
Querying for Meta Knowledge

Bernhard Schueler
ISWeb — Information

Systems and Semantic Web
University of Koblenz-Landau,

Germany
bernie@uni-koblenz.de

Sergej Sizov
ISWeb — Information

Systems and Semantic Web
University of Koblenz-Landau,

Germany
sizov@uni-koblenz.de

Steffen Staab
ISWeb — Information

Systems and Semantic Web
University of Koblenz-Landau,

Germany
staab@uni-koblenz.de

Duc Thanh Tran
Institute AIFB

University of Karlsruhe,
Germany

dtr@aifb.uni-karlsruhe.de

ABSTRACT
The Semantic Web is based on accessing and reusing RDF data
from many different sources, which one may assign different lev-
els of authority and credibility. Existing Semantic Web query lan-
guages, like SPARQL, have targeted the retrieval, combination and
reuse of facts, but have so far ignored all aspects of meta knowl-
edge, such as origins, authorship, recency or certainty of data, to
name but a few.

In this paper, we present an original, generic, formalized and im-
plemented approach for managing many dimensions of meta knowl-
edge, like source, authorship, certainty and others. The approach
re-uses existing RDF modeling possibilities in order to represent
meta knowledge. Then, it extends SPARQL query processing in
such a way that given a SPARQL query for data, one may request
meta knowledge without modifying the original query. Thus, our
approach achieves highly flexible and automatically coordinated
querying for data and meta knowledge, while completely separat-
ing the two areas of concern.

Categories and Subject Descriptors
H.1.m [Information Systems]: Models and Principles;
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Selection process, Query formulation

General Terms
Management, Design

Keywords
Semantic Web, SPARQL, RDF

1. INTRODUCTION
Integrating and re-using Semantic Web data becomes more and

more fruitful and worthwhile in order to answer questions and de-
liver results. Typically, engines like Swoogle provide points of
access for RDF data, crawlers may fetch relevant RDF data, and

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

query languages like SPARQL with their corresponding query en-
gines allow for selecting and re-using data in the appropriate for-
mat. With the arrival of more and more data in the Semantic Web
and more sophisticated processing through query and reasoning en-
gines, one now, however, encounters challenging questions linked
to meta knowledge about the data like:

•Where is this data from?
•Who provided the data?
•When was this data provided?
•Was the provider certain about the truth of this data?
•Was the data believed by others, too?

For instance, when querying the Semantic Web with the help of
SPARQL for the affiliation of a person named of “James Hendler”,
one finds (at least) two answers, i.e. “University of Maryland” and
“Rensselaer Polytechnic Institute”. Without further indication as
to where, by whom, when, etc. such information was given, it is
impossible to decide which of the two affiliations is still valid.

The problem might be remedied in several ways. First, an ideosyn-
cratic solution by the search engine, such as returning the corre-
sponding RDF files or links to sources of knowledge extraction (say
http://www.cs.umd.edu/survey.pdf and http://www.rpi.
edu/report.doc), might help in this special case. However, an
ideosyncratic solution may not be appropriate in a second case in
which the ‘when’ was more relevant than the ‘where’ or in a third
case where such a piece of information had to be aggregated from
several resources. Second, the person or system requesting the meta
knowledge might manually extend the SPARQL query formalizing
the request for the affiliation in order to return the where, the who
and the when. Such a modification will, however, be very tedious,
as it will include a number of additional optional statements, and
expressing it manually will be error prone. Also, it will not help
in delivering meta knowledge that arises from joining several state-
ments, e.g. meta knowledge about uncertainty that was based on
several meta knowledge statements with different values of uncer-
tainty.

Therefore, querying Semantic Web data requires a principled,
generic approach to the treatment of meta knowledge that is able
to adapt to many dimensions of meta knowledge and that is open
to accommodate to new dimensions when the need arises. Such a
principled, original framework is given in this paper. We start to

625

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

explain our approach with a discussion of important design choices
in section 2. We model meta knowledge in existing RDF struc-
tures by embedding a slightly more expressive language, which we
call RDF+, into RDF1. We define the abstract syntax of RDF+, its
semantics and its embedding in RDF in Section 4. In Section 5,
we extend the SPARQL syntax and semantics to work on data and
meta knowledge of RDF+. The extension allows the user to ex-
tend a given conventional SPARQL query by a keyword for meta
knowledge triggering the construction of meta knowledge by the
query processor. Section 6 summarizes the overall use and process-
ing of SPARQL queries with meta knowledge. Section 7 reports on
initial graceful results for meta knowledge processing from a theo-
retic point of view and Section 8 provides pointers to the prototype
implementation of the system.

2. SCENARIO
In our sample application scenario, we assume that the user uti-

lizes knowledge which has been initially extracted from Web pages
of Computer Science departments and stored in form of RDF triples
in his personal “active space" [16], backed by a local RDF repos-
itory. Example 2.1 shows the relevant facts that may have been
obtained from departments of different universities. For better read-
ability, we use for our examples in this paper the RDF triple lan-
guage TriG [1] with Named Graphs [2] in a simplified form that
abstracts from default namespaces.

Example 2.1. Extracted Knowledge and SPARQL query

G1 { JamesHendler researchTopic SemanticWeb .
JamesHendler affiliatedWith RensselaerPI }

G2 { JamesHendler researchTopic Robotics .
JamesHendler affiliatedWith UnivMaryland .
RudiStuder researchTopic SemanticWeb .
RudiStuder affiliatedWith UnivKarlsruhe }

The extracted knowledge comes from different sources, at differ-
ent timepoints, and with different degrees of extraction confidence.
This information is also captured and stored into the same RDF
repository as shown in example 2.2, using the notion of Named
RDF Graphs [2, 5].

Example 2.2. Associated meta knowledge

G3 { G1 mk:source <www.rpi.edu/report.doc> .
G1 mk:certainty "0.9" .
G1 mk:timestamp "5/5/2007" }

G4 { G2 mk:source <www.cs.umd.edu/survey.pdf> .
G2 mk:certainty "0.6" .
G2 mk:timestamp "6/6/2001" }

In our scenario, the sample user aims to explore the knowledge
and meta knowledge using the RDF query language SPARQL. We
assume that he aims to find experts in the domain of Semantic Web
and their affiliations. The corresponding SPARQL query is shown
in example 2.3. In addition, the user wants to exploit meta knowl-
edge from example 2.2 for obtaining results with best certainty and
for analyzing contradictive answers (e.g. different affiliations for
the same person “James Hendler” in example 2.1).

1This proposal is a completely revised and extended version of [17]. Ma-
jor revisions include a novel formal model, discussion of the design space,
complexity analysis, and prototype implementation.

Example 2.3. Extracted Knowledge and SPARQL query

CONSTRUCT {?x worksAt ?z}
FROM NAMED G1
FROM NAMED G2
WHERE { GRAPH ?g {?x affiliatedWith ?z .

