itera-
tions. To improve scaleability, we will improve integration
with the Sesame query engine and the pruning of the search
space in future work.

6.2 Distributed Evaluation
Every view, together with its table of interim results and

some status information used for the detection of cycles, is
represented as a single ’QueryNode’ object. This allows to
distribute NG reasoning by distributing QueryNodes to the
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machines holding the relevant graphs. The communication
between QueryNodes is done using the existing SPARQL
protocol, with small extensions for control data. The exten-
sions are threefold:
First, when involving multiple endpoints in NG evalua-

tion, we need to detect and avoid cycles. Hence, we extend
the SPARQL query protocol with a list of queryIDs. When-
ever a QueryNode forwards a query to evaluate some view, it
generates a new queryID and appends it to the list. Upon re-
ceiving a query, a QueryNode compares the list of queryIDs
in the query message with the list of the queryIDs it has gen-
erated itself. If a cycle is detected, subsequent queries are
not forwarded to other peers. The received query is only
evaluated on local data and the result is returned. Using
this extension, an iteration of the alternating fixpoint pro-
cedure is started by a single QueryNode and triggered on
other nodes in a tree shaped hierarchy. After every itera-
tion, every QueryNode updates its table of results. Only
new results are returned to other nodes.
Second, through indirect dependencies it may happen that

the same QueryNode is triggered twice in the same itera-
tion. To avoid duplicate work or errors in the tables, each
queryID is augmented by an iteration number. If an already
computed combination of queryID and iteration number is
received, the query is answered from the local table.
Finally, the query result message is extended with a flag

signalling that the answering node considers the evaluation
of its view done – either because all views it depends on
are also done, or because it is the root of a subtree of the
QueryNode network, for which a fixpoint has been reached.
This last extension is only used to improve performance,
as it can save the last iteration of the alternating fixpoint
algorithm. The fixpoint could also be detected by the node
which started the evaluation.
The protocol is defined as an extension to the SPARQL

protocol specification9 and available from the implementa-
tion webpage. As the mechanism is based on existing stan-
dards, it allows the usage of existing SPARQL endpoints
when defining NGs. When dealing with non NG aware
repositories, one may fall back to standard SPARQL.

7. COMPLEXITY
We briefly investigate the data complexity of NG evalu-

ation. The data complexity is defined as the complexity of
computing a model for a variable extensional knowledge base
given a fixed query. Data complexity is of particular interest
here, as usually the view definitions are short compared to
the knowledge base. Further we expect view definitions to
be rather stable, while the extensionally defined statements
might frequently change.
If blank nodes are created in the CONSTRUCT patterns

of views and these views are used recursively, evaluating NGs
becomes undecidable in general. In this case, we could have
infinitely many ground instances of statement patterns. For
this reason we limit the discussion to NGs without blank
node creation.

Theorem 1. The data complexity of NG evaluation with-
out blank node creation is quadratic in the size of the NGs
in the interdependence set.
If negation is not used in recursive view definitions, we

can give a tighter bound:
9http://www.w3.org/TR/rdf-sparql-protocol/

Theorem 2. The data complexity of NG evaluation with-
out value creation and with stratifiable negation is linear in
the size of the NGs in the interdependence set.
The combined complexity is the complexity of computing

a model for both variable queries and knowledge bases.
Theorem 3. The combined complexity of NG evaluation

without value creation is in EXPTIME.
All proofs are based on mappings to fragments of logic

programming and their well known complexity. Proofs for
theorems 1 and 2 and can be found in [18]. The proof of
theorem 3 is derived from the facts that NGs can be mapped
to datalog with well founded negation [18], which has EX-
PTIME combined complexity (implicit in [20]). NGs creat-
ing blank nodes correspond to logic programs with function
symbols, which are undecidable in general under the WFS.

