
Matching Independent Global Constraints
for Composite Web Services

Nalaka Gooneratne Zahir Tari
School of Computer Science and Information Technology

RMIT University
Melbourne, VIC 3001, Australia

{ngoonera, zahirt}@cs.rmit.edu.au

ABSTRACT
Service discovery employs matching techniques to select ser-
vices by comparing their descriptions against user constraints.
Semantic-based matching approaches achieve higher recall
than syntactic-based ones (as they employ ontological rea-
soning mechanisms to match syntactically heterogeneous de-
scriptions). However, semantic-based approaches still have
problems (e.g. lack of scalability as an exhaustive search
is often performed to located services conforming to con-
straints). This paper proposes two approaches that deal
with the problem of scalability/performance for composite
service location. First, services are indexed based on the val-
ues they assign to their restricted attributes (the attributes
restricted by a given constraint). Then, services that as-
sign “conforming values” to those attributes are combined
to form composite services. The first proposed approach ex-
tends a local optimisation technique to perform the latter,
since identifying such values is NP-hard. However, this ap-
proach returns false negatives since the local optimisation
technique does not consider all the values. Hence, a second
approach that derives conforming values using domain rules
is defined. The used rules are returned with each composite
service so that a user can understand the context in which
it is retrieved. Results obtained from the experiments that
varied the number of available services demonstrate that the
performance of the local optimisation-based approach is 76%
better than existing semantic-based approaches and recall is
98% higher than syntactic-based approaches.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess, Selection process; H.3.5 [Online Information Ser-

vices]: Web-based services

General Terms
Performance, Theory, Algorithms

1. INTRODUCTION
Web services are autonomous and modular applications

that are located, accessed and executed over the Internet.
Service discovery enables such services to be located based
on functional requirements [2], non-functional requirements [12]
or both [10]. It employs matching techniques to compare

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

user requests against service descriptions to retrieve appro-
priate services. A service discovery approach is either syntac-
tic-based [11] (where descriptions are represented as a set of
strings and “string matching” is used) or semantic-based [2]
(where ontological relationships are used to perform map-
pings between terms of user requests and service descrip-
tions). It is well accepted that semantic-based approaches
achieve higher recall than syntactical ones [2]. Therefore the
focus of this paper is on semantic-based matching and we
will show the limitations of existing approaches (especially
when dealing with complex/composite services).

Before providing further details about existing semantic-
based approaches, we will first consider the following sce-
nario which will be used in the rest of this paper (to illus-
trate the use of various concepts). In this scenario, we want
to model the “purchase service”, where a user wishes to pur-
chase a (Macintosh) computer online and wants it delivered
home. A shipper should be able to pick up this computer
from the dispatch location of a seller, and it should be in-
sured from the point at which the computer is picked up.
The computer must not be insured until it is assembled (so
that the insured period can be maximised), and it should
not be picked up by the shipper until it is insured. The
(composite) service shown in Figure 1 is formed by locating,
co-ordinating and collaborating the constituent services, and
executed to satisfy this request.

Interactions

Insurance

Computer

Sales

ShippingUser

Figure 1: A Composite Service

Locating a composite service (like the one shown in Fig-
ure 1) would require accurate specifications of both service
descriptions and user requests. Constraints are used in user
requests to accurately describe the services that need to be
located [2]. They are of two types: local and global con-
straints. The former restricts the values of a particular at-
tribute of a single service (e.g. type.Computer = MACIN-
TOSH), whereas the latter simultaneously restricts the val-
ues of two or more attributes of multiple constituent services.
Global constraints can be classified based on the complexity
of solving them (i.e. determining the values that should be
assigned to their attributes) as either strictly dependent or

765

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

independent. A (global) constraint is strictly dependent if
the values that should be assigned to all the remaining re-
stricted attributes can be uniquely determined once a value
is assigned to one. location.Dispatch = location.Pickup ∈
validRegion.Insurance is an example of a strictly dependent
global constraint. Once MELBOURNE is assigned to lo-
cation.Dispatch, the same value has to be assigned to lo-
cation.Pickup and included in the set of values assigned to
validRegion.Insurance. Services that conform to strictly de-
pendent global constraints can be easily located in polyno-
mial time [5].

Any global constraint that is not strictly dependent, is
independent. For example, availableDate.Computer ≤ ap-
provalDate.Insurance ≤ date.Pickup is an independent global
constraint. In our opinion, the class of composite services
that conform to independent global constraints is probably
the “most” interesting to study, as their location is known
to be NP-hard [3, 12]. Indeed, if a given independent global
constraint restricts q attributes, and if service descriptions
assign p values to each attribute, then a technique locating
a conforming service may have to consider pq combinations
of values. As a consequence most of the existing matching
techniques (for locating composite services) do not consider
independent global constraints [1, 8]. Nonetheless, there are
some that consider them [9, 11, 12] and they use integer pro-
gramming solutions focusing on local optimisations [12] and
AI planners [9, 11] to efficiently locate conforming composite
services. However, all the techniques of the latter type are
syntactic-based approaches. None of the current semantic-
based composite matching approaches consider independent
global constraints.

This paper proposes a semantic-based matching technique
that locates services conforming to independent global con-
straints. A two dimensional data structure, called a slot list,
is designed to efficiently find services. Available services are
indexed based on the values they assign to the attributes re-
stricted by a global constraint. This index enables the quick
retrieval of services that assign a particular value to their
restricted attribute. Then, tuples of conforming values are
determined using either a greedy approach or derived using
domain rules [2]. Finally, services that assign these con-
forming values to their restricted attributes are retrieved
from the slot list and combined to form conforming com-
posite services. Experiments were performed to compare
the proposed techniques against a syntactic-based compos-
ite matching technique [11] and a relevant semantic-based
matching technique [2]. The proposed technique that incor-
porates a greedy algorithm performs 76% better than the
existing techniques. Experimental results also show that the
proposed approaches achieve a higher recall than syntactic-
based approaches.