?x researchTopic SemanticWeb}
}

3. DESIGN CHOICES
This section summarizes and shortly motivates the design choices

for our meta knowledge framework.
Reification. Establishing relationships between knowledge and

meta knowledge requires appropriate reification mechanisms for
supporting statements about statements. Our general objective is
to execute queries on original data (i.e. without meta knowledge)
directly, without complex transformations. For compliance with
existing applications that access the repository in a common way
(e.g. using SPARQL queries), we do not modify existing user data.
This requirement does not allow us to use mechanisms like RDF
reification, which decompose existing triples and fully change the
representational model. In our framework described in section 4,
we adopt the notion of Named RDF Graphs for meta knowledge
representation [2, 5].

Storage mechanisms. Following the overall philosophy of RDF,
we do not separate meta knowledge from “normal” user knowledge
in the repository. Following this paradigm, a user or developer has
unlimited access to all contents of the triple store and can manipu-
late meta knowledge directly. In other words, the user can directly
access meta knowledge (e.g. using suitable SPARQL queries). Be-
yond explicitly designed queries for meta knowledge access, in
Section 5 we describe the extension of SPARQL that allows us to
access meta knowledge about the result set automatically without
user intervention.

Dimensions of Meta Knowledge. An important point for the ap-
plication design is the definition of relevant meta knowledge prop-
erties and their suitable interpretation for arbitrary complex query
patterns. In general, these properties are application dependent and
must be carefully chosen by the system administrator. In our sce-
nario (sections 2 and 6) we discuss common and widely used prop-
erties, such as timestamp, source, and (un)certainty, and show ways
of defining and utilizing them in our framework.

Syntax extensions. Seamlessly integrated access to meta knowl-
edge requires corresponding extensions of existing querying mech-
anisms. These can be realized at different levels, for instance at the
level of query languages (e.g. SPARQL) or at the level of applica-
tion-specific interfaces (e.g. Sesame API). In Section 5 we describe
our SPARQL extension for constructing query results with asso-
ciated meta knowledge. It is system-independent and not related
to some particular implementation of the RDF repository. Further-
more, it fully supports the existing SPARQL syntax and semantics.
Compliance with existing established standards makes the integra-
tion with existing applications and interfaces substantially easier.

4. SYNTAX AND SEMANTICS FOR RDF
WITH META KNOWLEDGE

In the course of representing and reasoning with meta knowl-
edge we embed a language with meta knowledge reasoning, i.e.
RDF+, in a language without such specific facilities, i.e. in RDF.
This embedding implies that we may consider an RDF snippet in

626

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

its literal sense and we may possibly interpret it as making a meta
knowledge statement. Embedding meta knowledge in RDF is not
the most expressive means to deal with all needs of meta knowl-
edge processing, but it retains upward compatibility with existing
usage of the language and corresponding tools and methods, which
is a major concern for Semantic Web approaches.

Though we denote meta knowledge in RDF, we must distinguish
the notation of RDF with only implicit notation of meta knowledge,
but no semantic consequences specifically due to this meta knowl-
edge, from a formally extended model of RDF with explicit nota-
tion of meta knowledge. The following definition of RDF+ helps
us to draw this line very clearly and concisely. The abstract syntax
for this embedded language, RDF+, is given in Section 4.1 and its
semantics in Section 4.2. Eventually in this section, we show how
to embed RDF+ in RDF with named graphs.

4.1 An Abstract Syntax for RDF+
The abstract syntax of RDF+ is based on the same building blocks

as RDF:

• U are Uniform Resource Identifiers (URIs).

• L are all RDF literals.

• G ⊆ U is the set of graph names.

• P ⊆ U is the set of properties.

In addition, we must be able to refer to statements directly without
use of reification. For this purpose, we introduce statement identi-
fiers:

• Θ is a set of statement identifiers, which is disjoint from U
and L.

Now, we may define RDF+ literal statements that are placed in
named graphs and have, in addition to RDF, a globally unique state-
ment identity.

Definition 4.1 (RDF+ Literal Statements).
The set of all RDF+ literal statements, S, is defined as quintuples
by:
S := {(g, s, p, o, θ) | g ∈ G, s ∈ U, p ∈ P, o ∈ U ∪ L, θ ∈ Θ}.

Thereby, θ and (g, s, p, o) are keys such that there exists a bijec-
tion f1 with f1(g, s, p, o) = θ ∧ f4(θ) := f −1(θ) = (g, s, p, o). More-
over, we define the overloaded function f5 to return the complete
quintuple given either θ or (g, s, p, o), i.e. f5(θ) := (g, s, p, o, θ) =:
f5(g, s, p, o), when f1(g, s, p, o) = θ.

The reader may note that we assume that f1 is fixed and given
before any statement is defined. Furthermore, this definition of lit-
eral statements and the rest of this paper abstracts from RDF blank
nodes in order to keep the formalization more concise. However,
we do not see any conceptual problem in extending our treatments
to blank notes, too.

The two statements of Graph G1 of Example 2.1 may now be
represented in RDF+ in the following way.

Example 4.1.

S ⊇ K ⊇ {
(G1, JamesHendler, researchTopic, SemanticWeb, θ1),
(G1, JamesHendler, affiliatedWith, RensselaerPI, θ2) }

Thereby, the exact form of statement identifiers in Θ is up to the
implementation, as they are only used for internal processing.

Having represented the literal interpretation of RDF statements
in RDF+, we may now address the representation of selected RDF
statements as RDF+ meta knowledge. This is done using a structure
of RDF+ meta knowledge statements, M, that is separate from the
set of RDF+ literal statements:

Definition 4.2 (RDF+ Meta Knowledge Statements).
LetΠ ⊆ P be the set of meta knowledge properties. LetΩπ, with π ∈
Π, be sets providing possible value ranges for the meta knowledge
properties π ∈ Π.

Then, the set of all RDF+ meta knowledge statements, M, is de-
fined by: M := {(θ, π, ω) | θ ∈ Θ, π ∈ Π, ω ∈ Ωπ)}.

The following example partially demonstrates the target repre-
sentation of the first two meta knowledge statements of graph G3
from Example 2.2.

Example 4.2.

M ⊇ M ⊇ {
(θ1, mk:source, {<www.rpi.edu/report.doc>}),
(θ1, mk:certainty, 0.9)}

Together we may now define a RDF+ theory.

Definition 4.3 (RDF+ Theory).
A RDF+ theory of literal statements and associated meta knowledge
statements is a pair (K,M) referring to a set of literal statements
K ⊆ S and a set of meta knowledge statements M ⊆ M.

A (partial) example for such a theory is given by the pair (K,M)
with definitions for K and M as given in examples 4.1 and 4.2,
respectively.

4.2 A Semantics for RDF+
We now have an abstract syntax for representing RDF triples

like JamesHendler researchTopic SemanticWeb as part of G1 and
meta knowledge statements like the source of the statement that
James Hendler’s research topic is Semantic Web is found in the
document <www.rpi.edu/report.doc>. However, such an abstract
syntax may remain remarkably ambiguous if it cannot be linked to
a formal semantics. Assume two meta knowledge statements:
(θ1, mk:source, {<www.rpi.edu/draftReport.doc>}) and
(θ1, mk:source,{<www.rpi.edu/finalReport.doc>})

for the same literal statement identified by θ1, the question may
arise whether this means a disjunction, i.e. one of the two docu-
ments has provided the fact, or a conjunction, i.e. both documents
have provided the fact, or a collective reading, i.e. the two docu-
ments together gave rise to the fact, or whether this situation con-
stitutes invalid meta knowledge.