8. RELATED WORK
Related work comes from several areas, especially from

rules and views for the semantic web.
OWL Contextualization. For the Web Ontology Lan-
guage OWL, which is based on RDF, declarative approaches
for import and contextualisaton have been proposed:
owl:imports is a mechanism for OWL which includes a
whole OWL file in another one. It is a rather coarse mech-
anism, not flexible enough for the use case presented here.
C-OWL [13] is an extension of OWL with local contexts
connected with bridge rules. C-OWL aims at translations
between local contexts, not at reuse of RDF/OWL data.
Rules to deal with (variations of) named graphs.
Approaches for dealing with RDF graphs with either a decla-
rative or a procedural semantics include the following:
Stoermer et al. use named graphs plus semantic exten-

sions of RDF to implement a system using modal logic for
statements in RDF graphs [8]. The RDF semantics is ex-
tended, such that statements are only true in the context of
a graph called a context. Between these graphs compatibil-
ity relations can be defined and inferred. The focus lies on
describing relationships among graphs. Reuse of RDF data,
for example by importing statements, is not possible.
The NEPOMUK Representation Language NRL [19] is

used in the context of a Social Semantic Desktop to allow
for a kind of views and to apply various different seman-
tics to RDF graphs. NRL allows for various ways to specify
“views”, which are defined with a procedural semantics in
contrast to the declarative semantics of NGs. Applied in a
heterogeneous and distributed web environment, we expect
problems with this procedural semantics, because implica-
tions will become hard to understand.
N3Logic [3] is a rule language built around RDF. Its ex-

pressive power is comparable to NGs for positive rules. Only
a weaker form of negation is supported by N3Logic. N3Logic
defines several builtins, e.g. cryptographic functions, which
are not available in NGs, but could be modeled using user
defined filter functions in SPARQL. An advantage of NGs
in our opinion is its foundation on SPARQL — both to save
users the effort of learning a new language and to directly
benefit from SPARQL implementations and extensions.
Views. [21] and [12] propose declarative view mechanisms
for RDF. They can be used to define “virtual” classes, prop-
erties and instances based on graph patterns. RDFS seman-
tics is employed to ensure that necessary class relations are
also included in the view. The purpose is to provide a view
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to a graph using a different ontology rather than defining
graph contents based on other graphs. These classical views
are not oriented towards reuse and exchange of views across
the borders of single RDF repositories.
Semantic Web Pipes10 can be used to define RDF doc-

uments as views on other documents. An XML syntax is
used and cyclic dependencies are not supported. Semantic
Web Pipes are designed rather as a web service than as a
declarative mechanism.
ActiveXML Abiteboul et al. describe ActiveXML docu-
ments [1], which represent a concept very similar to NGs, but
based on XML. ActiveXML documents may contain inten-
sional subtrees defined through web service calls or XPath
queries. The semantics of ActiveXML documents is also
defined using a fixpoint, but unlike NGs, ActiveXML doc-
uments are infinite in general. In contrast to ActiveXML,
NGs support a powerful kind of negation. While NGs can
support various entailment regimes through the use of
SPARQL, ActiveXML documents have weaker semantics based
on XML.

9. CONCLUSION
We have introduced Networked Graphs as a means for de-

scribing RDF graphs that are partially derived from other
graphs using a declarative view mechanism. We base Net-
worked Graphs on work on SPARQL and Named Graphs.
Extensions allow for recursive view definitions, i.e. a kind
of rules, and easy exchange of self describing Networked
Graphs. Thus, Networked Graphs allow for defining, ex-
changing and executing SPARQL rules, SPARQL views and
RDF data integration in a decentralized fashion. We have
shown that the complexity of our extension allows for use at
web scale, especially if negation is used carefully. Thus, we
propose a mechanism for easy information reuse and recom-
bination and have fulfilled the requirements derived from our
running use case — which is just one of the many cases that
will benefit from dynamic networking between RDF graphs.
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APPENDIX
A. FORMAL SEMANTICS OF

NETWORKED GRAPHS
We limit our definitions here to well defined graph pat-

terns as defined in [15]. Graph patterns, which are not well
defined introduce another kind of non monotonicity apart
from bound negation, which would complicate the following
definitions.

