
Scaling RDF with Time

Andrea Pugliese
University of Calabria

Rende, Italy
apugliese@deis.unical.it

Octavian Udrea
University Of Maryland

College Park, MD 20742
udrea@umiacs.umd.edu

V.S. Subrahmanian
University Of Maryland

College Park, MD 20742
vs@umiacs.umd.edu

ABSTRACT
The World Wide Web Consortium’s RDF standard primar-
ily consists of (subject,property,object) triples that specify
the value that a given subject has for a given property. How-
ever, it is frequently the case that even for a fixed subject
and property, the value varies with time. As a consequence,
efforts have been made to annotate RDF triples with “valid
time” intervals. However, to date, no proposals exist for effi-
cient indexing of such temporal RDF databases. It is clearly
beneficial to store RDF data in a relational DB – however,
standard relational indexes are inadequately equipped to
handle RDF’s graph structure. In this paper, we propose
the tGRIN index structure that builds a specialized index
for temporal RDF that is physically stored in an RDBMS.
Past efforts to store RDF in relational stores include Jena2
from HP, Sesame from OpenRDF.org, and 3store from the
University of Southampton. We show that even when these
efforts are augmented with well known temporal indexes like
R+ trees, SR-trees, ST-index, and MAP21, the tGRIN index
exhibits superior performance. In terms of index build time,
tGRIN takes two thirds or less of the time used by any other
system, and it uses a comparable amount of memory and
less disk space than Jena, Sesame and 3store. More impor-
tantly, tGRIN can answer queries three to six times faster for
average query graph patterns and five to ten times faster for
complex queries than these systems.

Categories and Subject Descriptors
I.2.4 [Computing Methodologies]: Artificial Intelli-
gence—knowledge representation formalisms and methods;
E.2 [Data]: Data Storage Representations

General Terms
Algorithms, Performance

Keywords
Resource Description Framework, temporal RDF, RDF in-
dexing

1. INTRODUCTION
RDF (“Resource Description Framework”) is a growing se-

mantic web standard from the World Wide Web Consortium

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

that has support from many companies. Large databases of
RDF data that we are aware of include a 20.5 million triple
database on activities by the US congress1 and a 5 million
plus database of triples about violent events.

RDF primarily specifies the creation of triples (s, p, o)
where s is a subject, p is a property, and o is an object
(or a value) that the property p has for a given subject.
Some triples have no temporal extent (e.g., Mary is always
the mother of John). However, some triples can have a tem-
poral extent attached to them. For instance, the USA (sub-
ject) may have Bill Clinton (object) as the value of its Pres-
ident property throughout the entire time frame 1992-2000.
We call triples that are valid continuously during a time in-
terval determinate triples. Likewise, some triples may only
be known to occur at certain time points during an inter-
val, rather than be true continuously throughout the inter-
val. For example, company A (subject) may have a supplier
(property) relationship with company B (object) at some
points of time during the time interval 10−20. We call such
triples indeterminate triples.

Past work on temporal RDF is relatively sparse. In early
related work, Buraga et al. [3] present an RDF-based model
for representing spatio-temporal relations between websites.
They define the TRSL language that uses XML to express
a number of different operators for the Interval Temporal
Logic. Gutiérrez et al. [5, 6] are the first to provide a
syntax and semantics for temporal RDF with determinate
triples, as well as a query language; however, they do not
provide query processing algorithms or an evaluation of the
language. Note that all past work in temporal RDF has
the following limitations. (i) No work on indexing temporal
RDF exists to date. (ii) No work on temporal RDF to date
handles indeterminate triples. (iii) Though some algorithms
have been given for query processing in temporal RDF [5,
6], they are all main memory based and do not include any
implementation or experimental details.

Past work on RDF indexing is also relatively sparse. Liu
and Hu [10] and Matono et al. [12] propose two differ-
ent indexing schemes for RDF path queries on cycle-free
RDF databases. Since modern RDF query languages such
as SPARQL rely on graph pattern queries, we focus on
SPARQL-like queries in this paper. While we are not aware
of any RDF index designed especially for such queries, most
RDF storage systems to date such as Jena, Sesame, RDF-
Broker, 3store make use of a relational database backend
to store RDF and employ relational indexes to speed up
query processing. For instance, Jena2 uses a normalized

1http://www.govtrack.org.

605

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

triple store approach, in which triples are stored in a state-
ment table with columns for the triple’s subject, property
and object. Lexical-order relational indexes can be defined
on any of the columns (or combinations of them) to make
data access more efficient. Sesame can also use a relational
back-end to store triples, but they use native indexing in the
form of a B-tree on the (subject, property, object) of a triple
– the order of these can be changed by the user. The system
also allows additional indexes to be defined on parts of the
triple. The common issue with all of the above approaches
is that the translation of RDF graph queries into SQL tends
to produce queries too complex for the relational indexing
techniques employed. On the other hand, tGRIN is especially
designed to reduce the complexity of graph pattern queries.

Graph indexing also relates to RDF, since the latter can
naturally be represented as a graph in which RDF resources
are vertices and RDF triples are edges. Graph indexing
techniques generally fall into the following two categories.
Graph database indexing – an example of which is the work
by Yan et al. [16] –, is concerned with efficiently retrieving
supergraphs of a given query from a set of graphs (the data-
base). Indexing large graphs for reachability and navigation
is relevant to web and telecommunication traffic analysis.
Abello and Kotidis [2] propose efficient storage methods for
large graph navigation based on hierarchical decompositions
of the edge set. Trißl and Leser [14] provide fast index-
ing methods for large graphs in the context of reachability
queries. None of these works on RDF and graph indexing
addresses the problem of answering general graph pattern
queries. In [15] we proposed the first RDF indexing tech-
nique specifically targeted to this kind of queries.

In this paper, we start by extending the past work of [5,
6] to the case of indeterminate triples. This is not claimed
as a particularly novel contribution. We then propose the
novel concept of a normalized tRDF database and provide a
normalization algorithm. We present a formal definition of
tRDF queries and answers. We then present the tGRIN2 in-
dex structure suitable for graph pattern queries. The tGRIN
index structure is a tree whose root implicitly represents the
entire space of vertices in a tRDF database. As in the case
of RDF, every tRDF database can be thought of as a graph
— Figure 1 shows an example. Each node in a tGRIN index
implicitly represents a set of vertices in this graph. Each
node m has a “center” vertex Cm and a “radius” Rm label-
ing it. Node m implicitly represents all vertices in the tRDF
graph that are within distance Rm of the vertex Cm.

The RDF indexing technique proposed in this paper dif-
fers from our work in [15] in several critical ways: (i) the
presence of temporal annotations on the triples changes the
semantics of queries and distance measures in the tRDF
graph; (ii) the index structure is a n-ary tree instead of a
binary tree, thus affecting the way the index is built and
(iii) the tGRIN index is implemented on disk, whereas our
previous GRIN index was in-memory.