The rest of his paper is organized as follows. In the re-
maining sections we will refer to composite services simply
as “services” (because the focus of this paper is only on the
discovery of such services). Section 2 overviews some back-
ground needed to understand the various parts of the paper.
In Section 3 we provide concise guidelines on how requests
for services should be specified. Section 4 details the pro-
posed composite matching techniques and Section 5 provides
a summary of advantages/limitations of the proposed ap-
proaches. Details of the experiments are given in Section 6.
In Section 7, we review existing composite matching tech-
niques. Finally, we summarize and conclude in Section 8.

2. BACKGROUND

Meta-Ontology
In this paper we will use the meta-ontology proposed by
Elgedawy et al. in [2]. As pointed out in [5], in this on-
tological structure relationships can be accurately modeled
and reasoned using a “simple” mechanism. A meta-ontology
consists of four types of elements (i.e. concepts, operations,
roles and rules). Concepts are basic entities of a domain.
Domain elements with common attributes are abstracted
into concepts (e.g. - Computer, Finance, Insurance). Trans-
actions that are permitted in a domain are specified with
operations (e.g. - Sales(), Insure(), Ship()). Roles are used
to specify the actors such as Sales Assistant, Telemarketer.
A description of rules will be provided later in this section.

The relationships between the elements of an ontology are
specified with substitution graphs and transformation graphs.
In a substitution graph, the contextual aspect of a relation-
ship is specified with a substitution condition. Each (substi-
tution) graph defines a set of attribute mappings. Figure 2
depicts an example of a substitution graph which specifies
the relationship between Computer and Laptop. A trans-
formation graph models a relationship requiring the meta-
model of an element to be changed. It is specified with one or
more consecutive operations. Figure 3 shows a transforma-
tion graph modeling the relationship between Dell and Intel
(which are brand names of a Computer and a Processor).
This is specified with an operation that lists components
and another that returns the type of one.

price

processor

display

memory

networking
options

input
devices

optical
drives

sound
system

hard disk

price

processor

size

memory

networking
options

battery

hard disk

Computer Laptop

battery.Laptop = NOT_REQUIRED

Figure 2: Substitution graph

DELL

INTEL

Component:list(Computer)

ComponentType:typesOf(Component)

Figure 3: Transformation graph

766

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

These two data structures (i.e. substitution and trans-
formation graphs) are specified for every element of an on-
tology (i.e. concept, operations, roles). The meta-ontology
requires any transitive relationship to be explicitly specified
with the data structures. For example, if Calculator can be
substituted with Laptop, and Laptop can be substituted with
Computer, there is a transitive substitution relationship be-
tween Calculator and Computer. Then, a substitution graph
which allows the concept Calculator to be substituted with
Computer should be explicitly included in the ontological
descriptions.

WS-ALUE

The proposed composite matching technique assumes that
the functional descriptions of services are specified with WS-
ALUE [6]. In such a language, the functionality of a ser-
vice is described by three elements; its purpose (goal), state
transitions and data transformations. Current description
frameworks represent the purpose with an operation [2, 6].
The state transitions are described with pre-conditions (de-
scribing the state that the execution environment of a service
needs to be in before commencing its execution) and post-
conditions (describing the state after its execution has been
successfully completed). States are described by the values
that can be assigned to the attributes of a service according
to the pre-conditions or the post-conditions. Data trans-
formations are described with inputs and outputs. Unlike
other functional description frameworks, WS-ALUE models
all three functional aspects together [6]. For the approach
proposed in this paper, descriptions that specify the purpose
and the state transition performed by services would be suf-
ficient. However, WS-ALUE is selected because we intend
to develop techniques that verify the composability [7] and
compatibility [7] of (composite) services, in the future.

An WS-ALUE ’s operation (used to describe the purpose
of a service) is constrained by the role it performs in a do-
main and the concepts it affects. For example, a Computer
Sales service performs the operation Sales(), affects the con-
cept Computer and performs the role of an Sales Assistant.
The data transformations are described with inputs and out-
puts. “in-constraints” and “out-constraints” restrict the val-
ues used as inputs and outputs. State transitions are de-
scribed with pre-conditions and post-conditions.

The conditions (specifying the in-constraints, out-constra-
ints, pre-conditions and post-conditions) model a relation-
ship between an attribute and a value. A condition explic-
itly reduces the scope of an attribute to a particular do-
main. The scope of an attribute is the set of values that
can be assigned to the attribute. It is defined by associat-
ing an attribute with a concept. For example, the scope
of the attribute dispatchTime cannot be determined un-
less it is specified as dispatchTime.Computer. Then any
value (specifying the time taken to dispatch a computer)
can be assigned to the attribute dispatchTime. When an
attribute is used in a condition, its scope is reduced to a
particular domain. For example, in a condition of the form
dispatchTime.Computer<24 HOURS, the scope of dispatc-
hTime.Computer is reduced to a value less than 24 hours.

Rules
Rules of a meta-ontology [2] define the legitimate deriva-
tions of a domain (e.g.“Insurance should be approved im-
mediately according to standard procedures”, “A computer

should be picked up a day after it is made available accord-
ing to standard procedures”, “A customer is categorized as
VIP if more than 100 purchases are made within a week”).
The second matching approach proposed in this paper will
use these rules to derive values that conform to indepen-
dent global constraints. An exact specification of how these
rules are represented is not provided in [2]. Therefore, we
assume that a rule is specified as a function, which derives
a value that should be assigned to a derived attribute based
on a value that is assigned to a determinant attribute. The
context in which these assignments should be made to the
attributes is specified with an operation, an affected concept
and a role. Figure 4 depicts graphical representations of the
first two sample rules described above.

approvalDate.Insurance

[Insure(),

Computer,

Sales_Representative]

standardProcedure()

availableDate.Computer

[Sales(),

Computer,

Sales_Assistant]

SAME DAY

date.Pickup

[Ship(),

Computer,

Shipping_Agent]

standardProcedure()

approvalDate.Insurance

[Insure(),

Computer,

Sales_Representative]

+1 DAY

Figure 4: Sample Rules

Context Matching Technique
Elgedawy’s approach [2] matches the contexts of two similar
goals. Their notion of “semantically related attributes” will
be used in the proposed technique to identify the list of at-
tributes related to a given attribute according to ontological
relationships.