In order to prevent such ambiguities we introduce a generic se-
mantic framework for meta knowledge in RDF+. However, the
framework must also be able to reproduce the literal interpretations
found in RDF. For the latter purpose, we first define a ‘standard’
model for a RDF+ theory.

Definition 4.4 (Standard Interpretation andModel).
A standard interpretation Is : S → {�,⊥} for a structure (K,M)

assigns truth values to all statements2 in K.
A standard interpretation is a standard model if and only if it

makes all statements in K become true.

2Note that because f1 is fixed there are no two tuples
(g, s, p, o, θ1), (g, s, p, o, θ2), where θ1 � θ2. This implies that the
standard interpretation is independent of the identifiers θ1 , θ2.

627

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

For instance, any standard model Is for (K,M) in example 4.1 would
include (G1, JamesHendler, researchTopic, SemanticWeb, θ1) in its
set of literal statements evaluating to �.

In order to address the level of meta knowledge we foresee an ad-
ditional model layer that provides a different interpretation to each
meta knowledge property.

Definition 4.5 (Π-Interpretation andModel).
A Π-interpretation Iπ : S ⇀ Ωπ for a property π ∈ Π is a partial

function mapping statements into the allowed value range of π.
AΠ-interpretation Iπ is aΠ-model for (K,M) if and only if for all

meta knowledge statements (θ, π, ω) ∈ M where f1(θ) = (g, s, p, o)
the value of the interpretation coincides withω, i.e. Iπ((g, s, p, o, θ)) =
ω.

As an example, consider the certainty interpretation Icertainty of the
literal statement (G1, JamesHendler, researchTopic, SemanticWeb,
θ1) from Examples 4.1 and 4.2. A model I would map this literal
statement using Icertainty onto 0.9.

The literal and the meta knowledge interpretations may now be
combined to define what an overall, unambiguous model is:

Definition 4.6 (meta knowledge Interpretation andModel).
A meta knowledge interpretation I is a set including a standard in-
terpretation Is and the Π-interpretations Iπ for all meta knowledge
properties π ∈ Π.

A meta knowledge interpretation I is a model for a theory (K,M)
if and only if all its interpretations I ∈ I are a standard model or
Π-models for (K,M).

4.3 Mapping between RDF and RDF+
The mapping between RDF and RDF+ needs to be defined in two

directions. First, one must be able to map from RDF as given in the
examples from Section 2 to RDF+. Second, one must be able to
map from RDF+ to RDF. Because RDF+ is more fine-grained than
RDF the first direction will be easy. For the second a compromise
on the granularity of the representation has to be made.

4.3.1 From RDF to RDF+

The examples of Section 2 reify groups of statements, i.e. the
ones found in G1 and G2, in order to associate meta knowledge,
such as given in G3 and G4. In order to allow for an interpretation
of the meta knowledge as defined in the preceding section, we map
RDF into RDF+. For all RDF statements, including statements in
graphs G1 and G2 of Example 2.1, the mapping performed is close
to an identity mapping. One only needs to add statement identifiers.
The result for G1 in RDF+ is:

Example 4.3.

K ⊇ { (G1, JamesHendler, researchTopic, SemanticWeb, θ1),
(G1, JamesHendler, affiliatedWith, RensselaerPI, θ2) },
with
θ1 := f1(G1, JamesHendler, researchTopic, SemanticWeb) and
θ2 := f1(G1, JamesHendler, affiliatedWith, RensselaerPI)

The same mapping – close to the identity mapping – is performed
for meta knowledge statements like statements of graph G3, result-
ing in their representation as literal statements:

Example 4.4.

K ⊇ {
(G3, G1, mk:source, <www.rpi.edu/report.doc>, θ3),
(G3, G1, mk:certainty, "0.9", θ4), ...}

Note that this step is necessary in order to achieve upward and –
limited – downward compatibility between RDF+ and RDF.

The interpretation of statements, like the ones found in G3, also
require an interpretation as meta knowledge. This is achieved by
mapping RDF statements with designated properties from Π like
mk:source and mk:certainty to the additional meta knowledge layer:

Example 4.5.

M ⊇ {
(θ1, mk:certainty, "0.9"),
(θ1, mk:source, {<www.rpi.edu/report.doc>}), . . .}

The mapping of predicates of these meta knowledge statements
from RDF to RDF+ is obvious, they are mapped to itself. Objects
are mapped to the corresponding elements of the value ranges Ωπ.
For the subjects, however, there arise modeling choices. For in-
stance, if mk:certainty were interpreted using probability theory,
one might assign a distributive or a collective reading. In the dis-
tributive reading, each fact in G1 receives the probability value of
0.9 and, eventually, the distributive reading will assign a joint prob-
ability of close to 0 for a large number of n stochastically indepen-
dent facts, i.e. the joint probability 0.9n. In the collective reading,
the collection of facts in G1 as a whole will receive the probability
value 0.9. Therefore, the collective reading will assign an individ-
ual certainty close to 1 for each individual fact, when the number
of facts is high and each fact is independent from the others, i.e.
the individual probability would be

n√
0.9. A priori, none of the

two (and more) modeling choices is better than the other, but they
constitute different modeling targets.

The mapping from RDF to RDF+ for the distributive reading of
a meta property π is easy to achieve.

Definition 4.7 (Distributive Embedding).
Given an RDF statement “G {S P O}” and an RDF meta knowledge
statement “H {G π ω}”, a distributive embedding of RDF+ in RDF
adds the meta knowledge statement

{(θ, π, ω) | θ = f1(G, s, p, o) ∧ f5(θ) ∈ K}
to M.

This means that such a meta knowledge statement is applied indi-
vidually to all statements in the graph to which it refers in RDF, as
indicated in the example above. For certain π there might be several
RDF meta knowledge statements H {G π ωi} which attach differ-
ent values ωi to a graph G via a single meta knowledge property
π. In that case a set-valued range Ωπ has to be used in order to be
consistent with Definition 4.5.

4.3.2 From RDF+ to RDF
The serialization of RDF+ data in the knowledge base K is straight-

forward. Each quintuple (g, s, p, o, θ) is realized as a corresponding
triple in a named graph and the tuple identifier θ is discarded.

Example 4.6.

(G5, JamesHendler, researchTopic, SemanticWeb, θ)
is mapped to

G5 {JamesHendler researchTopic SemanticWeb }

For meta knowledge statements the situation is more challeng-
ing, because literal statements with different statement identifiers
may belong to only one named graph. Their corresponding meta
knowledge statements may differ, but the realization of the meta
knowledge statements in RDF does not allow for retaining these
fine-grained distinctions – unless one chooses to change the mod-
eling approach drastically, e.g. by assigning each literal statement

628

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

to a named graph of its own, which seems undesirable (cf. discus-
sion in Section 3).