We have also built the first experimental temporal RDF
prototype DBMS that we are aware of. We compared our
tGRIN based implementation with three commercial (non-
temporal) RDF datastores. Jena2 from HP is one of the
best known industry systems. Sesame from OpenRDF.org
and 3Store from the University of Southampton are also
well known RDF DBMSs. All these RDF stores, including

2tGRIN stands for temporal Graph-based RDF INdex.

ours, use a standard relational DBMS for storage so that
years of advances in concurrency control, crash and error
recovery, etc. can be easily leveraged. We extended Jena2,
Sesame, and 3Store with some of the best known methods
to index temporal data. In particular, we extended them
with R+-trees, SR-trees, ST-index and MAP-21 – compared
in detail in the survey by Salzberg and Tsotras [13]. For
each of Jena2, Sesame and 3Store, we chose the index that
worked best (of these 4 indexes) and compared the results
with tGRIN. We found that tGRIN took only 66% of the
time required by them (or less) to build the index and uses
a comparable amount of memory to store the index. Most
importantly, however, tGRIN can answer queries three to six
times faster for relatively simple query patterns, and six to
ten times faster for complex queries.

2. TEMPORAL RDF: SYNTAX & SEMAN-
TICS OVERVIEW

In this section, we overview the syntax and semantics of
determinate temporal RDF provided by Gutiérrez et al. [5,
6]. Moreover, we provide a straightforward extension to the
case of indeterminate triples.

A Temporal RDF (or tRDF for short) database consists
of a set of temporally annotated RDF triples3 of the form
(subject, property: annotation, object) where:

• The subject is an entity denoted by an URI reference
from a set U .
• The property is an entity denoted by an URI reference

from a set P .
• The object is either an entity from U or a constant

from the set of literals L. URI references and literals
form the set of resources R = U ∪ L.

The structure of the “annotation” will be described
shortly.

In addition to these, a tRDF database may also contain
triples of the form (p1, rdfs : subPropertyOf, p2) which
denote the fact that for any triple with property p1 we can
infer an identical triple with property p2.

4 Throughout this
paper, we use Tp to denote the set of all time points and T
to denote the set of all possible time intervals.

The annotation of a tRDF triple can take one of the fol-
lowing forms (n is a natural number and T ∈ T):

1. (s, p : {T}, v). This type of triple represents a rela-
tionship p between s and v that holds at every time
point in T (e.g., “Senate Joint Resolution 37 (sj37)
was under discussed in the Senate Finance Committee
throughout May 2002)”.

2. (s, p : 〈n : T 〉, v). This triple represents a relationship
p between s and v that holds at least at n distinct
time points in T (e.g., “The politician with identifier
people/B000711 campaigned for at least 8 months in
2004”).

3. (s, p : [n : T], v). This triple represents a relationship
p between s and v that holds at most at n distinct

3Although technically the temporal annotation makes these
quadruples, the term “RDF triple” is so wide-spread in the
literature that we will continue using triple.
4Due to space restrictions, we do not discuss certain features
of RDF (such as blank nodes, reification or collections) and
RDFS.

606

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

people/

B000711

congress/

senate/ca

congress/

house/101/

ca

congress/

house/100/

ca

role:{1987-1988}

role:{1989-1990}

campaign/

2004/

S2CA00286
campaign:

<8: 2004>

role:{1993-1997}

role:{1998-2010} office

B., Carol

contributed:[2: 2004]

congress/committees/

SenateCommerceSci-

enceAndTransportation

congress/committees/

SenateEnvironmentand

PublicWorks

member:{1995-2007}

member:{1995-2006}

chairperson:{2007}

congress/

106/bills/

s1990

sponsor:{01/1999}

inCommittee:{1/1999, 2/1999}

State and

Local

Government

congress/

107/bills/

sj37

supported:{05/2002}

subject
subject

congress/

committees/

SenateFinance

inCommittee:

{05/2002}

(chairperson, rdfs:subPropertyOf, member)

(supported, rdfs:subPropertyOf, sponsor}

?v1

congress/

senate/ca

role {1996-2002}

congress/

committees/

SenateFinance

inCommittee:

<1, 2000-2005>

supported:

<1, 2000-2005>

congress/committees/

SenateCommerceSci-

enceAndTransportation

member {1996-?v2}

?v3
supported

<1: 1998-2005>

State and

Local

Government

subject

congress/

107/bills/

sj37

people/

B000711

congress/

106/bills/

s1990

supported

{01/1999}

(supported, rdfs:subPropertyOf, sponsor}

sponsor

{01/1999}

people/

B000711

congress/

senate/ca

role:{1993-1997}

role:{1998-2010}
role:

{1993-2010}

campaign/

2004/

S2CA00286

B., Carol

contributed:

[2: 2004]

contributed:

[1: 2004]

people/

B000711

campaign/

2004/

S2CA00286

campaign:

{01/2004-

10/2004}

campaign:

<8: 2004>

(a)

(b)

(c) (d)

Figure 1: (a) Example tRDF database; (b) Example tRDF query; (c) Normalization – generation example; (d)
Normalization – pruning example.

time points in T (e.g., “Carol B. contributed to the
campaign of politician people/B000711 at most two
times in 2004”).

Example 2.1. Figure 1(a) contains a graphical depiction
of a tRDF database where (i) the time granularity is one
month, (ii) triples without temporal annotations are con-
sidered true at all time points, and (iii) triples annotated
only with year-based intervals are assumed to start in Jan-
uary of the starting year and end in December of the end-
ing year. The example is based on a subset of the Gov-
Track dataset5. The full names for the identifiers (e.g.,
congress/106/bills/s1990) used in this example are available
in the dataset.

To define the semantics of tRDF, [5, 6] define an in-
terpretation I as a function I : Tp → U × P × R
that associates a set of RDF triples with every time-
point. Clearly, not all interpretations make sense for
a given tRDF database. For instance, an interpre-
tation I for the database in Example 2.1 that has
(people/B000711, role, congress/house/101/ca) �∈ I(1989)
does not match the database. We therefore define the con-
cept of a satisfying interpretation.

Definition 2.1 (tRDF satisfaction). Let I be a
tRDF interpretation. I satisfies a tRDF triple e (denoted by
I |= e) under the following conditions:

1. I |= (s, p : {T}, v) iff ∀ t ∈ T ,(s, p, v) ∈ I(t).
2. I |= (s, p : 〈n : T 〉, v) iff |{t ∈ T |(s, p, v) ∈ I(t)}| ≥

n.
3. I |= (s, p : [n : T], v) iff |{t ∈ T |(s, p, v) ∈ I(t)}| ≤

n.
4. I |= (sp, rdfs : subPropertyOf, p) iff ∀ t ∈ Tp,
∀ (s, sp, v) ∈ I(t), (s, p, v) ∈ I(t).