Definition 1 (Semantically Related Attributes).
Given two attributes ai and ay where their scopes are defined
with the concepts ci and cy respectively, ai is semantically
related to ay if cy can be substituted with ci using either a
substitution graph or a transformation graph, and the sub-
stitution results in ai being mapped to ay.

The attribute Computer.display is semantically related to
Laptop.size according to the substitution graph given in Fig-
ure 2, because Computer substitutes Laptop and the substi-
tution results in display being mapped to size.

3. USER REQUEST
Concise guidelines (for creating requests for composite

services) are given in this section. The proposed matching
technique assumes that a request is structured according the
given guidelines. A request consists of a composite service
template and a constraint model. The former specifies the
types of services that need to be aggregated to form a com-
posite service. It is defined as a collection of service types.
A service type is described with the triplet [O, C, R], where
O is an operation, C is an affected concept and R is a role. A
description of the composite service template of the service
given in Figure 1 follows.

{[Sales(), Computer, Sales Assistant],
[Ship(), Computer, Shipping Agent],
[Insure(), Computer, Sales Representative]}

Constraints are included in a request to provide an accurate
description of the required services. For example, the con-
straint “type.Computer = Macintosh” (which is applied on

767

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

services that sell computers) states that only those that sell
Macintosh computers are required. The constraint model
described here contains an independent global constraint.
Such constraints are formed with a collection of binary at-
tribute comparisons (binary constraints). For example, avail-
ableDate.Computer ≤ approvalDate.Insurance ≤ date.Pickup
is an independent global constraint. Typically, a global con-
straint is specified with a non-empty set of attributes. Addi-
tionally, a type which indicates whether a constraint restricts
attributes that describe either pre-conditions (of services),
post-conditions or both is included in a specification.

The proposed approach employs both a local optimisa-
tion technique and derivation-based technique (that uses
domain rules) to determine values that conform to a given
constraint. The reasons for using these techniques will be
described in the next section. Both of these techniques de-
termine the values that should be assigned to all the at-
tributes based on a value assigned to one. Hence, they use
the values assigned to one particular attribute as a starting
point. This attribute is referred to as the “free attribute”.
Unlike the values assigned to the non-free attributes, all the
values assigned to this attribute will be considered by the
proposed approach when determining conforming values.

Since an independent global constraint is a collection of
binary attribute comparisons, the relationships between the
attributes are specified with a set of binary operators. Each
one of them is specified with two attributes and relational
operator, which can be either =, <, >, ≤, ≥, 6=, ∈, ⊂, ⊆ or
/∈. Following is the description of availableDate.Computer
≤ approvalDate.Insurance ≤ date.Pickup.

{availableDate.Computer, approvalDate.Insurance,
date.P ickup}, POST, availableDate.Computer
{availableDate.Computer ≤ approvalDate.Insurance,
approvalDate.Insurance ≤ date.P ickup},

4. THE MATCHING APPROACH
This section provides details of the proposed compos-

ite matching technique. This technique requires: (i) WS-
ALUE [6] service descriptions, (ii) user requests structured
according to the guidelines given in Section 3, and (iii) the
terms in descriptions (service descriptions and user requests)
to be defined in a meta-ontology [2]. It locates services that
conform to independent global constraints. Let gc be a con-
straint that restricts the attributes [a1, . . . , an] of services
of types [S1, . . . , Sm]. A service tuple [s1, . . . , sm] is a
composite service that conforms to gc if:

1. ∀si, si is of type Si,

2. ∀si, si is described using an attribute a′

i, where
a′

i ∈{a1, . . . , an}, and

3. [v1, . . . , vn] assigned to [a′

1, . . . , a′

n] of [sx, . . . , sy]
conform to gc.

[a′

1, . . . , a′

n] of [s1, . . . , sy] are referred to as restricted

attributes.
The proposed approach consists of three phases: (1) can-

didate acquisition, (2) service indexing and (3) composite
service acquisition. The first phase locates services of the
different types in a composite service template. The second
phase identifies restricted attributes of services and indexes
them based on the assigned values. The final phase retrieves
the values that conform to a given constraint and combines
services that assign those values to their restricted attributes
(to form conforming composite services).

(1) Candidate Acquisition
This phase describes a way of locating candidate services.
A candidate service is a service of a particular type, and the
proposed approach locates such services for all the types in a
composite service template. By locating candidate services,
it ensures that the constituent services of a composite service
are of appropriate types.

Let Sm be a service type and sn a given service. We also
denote by om, cm and rm the operation, the affected con-
cept and the role that describe Sm. For sn we denote its
elements by on, cn and rn. The service sn is a candidate
of type Sm if on substitutes om, cn substitutes cm, and rn

substitutes rm. The substitutions are performed with the
substitution graphs in a meta-ontology [2]. Each candidate
si of type Si is placed in a list of candidates candidates(Si).
Given the available services W and a composite service tem-
plate CST (defined with the service types Sx, . . . , Sy), this
phase generates a set of candidate lists Candidates, where
Candidates={candidates(Sx), . . . , candidates(Sy)}.

(2) Service Indexing Phase
This phase identifies the restricted attributes of candidate
services and indexes them in a two dimensional structure
based on the values they assign to these attributes. An at-
tribute is restricted, if the assigned values are restricted by
a user constraint. Such attributes need to be identified be-
cause whether a particular candidate service can be included
in a conforming composite service is determined based on the
values assigned to them. Since this technique is semantic-
based, an attribute of a service is considered as a restricted
attribute if it is semantically related to one that is used to
specify a global constraint.