We have preferred to pursue a more conventional modeling strat-
egy for RDF with named graphs. Therefore, we weaken the associ-
ation between meta knowledge statements and their corresponding
literal statements when mapping to RDF. I.e. we group sets of meta
knowledge property values into one complex value.

Definition 4.8 (Generating Grouped meta knowledge).
Given an RDF+ theory (K,M), RDF meta knowledge is generated

by grouping RDF+ meta knowledge statements as follows:
Add the triple (g π ω′) to the RDF graph g′ := hashGraph(g) for

each

ω′ := ω1 ∨π . . . ∨π ωn ,

where (θ, π, ωi) ∈ M ∧ (g, S , P,O, θ) ∈ K. Further, hashGraph is a
function mapping existing graph names onto graph names suitable
for associating meta knowledge and ∨π is an operation defined on
Ωπ.

If ω′ is set-valued then a set of triples is added to g′ in order to
represent ω′. The suitability of hashGraph may be application spe-
cific. A general strategy may map graph names g to graph names
prefixed by <http://metaknowledge.semanticweb.org> in a deter-
ministic manner. Operations on meta knowledge properties are dis-
cussed in section 5.2.

In the following example the grouping of meta knowledge values
is illustrated.

Example 4.7.

K:={
(G5, JamesHendler, researchTopic, SemanticWeb, θ1),
(G5, JamesHendler, affiliatedWith, UnivMaryland, θ2) },
M:={
(θ1, mk:source, {<www.rpi.edu/report.doc>}),
(θ2, mk:source, {<www.cs.umd.edu/survey.pdf>}) }

is mapped to
G5 { JamesHendler researchTopic SemanticWeb .

JamesHendler affiliatedWith UnivMaryland }
G6 { G5 mk:source <www.rpi.edu/report.doc>,

<www.cs.umd.edu/survey.pdf>.}

In Example 4.7, the resulting grouped value is the set consisting of
the two documents <report.doc> and <survey.pdf>which is rep-
resented by two triples. For specific meta knowledge properties, an
additional function may be necessary to provide a mechanism for
representing grouped values in an appropriate RDF data structure.

5. SPARQL FOR RDF AND META KNOWL-
EDGE

In this section we first introduce a small extension to standard
SPARQL syntax [15] and then define how SPARQL can be applied
to an RDF+ knowledge base. The objective of our considerations is
the derivation of meta knowledge about query results.

5.1 SPARQL Syntax Revisited
When using SPARQL to query RDF+ we propose only two mod-

ifications to obtain meta knowledge. First, we introduce one ad-
ditional expression “WITH META MetaList”. This expression in-
cludes the named graphs specified in MetaList for treatment as meta
knowledge. This statement is optional. When it is present the
SPARQL processor may digest the RDF+ meta knowledge state-
ments derivable from the RDF named graphs appearing in the Meta-
List. The SPARQL processor will then use this meta knowledge to

compute and output all the meta knowledge statements deriveable
by successful matches of RDF+ literal statements with the WHERE
pattern.

In order to determine which literal statements should be consid-
ered we introduce a second modification. We do not process FROM
expressions with our meta knowledge framework, but only FROM
NAMED. The reason is that FROM g expressions replicate all RDF
triples of g into the default triple space of the query. Thereby, they
remove the links between the RDF statements of g and possible
meta knowledge. Hence, FROM expressions are not relevant for
our treatment of meta knowledge, but of course they may still be
processed using the standard SPARQL semantics.

Thus, SPARQL queries on RDF+ have one of the two following
overall forms:

Definition 5.1 (SPARQL SELECT Query).
The structure of a SPARQL SELECT query has the following form:

SELECT SelectExpression
(WITH META MetaList)?
(FROM NAMED GraphName)+
WHERE P

Definition 5.2 (SPARQL CONSTRUCT Query).
The structure of a SPARQL CONSTRUCT query has the following

form:

CONSTRUCT ConstructExpression
(WITH META MetaList)?
(FROM NAMED GraphName)+
WHERE P

In these definitions, P refers to a graph pattern that explains how
RDF+ literal statements from named graphs specified using FROM
NAMED statements are matched. Matches bind variables that are
used for providing results according to the SelectExpression or the
ConstructExpression.

5.2 SPARQL Semantics Revisited
In this subsection we define the semantics of SPARQL queries

evaluated on an RDF+ theory. For our definitions we use two build-
ing blocks: algebraic semantics of SPARQL [11, 13] and the how-
provenance calculated via annotated relations (cf. [8]).

The algebraic semantics of SPARQL queries are given based on
set-theoretic operations for sets of variable assignments (cf. [11,
13]). Thereby, a variable assignment is a partial function μ : V →
U ∪ L, where V is the set of variables given in a SPARQL query.
A set of variable assignments can be represented by a relation φ
over the domain (U ∪ L)|V |, where the variables V are the attributes
and assignments are the tuples of this relation. Such a set of as-
signments may be assigned information about the so called how-
provenance [8], i.e. the assignments may be annotated with for-
mulae describing the individual derivation tree used to assign the
variables. The how-provenance annotation may be represented by
a function Φ : (U ∪ L)|V | → F, where (U ∪ L)|V | is the set of all
tuples of the length |V | over the domain U ∪ L and F is the set of
formulae annotating variable assignments. The set of formulae F
is given by all Boolean formulas constructed over the set of literal
statements S and including a bottom element ⊥ and a top element
�. The formulae constitute an algebra (F,∧,∨,¬,⊥,�). The spe-
cial element ⊥ is used as annotation of variable assignments which
are not in the relation φ. The special element � may be omitted,
but it allows for simplification of complex formulas.

Assume the following SPARQL query to be evaluated on the
RDF+ knowledge base K:

629

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

Example 5.1.

SELECT ?g ?x ?y
FROM NAMED G1
FROM NAMED G2
WHERE {

GRAPH ?g {?x researchTopic ?y}
}

Example 5.2.

K = {
(G1, JamesHendler,researchTopic,SemanticWeb, θ1),
(G1, JamesHendler,affiliatedWith,RensselaerPI, θ2),
(G2, JamesHendler,researchTopic,Robotics, θ3),
(G2, JamesHendler,affiliatedWith,UnivMaryland, θ4),
(G2, RudiStuder,researchTopic,SemanticWeb θ5),
(G2, RudiStuder,affiliatedWith,UnivKarlsruhe θ6) }

For the query of example 5.1, we may find the following variable
assignments using standard SPARQL processing and we may in-
dicate, which atomic formulae, i.e. RDF+ quintuples in this simple
example, led to these variable assignments. This indication is given
by the statement identifiers representing their statements.

Example 5.3.