I satisfies a tRDF database D (denoted by I |= D) iff ∀e ∈
D, I |= e. Database D is consistent iff ∃I s.t. I |= D.

5Publicly available at http://www.govtrack.us/source.xpd
— consists of over 20.5 million triples.

Definition 2.2 (Entailment). A tRDF database D
entails a tRDF triple e, denoted D |= e, iff for each tRDF
interpretation I such that I |= D, it is also the case that
I |= e.

Example 2.2. The database in Figure 1(a) entails
the triple (people/B000711, supported : {01/1999},
congress/106/bills/s1990) since sponsored is a
subproperty of supported. However, it does
not entail (people/B0007111, role : {1985 −
1988}, congress/house/100/ca) because we can con-
struct a satisfying interpretation for D that does not satisfy
this triple.

3. NORMALIZED TRDF DATABASES
In this section, we propose the concept of a normalized

tRDF database. In a normalized tRDF database D, any
tRDF-triple t that is entailed by D must be entailed by a
single tRDF-triple in D. In general, tRDF databases may not
be normalized. For instance, consider the query: what was
the role of people/B000711 between 1996 and 2003? on the
database in Figure 1(a). To answer this query, we must an-
alyze the subset of D containing the two triples on the prop-
erty role between people/B000711 and congress/senate/ca.
Even though there is a single continuous period 1993–2010,
it is represented in two different triples that both intersect
the interval in the query ([1997, 2003]). In general, in the
worst case we would need to look at all possible subsets of
triples (an exponential search space) even for the simplest
queries. In this section, we show how to normalize a tRDF
database — later, in Section 6, we will show experimentally
that normalization plays a big part in evaluating queries ef-
ficiently at the expense of a small increase in the storage
space.

Definition 3.1 (Normalization). Given a tRDF
database D, a normalization of D is a tRDF database D′

such that D |= e iff ∃e′ ∈ D′ such that {e′} |= e.

Note that a normalization of D can actually be smaller
in size than D. For example, if D = {(s, p : {10 −

607

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

20}, o), (s, p : {20 − 30}, o)}, then these two triples say
that the triple (s, p, o) is valid throughout both the inter-
vals [10, 20] and [20, 30]: hence, they can be merged into
one triple (s, p : {10− 30}, o). The normalization avoids the
requirement that we compute all triples entailed by D as this
can lead to an exponential blow up. For instance, the triple
(people/B000711, role{1993− 1997}, congress/senate/ca)
taken at a time granularity of one day, would entail 5 ·365 =
1865 triples, one for each day in the interval 1993–1997.
However, under Definition 3.1 we only need space for one
triple in D′.

We use two operations to normalize a tRDF database. The
first is the generation of new triples – for instance, by coa-
lescing identical triples which are annotated with connecting
time intervals.

Proposition 3.1. Suppose s ∈ U, p, sp ∈ P, v ∈ R, n
and m are natural numbers, and T, T ′ ∈ T . The following
relationships hold:

1. {(s, sp : {T}, v), (sp, rdfs : subPropertyOf, p)} |=
(s, p : {T}, v).

2. {(s, sp : 〈n : T 〉, v), (sp, rdfs :
subPropertyOf, p)} |= (s, p : 〈n : T 〉, v).

3. {(s, p : {T}, v), (s, p : {T ′}, v)} |= (s, p : {T ∪
T ′}, v).

Figure 1(c) shows example applications of Cases 1 and 3 of
Proposition 3.1. Generated triples are depicted with dashed
lines.

The second operation consists in pruning redundant
triples.

Proposition 3.2. Let s ∈ U, p ∈ P, v ∈ R be resources,
let n and m be natural numbers, and let T, T ′ ∈ T . The
following relationships hold:

1. If T ⊆ T ′, then {(s, p : {T ′}, v)} |= (s, p : {T}, v).
2. If m ≤ n and T ⊆ T ′, then {(s, p : 〈n : T 〉, v)} |=

(s, p : 〈m : T ′〉, v).
3. If m ≤ n and T ⊆ T ′, then {(s, p : [m : T ′], v)} |=

(s, p : [n : T], v).
4. If |T ∩ T ′| ≥ n, then {(s, p : {T}, v)} |= (s, p : 〈n :

T ′〉, v).

Figure 1(d) shows example applications of Cases 3 and
4 of Proposition 3.2. The triples that can be deleted are
represented by dashed lines.

Finally, Figure 2 shows the tc algorithm that normal-
izes a tRDF database D. In the algorithm, we denote
by subprop(D) the set of rdfs : subPropertyOf triples in
D. We assume there are no cycles in subprop(D) (other-
wise all properties involved in a cycle are equivalent) and
subprop(D) is sorted in topological order. Furthermore,
group(D) is an ordered set containing the same triples as
D and such that the triples having the same subject, prop-
erty and value are consecutive.

Proposition 3.3. Given a tRDF database D, the follow-
ing statements hold:

1. tc(D) is a normalization of D.
2. Algorithm tc runs in time O(|D|2 · log|D|).
3. |tc(D)| is O(|D|2).

Algorithm tc(D)
Input: tRDF database D
Output: Normalization of D

1 R← D
2 for all e ∈ R \ subprop(R)
3 for all e′ ∈ R \ subprop(R) \ {e}
4 if {e} |= e′ according to Proposition 3.2
5 remove e′ from R
6 end if
7 end for
8 end for
9 for all e ∈ R \ subprop(R)
10 for all e′ ∈ subprop(R)
11 if {e, e′} |= e′′ according to cases 1 or 2 of Prop. 3.1
12 add e′′ to R
13 end if
14 end for
15 end for
16 B ← group(R)
17 R← R \B
18 repeat
19 pick the first e ∈ B
20 for all e′ ∈ B \ {e}
21 if {e, e′} |= e′′ according to case 3 of Prop. 3.1
22 remove e and e′ from B
23 e← e′′

24 end if
25 end for
26 add e to R
27 remove e from B
28 until B = ∅
29 return R

Figure 2: Normalization of a tRDF database.

3.1 tRDF consistency
Unlike RDF, which is essentially free of inconsistencies

with the exception of data type mismatches, under our tRDF
model we could represent inconsistent databases.

Proposition 3.4. A tRDF database D is inconsistent iff
at least one of the following conditions holds:

1. D |= (s, p〈n : T 〉, v), D |= (s, p[m : T ′], v), T ⊆ T ′,
and n > m.

2. D |= (s, p{T}, v), D |= (s, p[n : T ′], v), and |T ∩ T ′| >
n.

Figure 3 contains examples for the two cases in which
inconsistencies can occur.

campaign/
2004/

S2CA00286

B., Carol

contributed:[2: 2004]
contributed:<3: 2004>

campaign/
2004/

S2CA00286

B., Carol

contributed:[2: 2004]
contributed:{01/2004-05/2004}

Figure 3: Examples of tRDF inconsistencies.