Consider the constraint availableDate.Computer ≤ appro-
valDate.Insurance ≤ date.Pickup described in Section 3. This
restricts the attributes availableDate.Computer, approval-
Date.Insurance and date.Pickup of services of types Sales(C-
omputer), Insure(Computer) and Ship(Computer)1. A ser-
vice ComputerSales-I of type Sales(Computer) described with
date.Dispatch exists. date.Dispatch is semantically related
to availableDate.Computer according to the ontological re-
lationships. In such a situation, the restricted attribute
time.Assemble of ComputerSales-I is a restricted attribute,
because the values assigned to it are restricted by date.Dispa-
tch ≤ approvalDate.Insurance ≤ date.Pickup.

Candidate services need to be indexed based on the values
assigned to such attributes because of two reasons.

1. The proposed approach first determines the values that
conform to a given constraint. Then, it combines ser-
vices that assign those values to their restricted at-
tributes to form composite services. Such an approach
requires the list of values assigned to each restricted
attribute by the candidate services. These lists can be
easily obtained by indexing services based on the as-
signed values. Let us assume we have the services de-
scribed in Table 1. If these services are indexed in the
way shown in Figure 5, then the lists of values assigned
to the restricted attributes can be easily obtained. We
assume that the values assigned to the attributes avail-

1Sales(Computer), Insure(Computer) and Ship(Computer)
are the abbreviated forms of [Sales(), Computer,
Sales Assistant], [Insure(), Computer, Sales Representative]
and [Ship(), Computer, Shipping Agent] respectively.

768

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

ableDate.Computer, approvalDate.Insurance and date.-
Pickup are specified in date format and that the re-
quired ontological descriptions are available.

Table 1: Sample services

Service Type Assigned Values
ComputerSales-I Sales(Computer) 183-2007, 185-2007

ComputerSales-II Sales(Computer) 4TH JULY

Insurance-I Insure(Computer) 3RD JULY, 4TH JULY

Insurance-II Insure(Computer) 1ST JULY, 5TH JULY

Shipping-I Shipping(Computer) 4TH JULY

Shipping-II Shipping(Computer) 2ND JULY, 3RD JULY

availableDate.
Computer

approvalDate.
Insurance

date.Pickup

1ST_JULY Insurance-II

2ND_JULY Shipping-I

5TH_JULY ComputerSales-I Insurance-II

4TH_JULY ComputerSales-II Shipping-IIInsurance-I

3RD_JULY ComputerSales-I Insurance-I Shipping-I

Figure 5: Indexed Services

2. When combining services to form composite services,
those that assign a particular value to a restricted at-
tribute can be retrieved quickly. Let us assume that tu-
ple [3RD JULY, 3RD JULY, 4TH JULY] of conform-
ing values is given for the above scenario. In such a
situation if the available services are not indexed, 10
operations (3+4+3) may have to be performed to lo-
cate those services that assign these values to their
restricted attributes. However, it would only take 3
operations if the services are indexed (see Figure 5).

The proposed approach generates a set of Slot Lists to
index candidate services based on the values they assign to
restricted attributes. Figure 6 provides a global view of this
data structure. It depicts a set of Slot Lists {L1, L2, L3, L4}
generated for a global constraint that restricts the attributes
[a1, a2, a3, a4]. Note that a Slot List Li is generated for every
attribute ai. A slot lij is included in a list Li for each value
vij that can be assigned to attribute ai. Each slot contains
a set of services. A service sk is included in a slot lij if it is
able to assign the value vij to ai. That means, the service
description of sk is specified using either

• ai: vij is assigned to ai, or

• an attribute a′

i to which a value v′ij is assigned: a′

i is
semantically related to ai and the relationship causes
v′ij to be mapped to vij .

For example, in Shipping-I in Table 1 the restricted at-
tribute is date.Dispatch and the assigned values are not spec-
ified in “date-month” format. However, since the ontological
relationships semantically relate date.Dispatch to available-
Date.Computer, and map the assigned values to 3RD JULY
and 5TH JULY, Shipping-I is placed in the slots that corre-
spond to 〈availableDate.Computer, 3RD JULY〉 and 〈availa-
bleDate.Computer, 5TH JULY〉. When generating a set of
Slot Lists it is assumed that the domain of values that can

be assigned to a particular attribute and the number of at-
tributes semantically related to a particular attribute are
bounded.

l
11

s
x

Slot Lists

Slots

Services

L
2

L
1

L
3
L
4

l
12

l
13

l
14

l
15

l
21

l
31

l
41

s
y
s
z

s
p
s
q

s
a

Figure 6: Set of Slot Lists

(3) Composite Service Acquisition
The task performed in this phase is divided into two steps.
First, values that conform to a given independent global
constraint are identified. Then, services that assign these
conforming values are combined to form composite services.

The proposed approach models an independent global con-
straint as a directed acyclic graph G=(V, E), where V is a
set of nodes and E is a set of arcs. The nodes of such a graph
represent the attributes and the arcs model the relationships
between the attributes. Each arc and the two connected at-
tributes model a binary attribute comparison of a constraint.
Figure 7 depicts a graph modeling a constraint that restricts
a1-a6, where the binary attribute comparison are specified
with the operators {o12, o13, o24, o34, o35, o46}.

a
1

a
2

a
3

a
4

a
5

a
6

o
13

o
12

o
24

o
34

o
35

o
46

Figure 7: Directed Acyclic Graph modeling an In-

dependent Global Constraint

Values that conform to a constraint are identified by gen-
erating instances of such graphs. A tuple of values assigned
to the nodes of a graph is an instance. For example, the val-
ues [v1, v2, v3, v4, v5, v6], where each value vi is assigned to
an attribute ai, forms an instance of the graph depicted in
Figure 7. Such an instance conforms to a given constraint
if each of its values conform to the binary attribute com-
parisons represented by the arcs. A value that conforms to
the binary attribute comparisons is referred to as an Arc
Consistent Value.