Φ =

?g ?x ?y F

G1 JamesHendler SemanticWeb θ1
G2 JamesHendler Robotics θ3
G2 RudiStuder SemanticWeb θ5

This simple example of how a set of variable bindings has been
produced is generalized to SPARQL queries of arbitrary complex-
ity by a recursive definition of simultaneous query evaluation and
computation of the annotations. The first step in evaluating a graph
pattern is to find matches for the triple pattern contained in the
query. Because the RDF+ knowledge base K consists of quintu-
ples, we need to adapt the SPARQL evaluation procedures. The
statement identifiers do not need to be matched, as they depend
functionally on graph name, subject, predicate and object. There-
fore, we consider matching of quadruple patterns (γ, α, β, δ). As
a simplification of our formalization we assume that the keyword
GRAPH together with a URI or a graph variable is used in any
given SPARQL query. If it is not used, we may expand a given
SPARQL query to include it.

Definition 5.3 (Basic Quadruple PatternMatching).
Let K be a knowledge base of RDF+ literal statements and μ be a

variable assignment.
The evaluation of the SPARQL query ”GRAPH γ {αβ δ}” over

K, denoted by [[GRAPH γ {αβ δ}]]K is defined by the annotated re-
lation Φ, dom(Φ) = {μ | dom(μ) = vars(GRAPH γ {α β δ})},

Φ(μ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ if r(μ, (γ, α, β, δ)) = (g, s, p, o)∧
(g, s, p, o, θ) ∈ K ∧ f1(g, s, p, o) = θ,

⊥ else

where vars(P) denotes the variables contained in a pattern P and
r(μ, (γ, α, β, δ)) is the quadruple obtained by replacing the vari-
ables in (γ, α, β, δ) according to μ.

An example for this definition is given by evaluating the query from
Example 5.1 on the dataset of Example 5.2 delivering the result as
indicated in example 5.3.

Basic quadruple pattern matching is not directly applicable, if
an expression “GRAPH γ” appears outside a complex triple pat-
tern. In such a case, we first need to distribute the expression

“GRAPH γ” appropriately to atomic triple patterns in order to pre-
scribe atomic SPARQL expressions accessible by basic quadruple
pattern matching. Because named graphs cannot be nested, this dis-
tribution is always possible and unambiguous. In the following we
use the function quads(P) to denote the query resulting from this
transformation. In example 5.4 this transformation is demonstrated
on a conjunction of two triple patterns.

Example 5.4.

P1 =
GRAPH ?src {

{ ?x researchTopic ?y .}
{ ?x affiliatedWith ?z .} }

quads(P1) =
GRAPH ?src { ?x researchTopic ?y .}
GRAPH ?src { ?x affiliatedWith ?z .}

Now we define the evaluation of complex graph patterns by op-
erations on sets of variable assignments similar to [11, 13].

Definition 5.4 (Complex graph pattern matching).
Let P1, P2 be complex graph patterns. The evaluation of graph
patterns over K, denoted by [[·]]K, is defined recursively:

1. [[GRAPH γ {α β δ}]]K is given by definition 5.3,

2. [[GRAPH g P1]]K = [[quads(P1)]]K,

3. (a) [[P1 AND P2]]K = [[P1]]K � [[P2]]K,

(b) [[P1 OPT P2]]K = [[P1]]K =�� [[P2]]K,

(c) [[P1 UNION P2]]K = [[P1]]K ∪ [[P2]]K,

4. [[P1 FILTER C]]K = σc([[P1]]K),

The definition uses the operation AND. In standard SPARQL the
operation AND is denoted by the absence of an operator. Like [11,
13] we still use the explicit term AND in order to facilitate refer-
encing to this operator.

The recursion in the SPARQL query evaluation defined here is in-
deed identical to [11, 13]. Only the basic pattern matching has been
changed slightly. Basic pattern matching now considers quadru-
ples and it annotates variable assignments from basic matches with
atomic statements from S and variable assignments from complex
matches with Boolean formulae F ∈ F over S .

As an example, consider the query from Example 5.5 evaluated
on the knowledge base from Example 5.2.

Example 5.5.

SELECT ?h1 ?h2 ?x ?y
FROM NAMED G1
FROM NAMED G2
WHERE {

{GRAPH ?h1 {?x affiliatedWith ?y}} AND
{GRAPH ?h2 {?x researchTopic SemanticWeb}}
FILTER {?x=JamesHendler}

}

Let P be the graph pattern contained in the WHERE clause of the
query. Then the evaluation of P is defined by an algebraic expres-
sion:

[[P]]K = [[{P1 AND P2} FILTER {?x = JamesHendler}]]K

= σ?x=JamesHendler([[P1 AND P2]]K)

= σ?x=JamesHendler([[P1]]K � [[P2]]K)

= σ?x=JamesHendler(Φ1 � Φ2)

630

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

where Φ1 and Φ2 are relations representing variable assignments
and their annotations. In this example and in the preceding defini-
tion we have used algebraic operations on sets of annotated bind-
ings. However, we have not yet explained how these operations are
used to construct formulas representing the how-provenance. The
following definition will specify how complex formulae from F,
which serve as annotations for results of matching complex graph
pattern, will be derived.

Definition 5.5 (Algebra of Annotated Relations). Let Φ, Φ1

and Φ2 be sets of annotated variable assignments. We define �, ∪,
\ and σ, =�� via operations on the annotations of the assignments
as following:

• (Φ1 � Φ2)(μ) = Φ1(μ1) ∧ Φ2(μ2), where ∀x ∈ dom(μ1) ∩
dom(μ2) : μ1(x) = μ2(x) and μ = μ1 ∪ μ2,

• (Φ1 ∪ Φ2)(μ) = Φ1(μ) ∨Φ2(μ),

• (Φ1 \ Φ2)(μ) = Φ1(μ) ∧ ¬
(∨
μi ,Φ2(μi)�⊥Φ2(μi)

)
, where ∀x ∈

dom(μi) ∩ dom(μ) : μi(x) = μ(x).

• (σc(Φ))(μ) = Φ(μ) ∧ fc(μ), where fc(μ) denotes a function
mapping μ to either � or ⊥ according the condition c.

• (Φ1 =� Φ2)(μ) = (Φ1 � Φ2)(μ) ∨ (Φ1 \Φ2)(μ).

Let us now continue the evaluation of the query specified in Ex-
ample 5.5. In order to evaluate the expression σ?x=JamesHendler(Φ1 �
Φ2) we need to determineΦ1 andΦ2 using definition 5.3. The inter-
mediate result is shown in example 5.6. To evaluate the conjunction
of two quadruple patterns the operation � is applied, the result is
shown in example 5.7. The annotation θ1∧ θ2 of the first row repre-
sents that this assignment has been derived from the conjunction of
the two literal statements θ1 and θ2 (see example 5.2). Application
of the σ-operation to the intermediate results gives the annotated
relation shown in example 5.8.

Example 5.6.

Φ1 =

?h1 ?x ?y A1

G1 JamesHendler RensselaerPI θ2
G2 JamesHendler UnivMaryland θ4
G2 RudiStuder UnivKarlsruhe θ6

Φ2 =

?h2 ?y A2

G1 JamesHendler θ1
G2 RudiStuder θ5

Example 5.7.