The consistency of a tRDF database D can be checked
by first computing its normalization D′ (whose size is poly-
nomial in the size of D), then checking the conditions of
Proposition 3.4 on D′.

Proposition 3.5. The problem of checking the consis-
tency of a tRDF database D has a worst-case time complexity
of O(|D|4).

608

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

4. TRDF QUERIES
A tRDF query is essentially a conjunctive SPARQL6 query

that is augmented with temporal annotations on the edges
(either variable or constant). Most RDF databases have in-
terfaces that support the SPARQL language, which allows
us to better evaluate our implementation w.r.t. existing sys-
tems.

Definition 4.1 (tRDF query). A tRDF query is a 5-
tuple (N, E,V, λn, λt) where:

• N is a set of vertices.
• V is a set of variables.
• E ⊆ N ×N × (V ∪ P) is a set of edges.
• λn : N →R∪ V is a vertex labeling function.
• λt is an edge labeling function that associates with

every edge in E, an expression of the form {T}, 〈n : T 〉
or [n : T], where T is either a constant time interval
or a variable and n is a natural number.

We refer to each edge in the query graph pattern as a query
atom.

Example 4.1. Figure 1(b) shows a graphical depiction of
a tRDF query. The query can be easily translated into a
SPARQL graph pattern, if we removed the temporal annota-
tion.

To provide an answer to a tRDF query over a database
D, we are looking for all possible substitutions for the query
variables in V such as the query graph after the proper sub-
stitutions is entailed by D.

Definition 4.2 (tRDF query answer). The answer
to a tRDF query q = (N, E, V, λn, λt) w.r.t. a database D,
denoted ansq(D), is a set of variable substitutions {θ1, . . . ,
θk}, with θi : V →R∪Tp such that the following conditions
hold:

1. (Soundness). For all i ∈ [1, k] and for all query atoms
qj ∈ q, D |= qjθi, where qjθi denotes the application
of the substitution θi to query atom qj .

2. (Completeness). For all substitutions θ such that D |=
qjθ for all query atoms qj , there is a substitution θj ∈
ansq(D) that is more general than θ.7

Note that the query operations we specified are akin to re-
lational selection. We have not defined anything that is
equivalent to projection over tRDF databases (i.e., we do
not select a subset of variables we are interested in). Ex-
perimentally, we have determined that unlike the relational
case, projection does not help much with the query running
time (which is dominated by searching for subgraphs match-
ing the query). Projection can be therefore applied after
finding ansq(D) in linear time in the size of the answer.

Example 4.2. The query in Figure 1(b) has two possi-
ble answers in the dataset in Figure 1(a). In both cases,
?v1 ← people/B000711 and ?v2 ← 2007. The first answer
has ?v3 ← congress/106/bills/s1990, whereas the second
answer has ?v3← congress/107/bills/sj37.

6http://www.w3.org/TR/rdf-sparql-query/
7We assume the reader is familiar with the concepts of a sub-
stitution θ, an application of a substitution qjθ, and what
it means for one substitution to be more general than an-
other[11].

A naive algorithm for answering tRDF query q on a data-
base D can be given as follows:

1. For each query atom qj ∈ q, compute the set Θj of
substitutions where D entails qjΘj .

2. Consider all possible elements of Θ1 × · · · × Θn and
select those elements (θ1, . . . , θn) for which all substi-
tutions θi with i ∈ [1, n] are compatible (i.e., do not
assign different values to the same variable).

The clear disadvantage of this algorithm is that it has to
compute a Cartesian product (essentially a join of n rela-
tions), which is prohibitively expensive for complex queries.
In fact, we show experimentally in Section 6 that some of the
leading RDF database systems we considered cannot handle
queries with graph patterns that go beyond 15 vertices, half
of which are variables.

Instead, let us look at Example 4.2 again. The entire
GovTrack dataset this example is extracted from contains
over 20 million triples, and yet the answer to our query can
be found in a very small portion of the entire database, which
we have seen in practice to be true of the large majority
of queries. Therefore, a better strategy is to (i) identify
the smallest portion of the database that is guaranteed to
contain the answer and (ii) perform subgraph matching on
that portion. To accomplish this, we define the tGRIN index
structure for temporal RDF.

5. THE TGRIN INDEX STRUCTURE
tGRIN is based on the idea that vertices that are “close”

together in the tRDF graph are more likely to appear to-
gether in a query answer, and therefore should be stored
on the same page (in the same index node). Unfortunately,
in tRDF, “close together” can have two meanings: tempo-
rally close together, or close together in terms of distance
in the tRDF graph. For instance, congress/house/100/ca
and campaign/2004/S2CA00286 in our example are close
together in our example tRDF graph, but are temporally far
apart.The tGRIN index structure must take both notions of
closeness into account. We first define distance metrics on
temporal intervals alone, and then show how they can be
used to induce combined graphical-temporal distance mea-
sures.8

5.1 Distance metrics
Graph distance metric. We can use either the short-

est or the longest path in the undirected RDF graph as the
graph distance metric dG(·, ·). We observed empirically that
the shortest path gives better performance for queries and
therefore omit the longest path from the rest of the discus-
sion.

Temporal distance metric. The temporal distance
metrics combine the distance between consecutive temporal
intervals on a path between two resources. First, we need to

8One may wonder whether it is possible to build an R-
tree like structure by thinking of graph based features and
temporal features as two dimensions. Unfortunately, there
seems to be no ordering on the resources in a tRDF graph
that correlates well with graph query patterns. We could
for instance give a lexical ordering based on resource names,
but we determined experimentally that such an ordering was
very inefficient. However, since we can define meaningful
distance measures in both these dimensions, “circles” are the
ideal way to represent inner index nodes in tGRIN.

609

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

A B

CD

E F

G

H

I J K

L M N

Q: {1,3} Q:{1,5}P: {1,3}

Q:{2,4}

P:{3,5}

P:{1,7} P:{2,8}

P:{3,5} Q:{5,7}

Q:{2,4} P{4,6} Q:{2,6}P:{1,9}

P:{3,5} P:{3,7}

Q:{2,6}P:{4,8}

A

B

C

D

GE

F H

I

J

K

L

M

N

(A,1) (B,1) (C,1) (E,1) (I,1) (K,3) (L,4)

(B,2) (F,4) (M,1) (K,3)

(D,5) (N,4)

ALL

?v1 B

?v2 ?v3

?p: {1,3} Q: {1,3}
P: {1,3}

?v1 ?v2

J ?v3

?p: {4,6} Q: {2,6}
P: {1,9}

E

?p: {3,5}

Q: {5,7}

(a) (b) (d)

(c)

Figure 4: (a) Synthetic tRDF database; (b) Example tGRIN index; (c), (d) Example tRDF query patterns.

characterize the distance, δ(Ti, Tj), between two temporal
intervals Ti and Tj . We require that δ satisfies the following
axioms (where T.s and T.e denote the start and end points
of T , and we assume T.s ≤ T.e):

1. δ(Ti, Ti) = 0.
2. δ(Ti, Tj) = δ(Tj , Ti).
3. δ(Ti, Tj) ≤ δ(T ′

i , T
′
j) if T ′

i � Ti, Ti � Tj , and Tj � T ′
j ,

where T � T ′ iff T.e ≤ T ′.s.