Definition 6 (Well Designed Graph Pattern).
A graph pattern P is well designed, if for every occurrence of
a sub-pattern P0 = (P1 OPTIONAL P2) of P and for every
variable ?x occurring in P , the following condition holds: if
?x occurs both inside P2 and outside P0, then it also occurs
in P1.

Further, we forbid the use of result modifiers: ORDER
does not make sense as the result of a CONSTRUCT query
is a graph and as such a set. When LIMIT and OFFSET are
used to retrieve only a slice of the query results, the seman-
tics of a query may become unclear, as the result becomes
implementation specific.
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Data Structures
U The set of all URIs
R The set of all URIs, blank bodes and RDF literals
V The set of all SPARQL variables
S Polarized statement, a quadruple of the form

R× U ×R× {true, false}
GW Well founded graph, a set of polarized statements
Q A well formed SPARQL query
D Dataset, a set of the form

{G, (n1, G1), (n2, G2), ...(nn, Gn)}
I Set of interdependent graphs

Auxiliary Functions
pos(GW ) {(s, p, o)|(s, p, o, +) ∈ GW }
neg(GW ) {(s, p, o)|(s, p, o,−) ∈ GW }
dSet(Q) dataset of a query

¬D negation of a dataset
dependsOn(v1, v2) view dependency

DISet(I) The set of datasets of the views in I

Table 1: Data Structures and Auxiliary Functions

A.1 Datastructures
We start by defining necessary data structures. The se-

mantics is defined on well founded graphs, which consist of
positive and negative statements. Note that we only need
this construct to define the semantics. We do not need to ex-
press it in RDF. Definitions 7 and 8 adjust definitions from
[4]. Definitions 11 and 12 extend them to sets of NGs.

Definition 7 (Well Founded Graph).
A polarized statement is a quadruple of the form:
R× U ×R× {+,−}
A well founded graph GW is a set of polarized statements.
We say the positive subgraph pos(GW ) of GW is the set
{(s, p, o)|(s, p, o,+) ∈ GW }.
We say the negative subgraph neg(GW ) of GW is the set
{(s, p, o)|(s, p, o,−) ∈ GW }.
pos(GW ) and neg(GW ) are disjunct.
The RDF interpretation of a well founded graph GW is

pos(GW ). The well founded graph of an RDF graph G is
the set {(s, p, o,+)|(s, p, o) ∈ G}.
Definition 7 extends to named graphs and Networked

Graphs.
We determine dependencies of views based on the datasets

of SPARQL queries.
Definition 8 (Dataset).

A dataset is a set {G, (n1, G1), (n2, G2), ...(nn, Gn)} where
G and each Gi are well founded graphs, and each ni is a
URI. All ni are distinct.
G is called the default graph of the dataset, defined us-

ing FROM. (ni, G1) are called named graphs, defined using
FROM NAMED. Let Q be a SPARQL query, then dSet(Q)
is the dataset defined in Q
We will use negation and union of datasets.
Definition 9 (Negation of a Dataset).

The negation of a dataset D, written ¬D, is the dataset for
which the following holds:
If (n,G) ∈ D (or G ∈ D) then (n,G′) ∈ ¬D (or G′ ∈ ¬D

respectively) such that for all s, p, o :
Iff (s, p, o,+) ∈ G then (s, p, o,−) ∈ G′ and
iff (s, p, o,−) ∈ G then (s, p, o,+) ∈ G′.
Definition 10 (Union of Datasets).

The union of datasets D1 and D2, written D1 ∪ D2 is the

dataset for which the following holds: Let (n,G) ∈ D1

• The default graph of D1∪D2 is the union of the default
graphs of D1 and D2.
• If there is no (n,G′) ∈ D2, then (n,G) ∈ D1 ∪D2 else

(n,G ∪G′) ∈ D1 ∪D2.

To evaluate a NG GW we must take into account all
graphs, which GW depends upon.