Φ1 � Φ2 =

?h1 ?h2 ?x ?y A3

G1 G1 JamesHendler RensselaerPI θ1 ∧ θ2
G1 G2 JamesHendler UnivMaryland θ1 ∧ θ4
G2 G2 RudiStuder UnivKarlsruhe θ5 ∧ θ6

Example 5.8.

σ?x=JamesHendler(Φ1 � Φ2) =

?h1 ?h2 ?x ?y A4

G1 G1 JamesHendler RensselaerPI (θ1 ∧ θ2) ∧ �
G1 G2 JamesHendler UnivMaryland (θ1 ∧ θ4) ∧ �

The annotations Φ(μ) can now be used to assign truth values for
μ. Is (see definition 4.4) assigns truth values to all atomic state-
ments si ∈ K ⊆ S. We extend the interpretation Is to capture all the
Boolean formulae over statements S.

Definition 5.6 (Standard Interpretation of Formulae).
Let F, F1, F2 ∈ F be Boolean formulae over S, let Fa ∈ S be an

atomic formula. We define the standard interpretation of formulae
I f

s as follows:

• I f
s (Fa) := Is(Fa);

• I f
s (¬F) := ⊥ if I f

s (F) = �; I f
s (¬F) := � if I f

s (F) = ⊥;

• I f
s (F1 ∧ F2) is � if I f

s (F1) = I f
s (F2) = �, otherwise ⊥

• I f
s (F1 ∨ F2) is � if I f

s (F1) = � or I f
s (F2) = �, otherwise ⊥.

For instance, I f
s returns � for the assignment shown in the first row

of Φ1 � Φ2 from example 5.7, because the statements θ1 and θ2 are
in the knowledge base.

Analogously to I f
s , we can extend aΠ-interpretation Iπ over RDF+

statements to a Π-interpretation I f
π over formulae. Remember that

meta knowledge interpretations allow for only one ω per θ ∈ Θ and
π ∈ Π (Definition 4.5). In order to make use of the how-provenance
represented by the annotations we require that for each meta knowl-
edge property π an algebra (Ωπ,∧π,∨π,¬π,�π,⊥π) with three oper-
ations ∧π,∨π,¬π and two special elements �π,⊥π ∈ Ωπ is defined.
The definition of the algebras can be supplied by a modeler ac-
cording to the intended semantics of the different meta knowledge
properties.

Definition 5.7 (Π-Interpretation of Formulae).
Let F, F1, F2 ∈ F be Boolean formulae over S, let Fa ∈ S be an
atomic formula. We define the interpretation I f

π as follows:

• I f
π (Fa) := Iπ(Fa);

• I f
π (¬F) is ¬πI f

π (F);

• I f
π (F1 ∧ F2) is I f

π (F1) ∧π I f
π (F2);

• I f
π (F1 ∨ F2) is I f

π (F1) ∨π I f
π (F2);

For illustration we consider in Example 5.9 the definition of fuzzy
logic operations to calculate a possibility measure on variable as-
signments, operations defined on timestamps which calculate the
time of the last modification, and set operations defined for source
documents that construct the combined provenance.

Example 5.9.

I f
certainty(x1 ∧ x2) = min(I f

certainty(x1), I f
certainty(x2))

I f
certainty(x1 ∨ x2) = max(I f

certainty(x1), I f
certainty(x2))

I f
certainty(¬x1) = 1 − I f

certainty(x1)
Ωcertainty = [0, 1]

I f
time(x1 ∧ x2) = max(I f

time(x1), I f
time(x2))

I f
time(x1 ∨ x2) = min(I f

time(x1), I f
time(x2))

I f
time(¬x1) = 0
Ωtime = [0,∞)

I f
source(x1 ∧ x2) = I f

source(x1) ∪ I f
source(x2)

I f
source(x1 ∨ x2) = I f

source(x1) ∪ I f
source(x2)

I f
source(¬x1) = {}
Ωsource = 2D, D the set of document URIs

631

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

Query forms. In standard SPARQL query forms, such as SE-
LECT and CONSTRUCT, allow to specify how resulting variable
bindings or RDF graphs, respectively, are formed based on the so-
lutions from graph pattern matching [15]. Modifiers, e.g. for pro-
jection and ordering, can be applied. The evaluation of SPARQL
queries on RDF+ data differs in that meta knowledge is attached to
the results.

The evaluation of SELECT queries on an RDF+ dataset is based
on projectX([[P]]K), where X denotes the set of variables specified
in the SelectExpression and project is defined as following:

Definition 5.8 (Projection). Let Φ be a set of annotated vari-
able assignments and X be a set of variables, then

(projectX(Φ))(μ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∨
∀x∈X:μ(x)=ν(x),Φ(ν)�⊥ Φ(ν), if μ is a partial
function defined only on X,

⊥, else

If X forms a proper subset of the variables used in the graph pattern
then the annotations of all bindings ν are aggregated. This aggre-
gation is analog to the generation of grouped meta knowledge de-
scribed in Definition 4.8. As an example consider the query shown
in Example 5.10, which is a slight modification of the query from
Example 5.5, applied to the data shown in Example 5.2. For the
result see Example 5.11. In contrast to Example 5.7 there is only
one row for JamesHendler.

Example 5.10.

SELECT ?x
WITH META G3, G4
FROM NAMED G1
FROM NAMED G2
WHERE {

{GRAPH ?h1 {?x affiliatedWith ?y}} AND
{GRAPH ?h2 {?x researchTopic "SemanticWeb"}}

}

Example 5.11.

project{?x}(Φ1 � Φ2) =
?x A5

JamesHendler (θ1 ∧ θ2) ∨ (θ1 ∧ θ4)
RudiStuder θ5 ∧ θ6

The result of a SELECT query is a set of extended bindings.
Such an extended binding contains values for the specified vari-
ables and values for each meta knowledge property π ∈ Π which
can be regarded as additional variables. For each binding μ these
variables π are bound to I f

π (projectX([[P]]K)(μi)), see Example 5.12.
For this result the meta knowledge from Example 5.13 has been
used. For instance I f

certainty((θ1 ∧ θ2) ∨ (θ1 ∧ θ4)) = 0.9. If no meta
knowledge statement (θ, π, ω) exists for a particular RDF+ literal
statement f5(θ) and a particular meta knowledge property π then
⊥π serves as default value. For the result of a SELECT query all
bindings from projectX ([[P]]K) are extended in this way.

Example 5.12.
?x certainty time

JamesHendler 0.9 5/5/2007
RudiStuder 0.7 8/8/2003

Example 5.13.