Definition 2 (Arc Consistent Value). Let gc be an
independent global constraint that restricts the values as-
signed to attributes {a1, . . . , an}, where ai is a non-free
attribute and ai ∈{a1, . . . , an}. {aj , . . . , ak} is the set of
attributes connected to ai with arcs {oij , . . . , oik}, where
{aj , . . . , ak}⊆{a1, . . . , an}. [vj , . . . , vk] is a tuple of values

769

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

assigned to {aj , . . . , ak}. A value vi assigned to ai is arc

consistent, if the relationships represented by the arcs {oij ,
. . . , oik} exist between vi and the values in {vj , . . . , vk}.

An instance of a graph that consists of arc consistent val-
ues is a tuple of conforming values. Such tuples are referred
to as Arc Consistent Instances.

Definition 3 (Arc Consistent Instance). Let gc be
an independent global constraint that restricts the values as-
signed to attributes {a1, . . . , an}, where ai is a non-free
attribute and ai ∈{a1, . . . , an}. A tuple of values [v1, . . . ,
vn] assigned to {aj , . . . , ak} is an arc consistent instance

if each value vj in {aj , . . . , ak} is locally arc consistent.

Identifying an arc consistent instance is NP-Hard. If a
given relational constraint restricts n attributes and m arc
consistent values can be assigned to each attribute, then
mn combinations of values may have to be considered to
identify an arc consistent instance. The proposed technique
defines two separate approaches to perform this task. The
first approach uses a basic greedy algorithm (backtrack-free
search algorithm [3]) to identify arc consistent instances.
The second approach derives them using domain rules [2].
The reason for proposing two separate approaches will be
given later. We will refer to the first one as the optimised
approach, and the second as the derivation-based approach.

(1) The Optimised Approach
This approach employs a greedy algorithm to locate arc
consistent instances in polynomial time. It attempts to
generate an arc consistent instance for each value that is
assigned to the free attribute. When generating these in-
stances, first, a value assigned to the free attribute is se-
lected. Then, based on that value, arc consistent values
are selected for the remaining attributes. If such a value
cannot be located for a particular attribute, then the tech-
nique moves to the next value that is assigned to the free
attribute. It does not perform any backtrack to consider
alternative (arc consistent) values for attributes. Figure 8
shows the way in which values are selected by this approach
when services are indexed as in Figure 5. A solid line indi-
cates an arc consistent instance, whereas a dashed line indi-
cates that the assignments have led to a dead-end (i.e. an
arc consistent instance is not located for the corresponding
value that is assigned to free attribute). When 3RD JULY
is selected for availableDate.Computer, the arc consistent
instance [3RD JULY, 3RD JULY, 3RD JULY] is located.
However, when 5TH JULY is considered, an arc consistent
value cannot be located for date.Pickup.

Once an instance is located, the services in the slots that
correspond to the arc consistent values are combined. Let
us consider a constraint gc that restricts the attributes a1,
. . . , an of services of types S1, . . . , Sn. We also assume
that a set of Slot Lists SL has been generated for gc. A
slot at a location 〈ai, vi〉, which corresponds to an attribute
ai and a value vj , contains services of type Si which as-
sign the value vj to attribute ai. Therefore, if [v1, . . . ,
vn] is an arc consistent instance, then the services at the
slots 〈a1, v1〉, . . . , 〈an, vn〉 would form conforming com-
posite services. In the above scenario, when [3RD JULY,
3RD JULY, 3RD JULY] is located, the services at the slots
〈availableDate.Computer.3RD JULY〉, 〈approvalDate.Insura-
nce.3RD JULY〉 and 〈date.Pickup.3RD JULY〉 are combined
to form the conforming composite service [ComputerSale-I,
Insurance-I, Shipping-I].

availableDate.
Computer

approvalDate.
Insurance

date.Pickup
≤ ≤

4TH_JULY 2ND_JULY

1ST_JULY

3RD_JULY

4TH_JULY

3RD_JULY

4TH_JULY

3RD_JULY

5TH_JULY5TH_JULY

Constraint

Assigned

Values

Figure 8: Value Selection

The algorithm for the optimised approach is given in Algo-
rithm 1. This requires a set of Slot Lists and an independent
global constraint.

locateServices(SL[][], gc)1

removeEmptySlots(SL);2

{c0.a0, . . . , cn.an}← restrictedAttributes(gc);3

{atcp, . . . , atcq}← attributeComparisons(gc) ;4

for i←0; i<SL[0].length; i++ do5

values[0]←SL[0][i].getValue();6

for j←1; j<SL.length; j++ do7

{atcx, . . . ,8

atcy}← includes(cj .aj, {atcp, . . . , atcq});
for k←0; k<SL[j].length; k++ do9

values[j]←SL[j][k].getValue();10

if isArcConsistent(〈values[0], . . . , values[j]〉,11

{actx, . . . , acty}) then
break;12

end13

else14

reset(values[j]);15

end16

end17

end18

if containsInitialV alues(values) then19

continue;20

end21

for each service s0 in SL[0][values[0]].getServices() do22

for each service s... in23

SL[. . .][values[. . .]].getServices() do

for each service sn in24

SL[n][values[n]].getServices() do
conforming services.add(s0, . . . , sn);25

end26

end27

end28

end29

Algorithm 1: Locating Services - Greedy Approach

First, the empty slots are removed from the Slot Lists
(line 2). These slots need to be removed because the corre-
sponding values are not assigned to the relevant restricted
attributes by any candidate service. Then, this algorithm at-
tempts to generate an arc consistent instance for each value
that is assigned to the free attribute (lines 5-17). Once the
instances are generated, the services at the indicated slots
are retrieved (lines 20-22) and combined to conforming com-
posite services (lines 23-28). The time complexity of Algo-

770

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

rithm 1 is exponential. If a given constraint restricts p at-
tributes, there are m conforming value tuples, and each slot
(in the set of Slot Lists) contains q services, then m*(pq)
composite services would be generated. However, this tech-
nique is “generally” polynomial since Algorithm 1 does not
retrieve any non-conforming composite services. This algo-
rithm identifies tuples of arc consistent values in polynomial
time and only combines services that assign those values to
their restrict attributes. Those that do not assign arc con-
sistent values are not considered.