If Ti and Tj are temporal intervals, any of the following
are acceptable δ functions:

1. δ(Ti, Tj) =
�
�
�Ti.e−Ti.s

2
− Tj .e−Tj .s

2

�
�
� (interval centers).

2. δ(Ti, Tj) = |Ti.s− Tj .s| (start points).
3. δ(Ti, Tj) = |Ti.e− Tj .e| (end points).
4. δ(Ti, Tj) = |Ti.s − Tj .e| if Ti � Tj , otherwise

δ(Ti, Tj) = |Tj .s−Ti.e| (leftmost and rightmost point).

Given a δ, we can then define a temporal distance metric
as follows.

Definition 5.1 (Temporal distance metric). Let
D be a tRDF database, x, y ∈ R, p = (e1, . . . , en) be
a path between x and y in the undirected tRDF graph,
and Tj be the time interval labeling the edge ej. If
n = 1, then we define dp

T (x, y) = 0. Otherwise, we define
dp

T (x, y) =
�

j∈[2,n] δ(Tj , Tj−1). Finally, the temporal
distance between x and y is the minimum over all the
possible paths dT (x, y) = minp(d

p
T (x, y)).

tGRIN distance metric. Since both dG(·, ·) and dT (·, ·)
are metrics, we can use a norm function to produce a sin-
gle metric d(·, ·). For tGRIN , we use the k-norm d(x, y) =

[(dG(x, y))k + (dT (x, y))k]
1
k .

Example 5.1. Consider the graph in Figure 4(a). Let
δ be defined as the distance between interval center points,
dG be the shortest path distance and k = 1. Clearly,
dG(B, F) = 3. There are two different paths between B
and F : {B, D, E, F} and {B, C, H,F}. On the first path,
dT (B, F) = 2 and on the second dT (B, F) = 3. We take the
minimum and obtain d(B,F) = 4.

5.2 Building the tGRIN index
A tGRIN index is a (balanced) tree such that:

• Each leaf node � contains a set N� ⊆ R of resources s.t.
for all leaf nodes �′ �= �, N�∩N�′ = ∅, and ∪�∈LN� = R.
• Each non-leaf node t contains a pair (c, r), with c ∈ R

and r ∈ IN . Intuitively, this is a very succinct represen-
tation of the set of resources in the graph at distance
at most r of the resource c according to the metric d.
We write this set as Nt = {c′ ∈ R|d(c, c′) ≤ r}.
• For any nodes x, y in the tree such that x is a parent

of y, Nx ⊇ Ny .

One of the important parameters of the index determined
by the physical storage format is the maximum number of
children of each index node, denoted by M . Intuitively, the
higher M is, the smaller the “circles” represented by index
nodes, which means we have a higher probability of identi-
fying smaller parts of the tRDF database to match against
the query. However, large values of M also imply the index,
and hence the search space is larger. We will evaluate the
impact of M on the index performance in Section 6.

Building the tGRIN index is a three-step process based on
a modified Hierarchical Agglomerative Clustering [9] algo-
rithm (HAC for short). In the first step, HAC starts by
having each vertex of the tRDF database in a separate clus-
ter. At each iteration, the standard version of the algorithm
merges the two clusters with the smallest inter-cluster dis-
tance9 until all vertices are in the same cluster. We modified
this algorithm such that at each step, it will merge the M
clusters that are closest in terms of the inter-cluster distance.
At the end of this first step, HAC will produce a dendrogram
– a tree in which each leaf node is a vertex in the tRDF data-
base and each inner node is a cluster. Furthermore, each
node in the dendrogram has at most M children.

The second step of the index building process consists
of traversing the dendrogram tree and finding centroids for
all the inner nodes in the tree. A centroid for a set of
vertices S is the vertex c that has the minimum average
distance to all the other vertices in S: avgy∈S(d(c, y)) =
minz(avgy∈S(d(z, y))). For each cluster, we also deter-
mine the maximum distance from c to any other node:
r = maxx∈S(d(c, x)). At the end of this step, we will have a
“circle” representation (c, r) for any cluster in the tree. Note
that this step inflates the dendrogram clusters to circles,
which may cause overlap between sibling index nodes.

9The inter-cluster distance generally used is either the mini-
mum or the maximum distance between a vertex in the first
and second cluster respectively.

610

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

A final step (optional) consists of balancing the tree while
maintaining the requirements of the tGRIN structure. Note
that unless the number of vertices in the tRDF database is
a power of M , we are unlikely to obtain a balanced tree
from the HAC step. We found this step helpful in practice,
although it is optional for the correctness of the algorithms.

Example 5.2. The structure in Figure 4(b) is a tGRIN
index for the database in Figure 4(a). Here, we used the
interval center distance for δ, k = 1 and M = 2.

The following theorem characterizes the worst-case time
complexity of building the tGRIN index.

Theorem 1. The tGRIN build algorithm runs in time
O(|R|3 logm |R|), where |R| is the number of resources in
the database.

Proof. (Sketch) The HAC algorithm runs in time
O(|R|3) since: (i) computing the minimal distance be-
tween any two resources in the database is O(|R|3) and (ii)
the number of operations in computing the dendrogram is
O(|R|), each operation taking O(|R|2) to compute the inter-
cluster distance. The tGRIN index has a height of at most
logm |R|, therefore at most |R| · logm|R| nodes. Comput-
ing the center of each node is O(|R|2), therefore the overall
complexity is O(|R|3 logm |R|).

5.3 Answering queries with tGRIN
In this section, we show how to evaluate a tRDF query

q = (N, V, E, λn, λt) against the tGRIN structure. We start
by showing how to derive a set of inequality constraints
cons(q) from the query. The constraints will be evaluated
against the nodes of the tGRIN index. This is done to iden-
tify the smallest subgraph that contains answers to q. For
any path connecting a resource c and a variable v in the
undirected graph (i.e. ignoring directionality of edges) cor-
responding to q, we compute dq(c, v) using the same method
as the tGRIN distance metric d. We then add the constraint
d(c, v) ≤ dq(c, v) to cons(q). Note that we can only do this
for paths with non-variable temporal annotations to ensure
the soundness of the constraints.

Example 5.3. Consider the example query in Fig-
ure 4(c). The query leads to the following set of constraints:
d(?v1, B) ≤ 2), d(?v2, B) ≤ 1, d(?v3, B) ≤ 1. For the query
in Figure 4(d), we can deduce the following (not a complete
list): d(?v1, E) ≤ 1, d(?v2, J) ≤ 1 and d(?v3, J) ≤ 3.