M = {
(θ1, mk:certainty, 0.9),
(θ1, mk:time, "5/5/2007"),
(θ2, mk:certainty, 0.9),

(θ2, mk:time, "5/5/2007"),
(θ3, mk:certainty, 0.6),
(θ3, mk:time, "6/6/2001"),
(θ4, mk:certainty, 0.6),
(θ4, mk:time, "6/6/2001"),
(θ5, mk:certainty, 0.6),
(θ5, mk:time, "6/6/2001"),
(θ6, mk:certainty, 0.6),
(θ6, mk:time, "6/6/2001")}

Analogously to standard evaluation, the evaluation of a CON-
STRUCT query on an RDF+ dataset results in a single RDF+ graph
which is built using the graph template specified in the Construct-
Expression (see Definition 5.2). This is in line with the fact that the
graph template consists of a conjunction of triple patterns and thus
quadruple patterns cannot be stated.3 Similar to the evaluation of
SELECT queries the evaluation of CONSTRUCT queries is based
on projectX ([[P]]K), where X denotes the set of variables specified
in the ConstructExpression. The RDF+ graph is constructed as de-
scribed in the following:

Let t j denote triple pattern j specified in the ConstructExpres-
sion, P denote the graph pattern specified in the WHERE-clause,
(si, j, pi, j, oi, j) denote the triple obtained by replacing the variables
in t j according to a mapping μi and ĝ denote a new graph name.
Then, for each binding μi ∈ projectX([[P]]K) and for each t j the
quintuple (ĝ, si, j, pi, j, oi, j, θi, j) is added to S, where θi, j is the state-
ment identifier f1(ĝ, si, j, pi, j, oi, j). Further (θi, j, π, ωi, j) is added to
M, where ωi, j = I f

π (projectX([[P]]K)(μi)).
Each new quintuple inherits the meta knowledge properties π as-

sociated with the binding which has been used to create that quin-
tuple. The value of ωi, j is determined by applying I f

π to the formula
which annotates the binding. Note that since projectX([[P]]K) and
the interpretations I f

π are functions and further the graph template
in ConstructExpression is a set of triples the meta knowledge prop-
erties (θi, j, π, ωi, j) are unique for a given θi, j.

As an example for a CONSTRUCT statement consider Example
5.14. Meta knowledge for some of the RDF+ statements presented
in example 5.2 is specified in example 5.13. For graph pattern P
contained in this query the result of projectX ([[P]]K) is identical to
the annotated relation shown in Example 5.7 except for the first
two columns. Based on the single triple pattern ?x worksAt ?y
contained in the graph template and the two bindings contained in
projectX([[P]]K) two quintuples are constructed and added to the
RDF+ literal statements Kres as shown in Example 5.15. Mres con-
tains the corresponding meta knowledge statements resulting from
I f
π (projectX([[P]]K)(μi)).

Example 5.14.

CONSTRUCT {?x worksAt ?y}
WITH META G3, G4
FROM NAMED G1
FROM NAMED G2
WHERE {

{GRAPH ?h1 {?x affiliatedWith ?y}} AND
{GRAPH ?h2 {?x researchTopic SemanticWeb}}

}

3Standard SPARQL does not allow for giving this graph a name. In order
to associate meta knowledge, multiple named graphs as outputs are con-
venient. In order to remain standard compliant, the SPARQL engine may
however also return data and meta knowledge in two different batches dis-
tinguished by some implementation-specific mechanism.

632

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

Example 5.15.

Kres = {
(Gnew, JamesHendler, worksAt, RensselaerPI, θnew1)
(Gnew, JamesHendler, worksAt, UnivMaryland, θnew2)}
(Gnew, RudiStuder, worksAt, UnivKarlsruhe, θnew3)}

Mres = {
(θnew1, mk:certainty, 0.9),
(θnew1, mk:time, "5/5/2007"),
(θnew2, mk:certainty, 0.6),
(θnew2, mk:time, "6/6/2001")
(θnew3, mk:certainty, 0.6),
(θnew3, mk:time, "6/6/2001") }

6. TASKS AND BENEFITS
This section summarizes the discussed steps of meta knowledge

representation and utilization for the sample scenario that was in-
troduced in section 2.

6.1 Tasks for the administrator
In order to represent and utilize meta knowledge, the system ad-

ministrator has to make some design choices. In particular, the
application-specific meta knowledge properties must be defined. In
our sample scenario, we consider three meta knowledge properties:
source, certainty, and timestamp. In the next step, the adminis-
trator defines the intended semantics of these properties in order
to facilitate query processing with complex expressions and pat-
tern combinations. Using the notion from Section 5.1, we assume
that corresponding definitions for meta knowledge properties are
defined according to previously discussed Example 5.9.

Finally, data and available associated meta knowledge are rep-
resented in RDF using named graphs [2, 5], and imported into our
RDF+-based repository.

6.2 Processing performed by the System
We assume that the administrator manages the small sample knowl-

edge base introduced in section 2. The knowledge base is trans-
formed into the RDF+ quintuples shown in Example 5.2 as dis-
cussed in section 4. Associated meta knowledge is transformed into
further RDF+ literal statements and RDF+ meta knowledge state-
ments. For the properties mk:time and mk:certainty the latter are
shown in Example 5.13.

Following our sample scenario, the query from Example 2.3 can
be reformulated as the query from Example 5.14 which retrieves
names of Semantic Web experts together with their affiliations. In-
ternally, the query processor evaluates this query using graph pat-
terns as discussed in 5.1. If P denotes the graph pattern from this
query then all matches for all variables in P are given by [[P]]K.
The resulting set of annotated variable assignments is shown in Ex-
ample 5.7. It contains possible variable assignments, and the how-
provenance (A3) that explains how these source statements have
been used.

By combining this information with definitions for meta knowl-
edge properties and available meta knowledge statements, the query
processor constructs the result shown in Example 5.15. This result
is then serialized in RDF.

6.3 Benefits for the user/developer
The user or application developer can access the knowledge stored

in the RDF+-based repository in different ways. On one hand, the
repository does not change the existing SPARQL semantics and
thus fully supports common SPARQL queries. This is an impor-
tant advantage for compatibility with existing applications and in-

terfaces. On the other hand, the repository supports the advanced
SPARQL syntax with metaknowledge support (section 5.1). Thus,
the user obtains additional access to valuable meta knowledge that
can be used for relevance ranking, conflict resolution, or other ap-
plications in connection with retrieved knowledge.

In our application scenario, the user may realize that the query
answer is potentially contradictive (James Hendler is affiliated with
Rensselaer PI and University of Maryland). By inspecting the as-
sociated meta knowledge, he would realize that the second fact
was generated by mistake. In fact, it is based on outdated in-
formation (knowledge from the document survey.pdf with times-
tamp 6/6/2001) that was wrongly combined with knowledge from a
more recent source (namely document report.doc with timestamp
5/5/2007). It turns out that the affiliation of James Hendler has actu-
ally changed from U Maryland to Rensselaer PI, and the erroneous
tuple can be safely excluded from further processing.

7. COMPLEXITY
In this section we analyze how the construction of the annota-

tions influences the complexity of the decision problem related to
SPARQL. The decision problem associated with the evaluation of
a SPARQL query can be stated as following [11]: Given an RDF
dataset D, a graph pattern P and a mapping μ, determine whether μ
is in the result of P applied to D. For this decision problem, which
we denote by Eval, an analysis of the complexity is presented in
[11, 12]. In the context of RDF+ datasets and annotated variable
assignments we have a slightly different decision problem: Given
an RDF+ dataset D+, an RDF+ graph pattern P+, a variable as-
signment μ and an annotation α determine whether α is the correct
annotation of μ. We denote this problem by Eval+. An annotation
is correct iff it is identical to the formula obtained by evaluating P+

as defined in section 5.
Since μ must have an annotation α � ⊥ iff μ is in the result

the second decision problem includes the first one. The key differ-
ence is to construct different annotations for mappings which are in
the result. With the following two theorems we show that for pat-
tern which do not use the OPTIONAL operator Eval+ has the same
complexity as Eval. For both theorems the same complexity results
have been reported for processing RDF without meta knowledge
[11, 12].