The main drawback of this approach is that it may return
false negatives. That means, it may not retrieve all the con-
forming composite services. In the scenario described in Fig-
ure 5, [ComputerSale-I, Insurance-I, Shipping-I], [Compute-
rSale-I, Insurance-I, Shipping-II] and [ComputerSale-II, Ins-
urance-I, Shipping-II] are conforming composite services, be-
cause [3RD JULY, 3RD JULY, 3RD JULY], [3RD JULY,
3RD JULY, 4TH JULY], [3RD JULY, 4TH JULY, 4TH J-
ULY] and [4TH JULY, 4TH JULY, 4TH JULY] are con-
sistent instances. However, only [3RD JULY, 3RD JULY,
3RD JULY] is located by the optimised approach since it
employs a greedy algorithm.

(2) The Derivation-based Approach
This approach uses domain rules to derive arc consistent
instances. Like the previous approach, this one may also
return false negatives. However, this approach returns the
used domain rules along with each composite service so that
the context in which it is located can be understood by a
user. Let us consider the constraint availableDate.Computer
≤ approvalDate.Insurance ≤ date.Pickup and the services
given in Table 1. If the technique that identifies arc consis-
tent instances selects 3RD JULY for availableDate.Compu-
ter, then the rules in Figure 4 can be used to derive the tuple
[3RD JULY, 3RD JULY, 4TH JULY]2. Even though the
discovery technique only returns [ComputerSale-I, Insurance-
I, Shipping-I] (and not [ComputerSale-I, Insurance-I, Shippi-
ng-I] and[ComputerSale-II, Insurance-I, Shipping-II]), a user
would be able to understand the context in which it was re-
trieved if the rules in Figure 4 are returned.

When generating an arc consistent instance, values are
derived for the non-free attributes based on one that is as-
signed to the free attribute. Since we assume that a rule is
a function that derives a value for a derived attribute based
on one that is assigned to a determinant attribute, a set
of rules can be used to uniquely determine the values that
should be assigned to the non-free attributes based on one
that is assigned to the free attribute. That means, the do-
main rules are used to approximate an independent global
constraint to a strictly dependent global constraint.

Definition 4 (Approximatable Constraint). Let
gc be an independent global constraint which restricts the
values assigned to attributes {ax, . . . , ay}, where ax is its
free attribute and Vx is the set of values assigned to ax. {rm,
. . . , rn} is the set of available rules. gc is approximatable if
∃vx ∈Vx and ∃{rp, . . . , rq}⊆{rm, . . . , rn}, which can derive
the values vx+1, . . . , vy based on vx, such that [vx, vx+1, . . . ,
vy] forms an arc consistent instance.

Let us consider the constraint depicted in Figure 7. This

2According to defined rules, an insurance policy has to be
approved on the same day and computers have to be picked
up a day later for shipping.

could be considered as an approximatable (see Figure 9).
The constraint is approximatable if the values [v2-v6] as-
signed to the attributes [a2-a6] are derived using the rules
{r12, r13, r14, r35, r46}, based on the value v1 assigned to a1,
and [v1-v6] form an arc consistent instance.

a
1

a
2

a
3

a
4

a
5

a
6

o
13

o
12

o
24

o
34

o
35

o
46

�
1

�
2 �

3

�
4 �

5

�
6

r
13

r
12

r
14

r
35

r
46

Figure 9: Approximatable Constraint

Approximating an independent global constraint using do-
main rules is NP-hard. Let us consider a constraint gc that
restricts the attributes {ax, . . . , ay}, where ax is its free at-
tribute and |x, . . . , y|=m. For each attribute ai in {ax+1,
. . . , ay} there is a set of rules Ri where each ri is able to
derive a value vi for ai based on a value vx assigned ax. In
such a situation (m-1)n combinations of rules may have to
be considered to establish if gc is approximatable. Hence,
the proposed, uses a greedy approach to select rules. If a
particular rule ri is able to derive a value vi for an attribute
ai in {ax+1, . . . , ay} based on a value vx assigned to ax,
such that vi is arc consistent, then it is selected. Then, the
technique proceeds to select a rule that derives a value for
ai+1 in {ax+1, . . . , ay}. Any other rule that derives a value
for ai based on value vx assigned to ax is not considered.

The algorithm that determines whether a given constraint
is approximatable is given below (see Algorithm 2). This al-
gorithm requires an independent global constraint, the avail-
able domain rules and a set of Slot Lists. A given constraint
is considered to be approximatable if at-least one value tu-
ple (i.e an arc consistent instance) to be derived based on
a value that is assigned to its free attribute. This algo-
rithm attempts to generate such an instance for each value
assigned to the free attribute (lines 4-6). When generating
an instance, it iterates through the available rules (line 9)
and attempts to derive an arc consistent value (lines 10-20)
for each non-free attribute (line 7). If a derived value is arc
consistent, both the value and the rule used to derive it are
stored in a temporary array (lines 13 and 16). If not, the
corresponding elements of the two arrays are reset and an-
other value is derived using a different rule (line 19). Finally,
every derived arc consistent instance is placed in a list along
with the rules used for the derivations (line 26). The com-
plexity of Algorithm 2 is polynomial (i.e. v*x*y*z, where
v is the number of values assigned to the free-attribute, x
is the number of non-free attributes, y is the number at-
tributes semantically related to a given restricted attribute
and z is the number of rules). This algorithm assumes that
(i) each attribute is semantically related to a bounded num-
ber of attributes, and (ii) a finite number of domain rules
are available.