Definition 11 (Interdependence Set).
We say a view v1 depends on another view v2, written
dependsOn(v1, v2), if G is a graph in the dataset of v1 and
v2 is used in a view definition in G.
An interdependence set I is a set of NGs, such that for

all view definitions v1 and v2 the following holds: If v1 is
a view definition in graph G and G ∈ I and dependsOn(v1,
v2), then all Gi ∈ dSet(v2) are also in I.
Figure 1 in section 4 illustrates the interdependence set

containing mikesProject. We refer to all datasets involved in
evaluating the semantics of an interdependence set as the
dataset of an interdependence set.

Definition 12 (DISet).
The dataset of an interdependence set I, written DISet(I)
is the set of the datasets of the views defining graphs in I.
Graphs with equal names in any two datasets in DISet(I)
are equal.
The dataset of the interdependence set shown in figure 1

is {{(:bobFOAF, bobFOAF), (:chrisFOAF, chrisFOAF)},
{(:mikesProject, mikesProject), (:DBLP, DBLP)},
{mikesProject}}

A.2 SPARQL Evaluation with Symmetric
Negation

We need a small change to the SPARQL semantics in or-
der to treat negation symmetrically, by explicitly negating
statements instead of using negation by failure. The follow-
ing definitions 13 - 15 are taken from [4] and extended to
well founded graphs.
The SPARQL specification [4] defines a function eval(D,

GP) as the evaluation of a graph pattern GP with respect
to a dataset D. Basically GP is the graph pattern of a view
and D is the dataset defined in the view. The range of eval
is a solution sequence

Definition 13 (Solution Mapping/Sequence).
A solution mapping, µ, is a partial function µ : V → T
mapping from a set of variables to a set of RDF terms.
A solution sequence is a list of solution mappings.
Let Q be a SPARQL query and µ a solution mapping. Q/µ

is the query obtained by replacing every variable ?x in Q by
µ(?x), if µ(?x) is defined. We say µ is complete for Q, if it is
defined for all variables of Q. Analogously, we define GP/µ
as the RDF graph obtained by substituting every variable ?x
in a graph pattern GP by µ(?x).
The solution of a CONSTRUCT query is the set of state-

ments obtained by instantiating the CONSTRUCT pattern
using the solution mappings computed by eval. eval is de-
fined for every operator in the SPARQL algebra. It is defined
by recursively applying it to its parameters and using join
and select operations on the results. We do not discuss in
detail how eval is defined, but simply use it as the operator
for the evaluation of a single view in a single iteration in the
following. However, we need to slightly change the defini-
tion of basic graph pattern matching in order to use it with
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well founded graphs. The operator which matches statement
patterns against the dataset is eval(G, BGP), where BGP
is a basic graph pattern consisting only of joins of state-
ment patterns and G is a single RDF graph. In contrast
to the other operators, basic graph pattern matching is di-
rectly evaluated without subsequent calls of eval — here the
actual matching against the dataset takes place.

Definition 14 (Statement Pattern).
A statement pattern is a triple of the form

(R ∪ V )× (U ∪ V )× (R ∪ V ).
We say a statement pattern S enclosed in an OPTIONAL

pattern O of a SPARQL graph pattern P in a query Q is
matched negatively in Q, if the following hold:

• ?x is a variable not used in statement patterns outside
O and at least one of the subject, predicate or object is
?x or S is enclosed in a graph pattern GRAPH ?x {...
S ...} and

• P contains a FILTER expression outside O, which con-
tains the filter expression BOUND(?x) nested in an odd
number of negations.

We say that a statement pattern is matched positively, if
it is not matched negatively.
The notion of a negatively matched statement pattern for-

malizes bound negation, introduced in section 3. In example
3, (?x foaf:currentProject :SemWebProject) is matched
negatively, all other statement patterns are matched posi-
tively. We redefine basic graph pattern matching, such that
negative statements are matched instead of using negation
as failure, hence treating negation symmetrically. Negative
statements are indirectly introduced in NGs evaluation by
negating the largest unfounded set, as we will see below.