Theorem 7.1. Eval+ can be solved in time O(|P| · |D|) for graph
pattern expressions constructed by using only AND and FILTER
operators.

Theorem 7.2. Eval+ is NP-complete for graph pattern expres-
sions constructed by using only AND, FILTER and UNION opera-
tors.

The theorems indicate that our treatment of meta knowledge does
not add to the computational complexity of SPARQL. A proof for
each of the theorems can be found at
http://isweb.uni-koblenz.de/Research/MetaKnowledge.

8. IMPLEMENTATION
The framework described in this paper has been implemented

and is available as an initial prototype. The prototype is available
as an open source implementation at
http://isweb.uni-koblenz.de/Research/MetaKnowledge
together with example queries using artificial data from the LeHigh
benchmark4.

4available at http://swat.cse.lehigh.edu/projects/lubm/

633

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

9. RELATED WORK
The importance of better understanding the ways by which the

result came about is fundamental to many Semantic Web applica-
tions and scenarios. The specification of the Semantic Web proof
layer was discussed in [10, 14, 9]. Our approach is focused on
a different language model (RDF) and provides fine-grained meta
knowledge management for retrieval queries with SPARQL that is
not directly comparable with proof traces for OWL reasoning.

In the area of database systems, meta knowledge is often rep-
resented using an extension of the relational data model, coined
annotated relations. Its purpose is primarily the description of data
origins (provenance) and the process by which it arrived as a query
answer [6, 3, 4, 7]. Basically, our methodology follows the same
idea. However, our approach is specially designed for RDF graph
models and not directly comparable to metadata models for rela-
tional database systems. The same holds for the query language
(SPARQL instead of SQL) and its semantics. An important dif-
ference to isolated database solutions is the serialization ability of
RDF and thus seamless exchanging and utilization of meta knowl-
edge from our framework across the Semantic Web.

10. CONCLUSION AND FUTURE WORK
In this paper, we presented an original, generic, formalized and

implemented approach for the management of many dimensions
of meta knowledge, like source, authorship, certainty, and others,
for RDF repositories. Our method re-uses existing RDF modeling
possibilities in order to represent meta knowledge. Then, it extends
SPARQL query processing in such a way that given a SPARQL
query for data, one may request meta knowledge without modifying
the query proper. We achieve highly flexible and automatically co-
ordinated querying for data and meta knowledge, while completely
separating the two areas of concern. Our approach remains com-
patible to existing standards and query languages and can be easily
integrated with existing applications and interfaces.

In the future, we will investigate the meta knowledge support for
OWL-based knowledge bases with advanced reasoning capabili-
ties. Due to the substantially higher complexity of inferencing and
retrieval algorithms (e.g. reasoning in OWL-DL vs. RDF querying
with SPARQL) and the distributed nature of knowledge sources
in the Semantic Web, the notion of meta knowledge will require
further, non-trivial justification. Another interesting research is-
sue is the support for nested meta knowledge (i.e. construction of
meta knowledge for the result with respect to additional informa-
tion about meta knowledge of its origins).

Our long-term objective is the generic, efficient and effective in-
frastructure for meta knowledge management as an integral part of
the proof layer of the Semantic Web.

Acknowledgements. This work was supported by the X-Media
project (www.x-media-project.org) funded by the European Com-
mission under EC grant number IST-FP6-026978 and by the project
WeKnowIt (www.weknowit.eu) funded by the European Commis-
sion under EC grant number FP7-215453.

11. REFERENCES
[1] Chris Bizer and Richard Cyganiak. The TriG Syntax. 2007.

http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/TriG-
20070730/.

[2] Christian Bizer and Jeremy J. Carroll. Modelling Context
using Named Graphs. In W3C Semantic Web Interest Group
Meeting, Cannes, France, 2004.

[3] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan.
Data Provenance: Some Basic Issues. 20th Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), New Delhi, India, pages
87–93, 2000.

[4] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan.
Why and Where: A Characterization of Data Provenance.
Proc. of ICDT, pages 316–330, 2001.

[5] Jeremy J. Carroll and Patrick Stickler. TriX: RDF triples in
XML. In Proceedings of the Extreme Markup Languages
2004, Montreal, Canada, 2004.

[6] Y. Cui and J. Widom. Practical Lineage Tracing in Data
Warehouses. Proc. of ICDE, pages 367–378, 2000.

[7] Li Ding, Pranam Kolari, Tim Finin, Anupam Joshi, Yun
Peng, and Yelena Yesha. On Homeland Security and the
Semantic Web: A Provenance and Trust Aware Inference
Framework. In Proceedings of the AAAI Spring Symposium
on AI Technologies for Homeland Security, 2005.

[8] Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance Semirings. In PODS, pages 31–40, 2007.

[9] D. McGuinness and P. Pinheiro da Silva. Explaining
Answers from the Semantic Web: the Inference Web
Approach. J. Web Sem., 1(4):397–413, 2004.

[10] W. Murdock, D. McGuinness, P. Pinheiro da Silva, C. Welty,
and D. Ferrucci. Explaining Conclusions from Diverse
Knowledge Sources. International Semantic Web Conference
(ISWC), Athens, USA, pages 861–872, 2006.

[11] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics and Complexity of SPARQL. In Proc. of ISWC,
pages 30–43, 2006.

[12] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics and Complexity of SPARQL. arXiv:cs/0605124v1
[cs.DB], May 2006.

[13] Jorge Perez, Marcelo Arenas, and Claudio Gutierrez.
Semantics of SPARQL. Technical Report TR/DCC-2006-17,
Universidad de Chile, October 2006.

[14] P. Pinheiro da Silva, D. McGuinness, and R. Fikes. A Proof
Markup Language for Semantic Web services. Inf. Syst.,
31(4-5):381–395, 2006.

[15] Eric Prud’hommeaux and Andy Seaborne. SPARQL query
language for RDF. Working draft, W3C, March 2007.
http://www.w3.org/TR/rdf-sparql-query/.

[16] M. Schraefel, N. Shadbolt, N. Gibbins, S. Harris, and
H. Glaser. CS AKTive Space: Representing Computer
Science in the Semantic Web. Proc. of WWW, pages
384–392, 2004.

[17] Bernhard Schueler, Sergej Sizov, and Steffen Staab.
Management of Meta Knowledge for RDF Repositories. In
Int. Conf. on Semantic Computing (ICSC), pages 543–550,
Irvine, CA, September 2007.

634

WWW 2008 / Refereed Track: Semantic / Data Web - Semantic Web III April 21-25, 2008 · Beijing, China

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