Once Algorithm 2 is executed, the derived arc consistent
instances are obtained from derived values list. If it is not
empty, the services in the slots (of the Slot Lists) that cor-

771

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

approximate(gc, R, SL)1

{c0.a0, . . . , cn.an}← restrictedAttributes(gc);2

{atcp, . . . , atcq}← attributeComparisons(gc);3

for i←0; i<SL[0].length; i++ do4

initialize values[], rules[];5

values[0]←SL[0][i];6

for each attribute cj .aj ∈ {c1.a1, . . . , cn.an} do7

for k←0; k<j; k++ do8

for each rule rm ∈ R do9

cx.ax ← determinantAttribute(rx);10

c′x.a′

x ← derivedAttribute(rx);11

if (ck.ak==cx.ax || isSemanticallyRel−12

ated(ck.ak, cx.ax)) && (cj .aj==c′x.a′

x ||

isSemanticallyRelated(cj .aj , c′x.a′

x))

then
values[j]←13

derive(ck.ak, cj .aj , values[k], rm);
{atcc, . . . , atcd}←14

includes(cj .aj , {atcp, . . . , atcq});
if isArcConsistent(〈values[0], . . . ,15

values[j]〉, {actc, . . . , actd}) then
rules[j]←rm; go to line 9;16

end17

else18

reset(values[j]); rules[j]← NULL;19

end20

end21

end22

end23

end24

if ¬containsInitialV alues(values) then25

derived values list.add(values, rules);26

end27

end28

Algorithm 2: Approximating Independent Global Constraints

respond to the values in the instances are combined (like
the proposed optimised approach) to form composite ser-
vices. The rules used to derive an arc consistent instance
are returned with each corresponding composite service.

5. DISCUSSION
Both the optimised and derivation based approaches have

better complexity than existing techniques, are they are
both semantic-based and they locate conforming services in
polynomial time. Hence, they are able to locate conform-
ing composite services efficiently in situations where user
requests and service descriptions are syntactically hetero-
geneous. However, the main drawback of our approaches is
that they retrieve duplicate entries. A duplicate entry occurs
if a composite service that includes a particular sequence of
constituent services is retrieved more than once.

Let gc be a global constraint that restricts the attributes
ax, . . . , ay , where the services sx, . . . , sy are able to assign
the values [vx1, . . . , vy1] and [vx2, . . . , vy2] to the restricted
attributes. If both tuples of values conform to gc (i.e. they
are arc consistent instances), one duplicate entry would be
retrieved. In a situation in which n conforming value tuple
can be assigned to the restricted attributes by a tuple of
services, where n>1, n-1 duplicate entries would be retrieved
by these techniques.

However, the number of these duplicate entries only in-
creases at a polynomial rate. If there are p conforming com-
posite services, the number of duplicate entries that can be
generated would be p*q, where q is the number of conforming
value tuples assigned to each tuple of restricted attributes.

6. EVALUATION
In this section the experiments we performed to compare

the proposed approaches against those in [2] and [11]. The
metrics used are performance and recall. Recall was calcu-
lated based on the number of unique conforming composite
services retrieved. The technique proposed in [11] is imple-
mented with JSHOP3 and others were done in Java (JDK
1.5.0). A MySQL 5.0 Community Server database is used
as a registry to store service descriptions and ontological de-
scriptions. Experiments were conducted on Pentium IV 3.0
GHz machines with 1 Gigabyte of memory.

Up to our knowledge, there is no standard data set that
can be used to evaluate semantic-based service discovery
techniques. We were unable to obtain a real-world data
set of semantic-based web service descriptions. None of the
composite matching techniques that we came across [1, 8,
9, 11, 12] defined an approach to generate test data. We
have therefore tried to generate our own test data set using
a “appropriate”methodology which uses the following steps.
Even though this may not be the best way, we believe that it
will give us good indication about the quality of the proposed
approaches (when compared to existing ones).

Details were extracted from sample ontologies and an on-
tology that consists of 157 concepts, 19 roles and 27 opera-
tions was randomly generated. 2000 substitution graphs and
transformations graphs were generated to define ontological
relationships. Service descriptions were created with ele-
ments that were randomly selected from the ontology. Each
description had an operation, an affected concept, a role and
between 20 to 30 pre-conditions and post-conditions.

A similar approach was used in [2] to generate test data
to evaluate implementations of their semantic-based match-
ing techniques. Experiments were conducted by varying the
number of available service descriptions and service types
in composite service templates. Between 400 to 2000 ser-
vice descriptions and composite service templates which in-
clude between 5 to 25 service types were considered. Since
the technique proposed in [2] employed an exponential algo-
rithm, it was not feasible to execute it in such an environ-
ment. Hence, the experiments that included the exhaustive
approach were conducted in a restricted environment, which
contained between 20 to 100 service descriptions and com-
posite service templates that include between 2 to 10 service
types.

The recall levels achieved by the exhaustive and the pro-
posed optimised approach were higher than that achieved
by the syntactic approach. Unlike the later approach, the
semantic-based approaches matched syntactically heteroge-
neous service descriptions and user requests using ontolog-
ical relationships. The exhaustive approach considered all
the possible combination of services; and for each combi-
nation it employed an exhaustive algorithm to evaluate the
values assigned to the restricted attributes (i.e. it checks if
the values assigned to the restricted attributes conform to a
given constraint). The proposed approach only considered

3A Java-based implementation of SHOP.

772

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

a limited number of values. Hence, the exhaustive approach
retrieved more services than the proposed approach. The
number of services retrieved by all the techniques decreased,
as the number of service types increased. The values as-
signed to the restricted attributes of candidate services had
to conform to an increasing number of binary attribute com-
parisons. The derivation-based approach did not retrieve
many services because the rules required to approximate a
given constraint were not available. The used random pro-
cess did not generate the required rules.