Definition 15 (Basic Graph Pattern Matching).
A Basic Graph Pattern is a set of statement patterns.
Let BGP be a basic graph pattern in a query Q and GW be

a well founded graph. Let posBGP (negBGP) be the basic
graph pattern containing exactly the positively (negatively)
matched statement patterns in BGP .
eval(GW , BGP ) is a solution sequence. µ is a solution in

eval(GW , BGP ), if it is complete for BGP and

• posBGP/µ ⊆ pos(GW ) and

• negBGP/µ * neg(GW ) and

• if a statement pattern S in BGP matches some state-
ment in neg(GW ) then S/µ ∈ negBGP , else µ maps
at least one variable in S to some skolem value

This definition of basic graph pattern matching treats pos-
itively matched statement patterns as in [4]. The result is
empty, if negatively matched statements are known to be
negative. For single SPARQL queries, the negative state-
ments are exactly the complement of the statements listed
in the RDF graphs in the dataset, so the behavior is also
the same here. If, however, a negatively matched statement
pattern does not match a negative statement (the matched
statement is unknown), a result with skolem values is ob-
tained. This result then is filtered out, because of the bound
negation used in the query. Using standard negation as fail-
ure here as in [4], would let the bound negation succeed.

A.3 Well Founded Semantics of NGs
The extended SPARQL evaluation function defined above

is used to define the direct consequence operator of the well

founded semantics for true statements. For negative state-
ments the direct consequence is defined using the negation
of the greatest unfounded set.

Definition 16 (Unfounded Set).
Let I be an interdependence set.
We say dataset U is an unfounded set of I, if for every

polarized statement S in any graph GW in U the following
hold:
S = (s, p, o,+) is positive and for every view v in GW

and for every complete solution mapping µ for v, such that
(s, p, o) is in the CONSTRUCT pattern of v/µ, one of the
following holds:

1. some positively matched statement in the graph pattern
of v/µ is negative in I or

2. some filter expression in the graph pattern of v, which
is not surrounded by an optional pattern, evaluates to
false or

3. some negatively matched statement in the graph pattern
of v/µ is positive in I and no filter expression inside
the OPTIONAL surrounding the statement evaluates to
false or

4. some positively matched statement in v occurs in U .

The greatest unfounded set of I is the union of all un-
founded sets of I.
The second and third case make sure we treat solutions

correctly, which in principle meet the unfoundedness con-
ditions but are filtered out by some filter condition, which
is not used to define bound negation. We define the direct
consequence operator WI of the well founded semantics for
NGs based on unfounded sets and the evaluation function
eval. WI assumes all statements in the greatest unfounded
set to be negative and thus introduces negative statements
to NGs evaluation.

Definition 17 (Transformations TI , UI and WI).
We define three transformations TI , UI and WI mapping
from DISets to DISets. Let I be an interdependence set con-
taining a NG GW and D = DISet(I).

• (s, p, o,+) ∈ GW in all datasets in TI(D), iff there is
a view v defining GW , such that the result of v evalu-
ated against dset(v) in D using the SPARQL evaluation
function eval contains (s, p, o).
• UI(D) is the greatest unfounded set of I wrt. D.
• WI(D) = TI(D) ∪ ¬UI(D)

Theorem 4. TI , UI and WI are monotonic.
Proof: directly from the definitions.
From theorem 4 follows, that TI has a fixpoint [20].
Definition 18.

The semantics of an interdependence set I is defined as the
least fixpoint of WI(I). The semantics of an RDF graph G
in an interdependence set I, deref(G), is the set of positive
statements assigned to the corresponding well founded graph
in the datasets in the DISet of I.
For the finite case, the least fixpoint is reached in finitely

many steps [20]. As NG definitions are finite, the only source
of non finiteness can be blank nodes created in the CON-
STRUCT patterns of view definitions. All other generated
statements can only be made of elements of the finite set
of RDF resources used in statements in the DISet. Hence,
finiteness of NG evaluation can be checked using a simple
syntactic test.
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