In the next step, we use the constraints generated from
the query to identify nodes in the tGRIN structure that
could contain answers to the query. On any tGRIN node,
we have the option of accepting the node (which means it
may contain answers to the query) or rejecting the node
(which means it is guaranteed not to contain answers to the
query). Consider a tGRIN node corresponding to the cir-
cle (c, r). We will define two rules to decide whether (c, r)
should be rejected.

(R1). The first rule is straightforward: for any constant
(resource) x in q, reject (c, r) if d(c, x) > z. Intuitively, we
are rejecting the circle represented by the tGRIN node if any
constant factors in the query are outside it.

(R2). Let us consider the case of a constraint d(x, v) ≤ l
involving variable v and constant resource x. Since d is a
metric, d(c, v) ≤ d(c, x) + d(x, v) ≤ d(c, x) + l. Since d(c, x)

is a constant, if d(c, x) + l ≤ z, we are sure that v is inside
the circle (c, r). In order to find answers to a query q in
the subgraph represented by the current tGRIN index node
(c, r), then all node variables v in the query must be inside
the circle. Therefore, rule (R2) states that we reject (c, r)
unless all variable nodes in the query are provably inside
(c, r).

Algorithm query tGRIN(D, G, q, nI)
Input: tRDF database D, tGRIN index G and query q =
(N, V, E, λn, λt), tGRIN node nI (initially the root of the index).
subgraphMatch is a subgraph matching method that finds an iso-
morphism between the query graph q and a graph H and returns a
set of substitutions Θ for the variables in q.
Output: The set of answers Θ.

1 Θ← 0
2 if nI is a leaf node
3 H ← the subgraph of D containing the resources in NnI
4 return subgraphMatch(q,H)
5 else if nI is not rejected by checking rules (R1), (R2)

against cons(q)
6 Θ← ∪n∈children(nI)query tGRIN(D, G, q, n)
7 if Θ = ∅
8 H ← the subgraph of D containing the resources in NnI
9 return subgraphMatch(q,H)
10 else return Θ
11 else return ∅

Figure 5: Answering queries over tGRIN.

The query answering algorithm (Figure 5) uses the sub-
graph matching algorithm by Cordella et al. [4]. We chose
this algorithm empirically because it generally yielded the
best query answer times. If the invocation of query tGRIN
is currently at a leaf node, we simply match the query graph
with a subgraph of D containing the resources represented
in nI (lines 2–4). Otherwise, if nI is a potential candidate
(line 5 checks (R1), (R2)), we attempt a recursive call on the
children of nI (line 6). If one of the recursive calls returns a
non-empty answer, we return it. Otherwise, we return the
result of the subgraph matching on nI itself (line 8–9).

The following theorem states the correctness of Algo-
rithm query tGRIN and characterizes its worst-case time
complexity.

Theorem 2. The following statements hold:

1. Algorithm query tGRIN terminates and returns the
correct answer.

2. The worst-case time complexity of Algorithm
query tGRIN is O(|R|!).

Proof. (Sketch) We prove the statements in turn:

1. When invoking query tGRIN on the children of an in-
ner node nI , if one of the recursive calls returns a non-
empty answer, then there exists a descendant (c, r) of
nI that satisfies both rules (R1) and (R2), and all the
answers to the query are guaranteed to be inside the
circle identified by (c, r). Thus, the answer can be
found by just matching against (c, r). Only if none of
the descendants contains an answer we must look at
nI itself.

2. The complexity of checking the constraints for rules
(R1) and (R2) only depends on the size of the query
q, since there can be at most |q|2 constraints extracted
from the query. The complexity of depth-first search
is O(M logm |R|), therefore the worst time complexity
of locating the smallest circle containing the answer
is O(M logm |R| · |q|2). The worst-case time complexity

611

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

of the subgraphMatch algorithm is O(N !), where N
is the total number of vertices in the graphs to be
matched [4]. This operation thus dominates the index
traversal, since it can have a worst-time complexity of
O(|R|!).

As the experimental results will show, the worst-case time
complexity stated above is a rather conservative measure,
as the tGRIN index is able to identify very small subgraphs
containing the answer to the query.

Example 5.4. We will now show how query tGRIN
works on the synthetic example database and queries from
Figure 4. For the query in Figure 4(c), we start at the root
node and recursively call query tGRIN on the child index
nodes until we reach (B, 2). From cons(q) we already know
that d(?v1, B) ≤ 2), d(?v2, B) ≤ 1 and d(?v3, B) ≤ 1, hence
all variables are in the circle centered in B of radius 2. By
running the subgraph matching algorithm on this portion of
the graph (which contains vertices {A, B, C, D, G}, we ob-
tain the answer to the query: ?v1← A, ?v2← D, ?v3← C
and ?p← P .

The processing of the query in Figure 4(d) is similar –
once we recursively reach the analysis for the node (F, 4),
we see that none of the children satisfies the constraints for
all the variables. From d(?v1, E) ≤ 1 and d(E, F) = 1 we
have d(?v1, F) ≤ 2, from d(?v2, J) ≤ 1 and d(F, J) = 1
we deduce that d(?v2, F) ≤ 2 and from d(?v3, J) ≤ 3 and
d(J, F) = 1 we obtain that d(?v3, F) ≤ 4. Since ?v1, ?v2,
?v3 are all in (F, 4), we can apply the subgraph matching step
of the algorithm on (F, 4) and obtain ?v1 ← F , ?v2 ← H,
?v3← K and ?p← P .

6. EXPERIMENTAL EVALUATION
tGRIN was implemented in approximately 3650 lines of

Java code and evaluated against three well known RDF
DBMSs: Jena2, Sesame and 3store. All RDF dDBMSs to
date store RDF in a relational DBMS and rely on the trans-
lation of RDF queries into SQL queries. However, the un-
derlying relational schemas vary in order to optimize specific
characteristics of RDF queries, possibly in the presence of a
given RDF schema. We chose these three systems since their
results are the best of their respective schema type groups10.

Our systems appears to be the first implementation of
Temporal RDF — none of these three systems is tailored
for temporal queries. However, all three systems allow var-
ious user-defined indexing schemes. We used PostgreSQL
8.0 as the underlying DBMS and wrote approximately 500
lines of Java code to allow these systems to use existing
temporal indexes such as R+-trees, SR-trees, the ST-index
and MAP21. We chose these as the most promising rep-
resentatives of the different classes of “valid-time” temporal
indexing methods described in the survey by Salzberg and
Tsotras [13] - we also tested the case where temporal anno-
tations of RDF triples were expressed using reification. We
denoted each variant by the corresponding index. For in-
stance, Sesame–R+-tree stands for the Sesame system using
R+-trees.

10For more details about the underlying relational schemas,
see http://jena.sourceforge.net/DB/layout.html for Jena2,
http://www.openrdf.org/doc/sesame/users/ch04.html for
Sesame and [7] for 3store.

We performed the evaluation on two datasets: the Gov-
Track dataset consists over 20.5M triples of public record
information about the US Congress, including campaigns
and contributions, votes, the actions taken on each bill, etc.
We manually created 20 query graph patterns of increasing
sizes (from 5 to 35 nodes). For each pattern, we varied the
ratio of variables to constants in the queries from 0.2 to 1.5.

We also randomly generated synthetic datasets ranging
in size from 2 to 26 million triples in increments of 3 mil-
lion. The triples were generated using a uniform random
distribution. The temporal intervals were randomly gener-
ated as follows: (i) first, a center for the interval was chosen
uniformly at random in the range 1 – 1000; (ii) then, we gen-
erated the size of the interval from a Gaussian distribution.
We varied the mean and the standard deviation between
different versions for the same dataset size. We selected the
same number of query patterns as for the GovTrack dataset
with the same characteristics.

The tRDF data was stored in a single relation (subject,
property, object, annotation) in a PostgreSQL 8.0 database
and the tGRIN index was stored separately on disk. It should
be noted that tGRIN is independent of the relational storage
model, thus more efficient storage models such as the one in
[1] can be easily coupled with the index structure.

Experiments were performed on a Pentium IV 3 GHz ma-
chine with 2 GB of RAM running openSuse 10.2. The results
reported include I/O access times are averaged over five in-
dependent runs. In our experimental evaluation, we first
looked at determining the optimal tGRIN parameters, such
as k, δ and M and their correlation to the dataset charac-
teristics. To measure index performance, we looked at index
building time, memory consumption, disk space and query
running time. Third, we compared the index performance
indicators with Jena2, Sesame and 3store.

6.1 tGRIN parameters and performance
First, we evaluated the tGRIN version with and without

normalization on both the GovTrack and synthetic datasets.
The memory consumption and disk space for the normal-
ized version were approximately 10% higher for the Gov-
Track dataset and 13.5% higher on average for the synthetic
datasets. On average, answering a query was approximately
19.2% faster for the normalized version. The difference in
running time between the normalized and default version
increases from .2% for 5 node queries graphs with a .2 ra-
tio of variables to constants to 39.5% for 35 node queries
with a 1.5 ratio of variables to constants. The database
was normalized in 78.3 seconds for the GovTrack dataset.
In addition, we measured that computing the normalized
database incrementally after insertions takes 5 ms per triple
on average. For the rest of the experimental results, we used
only normalized version of all the databases.

Second, we looked at the other tGRIN parameters – δ, k
and N . We found no statistically significant difference (all
statistical significance tests were at the 1% level) between
any of the δ variations for either the GovTrack dataset of
the synthetic datasets, even when we generated temporal
interval sizes uniformly and not from a Gaussian. We
continued our experimental evaluation by using the distance
between interval centers as our δ function.

We also varied k between 1 and 5 for a fixed value of
M = 5 (we obtained similar dependencies for higher values
of M). The results for the GovTrack dataset are summarized

612

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

Table 1: Index performance for values of k.
k Build Mem. Disk Query Overl. Cover.
1 154.51s 221MB 1.57MB 26.41s 29.71% 83.42%
2 144.23s 241MB 1.69MB 14.65s 13.64% 91.65%
3 157.47s 215MB 1.62MB 17.03s 14.58% 89.92%
4 149.61s 216MB 1.64MB 28.71s 22.51% 81.64%
5 161.55s 220MB 1.66MB 35.34s 34.65% 80.16%

Table 2: Index performance for values of M .
M Build Mem. Disk Query Overl. Cover.
2 121.51s 194MB 1.45MB 31.71s 17.43% 95.67%
4 134.26s 225MB 1.62MB 14.76s 14.76% 93.47%
6 159.22s 247MB 1.75MB 13.78s 12.31% 88.99%
8 198.61s 269MB 1.91MB 28.53s 11.91% 89.54%
10 245.55s 298MB 2.25MB 37.94s 11.99% 87.13%

in Table 1. The query times are for 15-node query patterns
with a ratio of variable to constants of .5. Note that we only
measure disk space for the tGRIN index nodes and not the
leaf nodes which contain the actual data. The index build
time, memory and disk space does not vary greatly with k,
but the query time is clearly much smaller for k = 2 and
k = 3. In fact, we found that these values of k also produce
small overlap and large coverage values. In our case, we
measure overlap as the percentage of tRDF resources that
are covered by more than one index node at mid-level in
the tGRIN tree. The coverage in this case is the percentage
of triples that are completely covered by any index node
at mid-level in the tGRIN tree (remember that tGRIN index
nodes are designed to cover resources, not triples – we can
have triples with one end in one index node and the other
end in a different index node). We obtained similar results
for the synthetic datasets, the only difference being that k =
3 did slightly better (about a 1% improvement) in terms of
query time than k = 2. We computed the same indicators for
different query pattern sizes and variable to instance ratios
and obtained the same results – k = 2 and k = 3 provide
the best query running times because they produce high
coverage and low overlap.

Finally, we looked at the maximum number, M , of chil-
dren per index node when k = 2. As M increases, overlap
and coverage both decrease. We expected that the query
running times would be large for very low values of M as
having larger index nodes means that the probability of do-
ing subgraph matching on the smallest possible subset of
the database decreases. On the other hand, high values of
M means an increase in the depth-first traversal time. The
data for the GovTrack dataset shown in Table 2 confirms
this hypothesis. We used the same query pattern as in Ta-
ble 1. Note that the index build time, memory and disk
space correlate positively with M (if we take into account
all values M from 2 to 10, the correlation factors are .973,
.994 and .979 respectively). We chose M = 5 as the best
compromise; note that M = 4 to M = 6 yields the lowest
query running times, whereas the index build time starts
a sharper increase for M > 6 – we determined that this
is primarily due to the clustering algorithm. The rest of
the experimental evaluation was performed with k = 2 and
M = 5.

6.2 Comparison with other systems
We compared tGRIN with Jena2, Sesame and 3store en-

hanced with the corresponding temporal indexes. For each

system and each indicator, we chose the index that per-
formed the best w.r.t. that indicator and compared it
against tGRIN. For instance, Jena–R+-tree did best in terms
of disk space on the synthetic dataset, but Jena–reified did
better in terms of memory usage. The results are shown
in Figure 6. First, we observed that the MAP21 index had
relatively bad performance on all three system. On average,
MAP21 traversed 35-40% of the index was traversed during
each query; we therefore ommitted the MAP21 results from
the presentation. We can easily see that tGRIN takes much
less to build than any of the other indexes – approximately
231s for a 26 million triples dataset. Also, tGRIN takes less
disk space than Sesame and 3store, at comparable memory
usage. However, the greatest improvements are in terms
of query running time. tGRIN performs 3 – 6 times faster
on the average types of queries in Figure 6(d). Jena2 runs
out of memory for datasets larger than 13 million tuples.
Sesame and 3store are able to answer queries with a sharp
time penalty for large datasets. The translation of RDF
queries into SQL typically contains many joins, which are
increasingly difficult to compute as the dataset grows. On
the other hand, tGRIN does not compare the query pattern
against the actual triples of the database until the small-
est index nodes that contain the answer to the query have
been identified. The very small increase in running time for
tGRIN is due to the increase in the size of the tGRIN tree.

These results led us to suspect that the performance
gains in tGRIN would increase as the queries grow more
and more complex. For relational representations, a larger
query translates into more SQL joins, whereas for tGRIN it
translates primarily into larger sets of constraints. For the
GovTrack dataset, we varied the size of the query pattern
from 5 to 35 nodes with a fixed variable/constant ratio of .5
and measured the query running time. In a second experi-
ment, we kept the query pattern size at 15, but varied the
variable/constant ratio from .2 to 1.5. In this latter case,
we normalized the query time by the number of answers re-
turned. We could not use Jena2 in this experiment due to
out-of-memory errors. The results are shown in Figure 6(e)
and (f) respectively. On complex queries, tGRIN takes only
1
6
’th to 1

10
’th the time taken by 3store or Sesame. Again,

this is due to the fact that higher query complexity does
not immediately translate into higher SQL query complex-
ity. The small query time increase is due to the subgraph
matching operation, which is in most cases localized to a
very small portion of the database.

7. CONCLUSIONS
RDF is a growing web standard supported by the W3C. It

is clear that temporally annotated RDF datasets will grow
as well because properties are relationships represented in
RDF will vary with time in many applications. Examples
such as the GovTrack data set show that large scale tRDF
databases are being built and will need efficient querying
and indexing mechanisms.

Important contributions toward defining temporal RDF
have been made by researchers such as [3, 5, 6, 8]. However,
three important aspects of a DBMS are not covered by these
past works. (i) No indexing mechanism for temporal RDF
exists to date, (ii) No scalable algorithms for processing com-
plex queries on large disk-resident temporal RDF databases
has been proposed to date, and (iii) no implementation or
experimental results have been provided to date. In this pa-

613

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

0

100

200

300

400

500

600

2 5 8 11 14 17 20 23 26

B
u

il
d

 t
im

e
 [

s]

Dataset size [milion triples]

Index Building Time

t-GRIN

Jena-SR-tree

Sesame-reified

3store-ST-index

0

50

100

150

200

250

300

350

2 5 8 11 14 17 20 23 26

M
e

m
o

ry
 u

se
d

 [
M

B
]

Dataset size [milion triples]

Peak memory usage

t-GRIN

Jena-reified

Sesame-R+-tree

3store-ST-index

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 5 8 11 14 17 20 23 26

D
is

k
 s

p
a

ce
 [

M
B

]

Dataset size [milion triples]

Disk space

t-GRIN

Jena-R+-tree

Sesame-R+-tree

3store-ST-index

(a) Index building time (b) Memory usage (c) Disk space

0

20

40

60

80

100

120

140

160

180

2 5 8 11 14 17 20 23 26

R
u

n
n

in
g
 t

im
e

 [
s]

Dataset size [milion triples]

Query time for 15 node-pattern, variables/constants=.5

t-GRIN

Jena-R+-tree

Sesame-R+-tree

3store-SR-tree

0

50

100

150

200

250

300

5 10 15 20 25 35

R
u

n
n

in
g
 t

im
e

 [
s]

Query pattern size [no nodes]

Query running time variables/constants=.5

t-GRIN

Sesame-R+-tree

3store-SR-tree

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.2 0.4 0.6 0.8 1 1.2 1.5

R
u

n
n

in
g
 t

im
e

 p
e

r
a

n
sw

e
r

re
tu

rn
e

d
 [

s]

Ratio of variables/constants

Query time graph pattern size = 15 nodes

t-GRIN

Sesame-R+-tree

3store-SR-tree

(d) Query time (e) Increasing query pattern size (f) Increasing variable/constant ratio

Figure 6: Comparison between tGRIN, Jena2, Sesame and 3store. (a)-(d) are over the synthetic dataset; (e),
(f) are on the GovTrack dataset.

per, we provide, for the first time, a solution that addresses
all these three points and that is demonstrated to show ef-
ficient performance on a real data set containing over 20
million triples, as well as on synthetic data sets. Our index
structure is shown to be a better match for tRDF queries
than the use of standard indexes for temporal data - the
reason is that the latter do not account for the graph based
nature of tRDF data and tRDF queries, while our tGRIN in-
dex structure accounts neatly for both. A small additional
point is that we also handle indeterminate time in tRDF
which is not done in past work.

8. REFERENCES

[1] D. J. Abadi, A. Marcus, S. Madden, and K. J.
Hollenbach. Scalable semantic web data management
using vertical partitioning. In VLDB, pages 411–422,
2007.

[2] J. Abello and Y. Kotidis. Hierarchical graph indexing.
In CIKM, pages 453–460, 2003.

[3] S. C. Buraga and G. Ciobanu. A rdf-based model for
expressing spatio-temporal relations between web
sites. In WISE, pages 355–361, 2002.

[4] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
A (Sub)Graph Isomorphism Algorithm for Matching
Large Graphs. IEEE Trans. PAMI, 26(10):1367–1372,
2004.

[5] C. Gutiérrez, C. A. Hurtado, and A. A. Vaisman.
Temporal rdf. In ESWC, pages 93–107, 2005.

[6] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman.
Introducing time into rdf. IEEE Trans. Knowl. Data
Eng., 19(2):207–218, 2007.

[7] S. Harris and N. Gibbins. 3store: Efficient bulk rdf
storage. In PSSS, pages 1–15, 2003.

[8] J. Heggland. Ontolog: Temporal annotation using ad
hoc ontologies and application profiles. In ECDL,
pages 118–128, London, UK, 2002. Springer-Verlag.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM Comput. Surv.,
31(3):264–323, 1999.

[10] B. Liu and B. Hu. Path queries based rdf index. SKG,
0:91, 2005.

[11] A. Martelli and U. Montanari. An efficient unification
algorithm. ACM Trans. Program. Lang. Syst.,
4(2):258–282, 1982.

[12] A. Matono, T. Amagasa, M. Yoshikawa, and
S. Uemura. An efficient pathway search using an
indexing scheme for RDF. Genome Informatics,
14:374–375, 2003.

[13] B. Salzberg and V. J. Tsotras. Comparison of access
methods for time-evolving data. ACM Comput. Surv.,
31(2):158–221, 1999.

[14] S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD, pages
845–856, 2007.

[15] O. Udrea, A. Pugliese, and V. S. Subrahmanian. Grin:
A graph based rdf index. In AAAI, pages 1465–1470,
2007.

[16] X. Yan, P. S. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In SIGMOD, pages
335–346, 2004.

614

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web II April 21-25, 2008 · Beijing, China