400 800 1200 1600 2000
 Web Services

0

200

400

600

C
om

po
si

te
 S

er
vi

ce
s

Syntactic

Optimised

Derivation

0.7 1.9 2.2 8
34.5

90.75

183.4

316.68

513.91

0 0 0.34 2.54 14.04

(a) Normal Environment

20 40 60 80 100
 Web Services

0

20

40

60

C
om

p
os

it
e

S
er

vi
ce

s

Syntactic

Optimised

Exhaustive

Derivation

0.08 0.6 1.54 2.02 2.642.6 3.2 4.5

10.4
13.48

7.84
9.74

22.32

40.68

53.36

0 0 0 0 0

(b) Restricted Environment

Figure 10: Recall - Varying no. of Available Services

5 10 15 20 25
 Service Types

0

100

200

300

400

C
om

po
si

te
 S

er
vi

ce
s

Syntactic

Optimised

Derivation

1.98 1.02 0.48 0.04 0

334

119.32

81.8

24.9
2.30.5 0.56 0 0 0

(a) Normal Environment

2 4 6 8 10
 Service Types

0

50

100

150

200

C
om

po
si

te
 S

er
vi

ce
s

Syntactic

Optimised

Exhaustive

Derivation

12.2
1.7 0.38 0.08 0.02

22.43 25.35
11.2

1.9 0.2

160.54

105.16

80.46

54.8

37

0 0 0 0 0

(b) Restricted Environment

Figure 11: Recall - Varying no. of Service Types

The performance of the optimised technique was 76% bet-
ter than that of the syntactic approach in the experiments
varied the number of available services. The syntactic ap-
proach used JSHOP, which performs a combinatorial depth-
first search to locate conforming composite services. On the
other hand, the proposed local optimisation-based approach
determined the values that conform to a given constraint

in polynomial time and only combined services that assign
those values. The performance of the syntactic approach
was 32% better in the experiments that increased the num-
ber of service types in a composite service template. Since
the optimised approach is semantic-based it retrieved more
candidate services than the syntactic approach. The time
taken by the devised approach to index services in the Slot
Lists increased at a rapid rate with an incrementing number
of service types. The exhaustive approach was the least ef-
ficient in the restricted environment. In the two worst cases
(with 100 available services and 10 service types) it took
around 9 minutes 35 seconds, and and 46 minutes and 25
seconds respectively, whereas the proposed approach only
took 1.16 seconds and 1.47 seconds.

400 800 1200 1600 2000
Web Services

1

10

100

1000

10000

T
im

e(
Se

co
nd

s)

Syntactic
Optimised
Derivation

203.92

1872.26

3424.12

58.77

160.12
236.65

312.47

48.85

89.9
133.77

222.14

(a) Normal Environment

20 40 60 80 100
Web Services

0

0

1

10

100

1000
T

im
e(

Se
co

nd
s) Syntactic

Optimised
Derivation
Exhaustive

0.1 0.12

0.32
0.530.49

0.79 0.9
1.16

1.72
2.62 2.85

3.83

18.13

86.94

143.55

574.58

(b) Restricted Environment

Figure 12: Time taken - Varying no. of Available

Services

7. RELATED WORK
Semantic-based approaches retrieving composite services

were introduced in [1, 4, 8]. However, the technique in [4] is
an approximate approach which does not consider the values
assigned to the attributes. None of the remaining techniques
neither consider global constraints nor locate composite ser-
vices that conform to such constraints.

Wu et al. in [11] and Sirin et al. in [9] considered both lo-
cal and global constraints. Their approaches require service
descriptions and user requests to be specified with OWL-
S. SHOP-2 (Simple Hierarchical Planner-2) is used to lo-
cate an orchestration of services that form a conforming
composite service. First, a “SHOP method” is generated
according to the OWL-S process in a request. Then, the
request and available service descriptions are converted to
operator instances. Both approaches directly used the uni-
fication functions of SHOP-2 to match domain instances to
operators. Therefore basic string matching functions were
used to match user requests to service descriptions. The

773

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

approach in [9] extends [11] by incorporating a Description
Logic reasoner. However, this is only used to check whether
the pre-conditions of a given operator (in the hierarchy) are
entailed by the state of the planner. Therefore, the approach
in [9] locates conforming composite services when a con-
straint in a request is specified with attributes that have
different scopes, but not when requests and service descrip-
tions are syntactically heterogeneous.

5 10 15 20 25
Service Types

1

10

100

1000

10000

T
im

e(
S

ec
on

d
s)

Syntactic
Optimised
Derivation68.58

85.31
109.36

134.72

17.67

31.72

 658.23
949

81.22 87.22
131.37 152.9

(a) Normal Environment

2 4 6 8 10
Service Types

0

0

1

10

100

1000

10000

T
im

e(
Se

co
nd

s)

Syntactic
Optimised
Derivation
Exhaustive

0.09
0.12

0.25
0.35

0.88 1.09 1.2 1.47

1.37
1.79 1.98 2.4

49.95

897.01
1686.77

2785.11

(b) Restricted Environment

Figure 13: Time taken - Varying no. of Service

Types

Zeng et al. [12] introduced an approach requiring a re-
quest (for a composite service) to be specified with a state
chart diagram, where each state models a service type. Ser-
vices were described with a quality of service model that
consists of attributes such as execution price, execution du-
ration, reliability, availability, and reputation. Both local
and global constraints were considered in their approach.
However, these constraints were limited to those that can be
specified with an attribute of the quality of service model. A
syntactic-based integer programming technique that focuses
on local optimisation is used to match the user requests to
the service descriptions.

8. CONCLUSION
This work proposes two service discovery approaches that

locate services that conform to independent global constraints.
The first approach uses a greedy algorithm to identify con-
forming values and locate composite services. However, since
this approach is not sound, a second approach that approx-
imates a given constraint is proposed. This approach uses
domain rules to derive values that conform to a given con-
straint and combines services that assign those values to
their restricted attributes. The domain rules used to de-
rive the conforming values are returned with each service
so that context in which it is located can be understood
by a user. Services are indexed in a two dimensional data

structure (a set of Slot Lists) to improve the performance
of these approaches. Experimental results showed that the
proposed optimised (initial) approach performs better than
any existing technique. It also achieves higher recall than
a syntactic-based approach.s As future work, we intend to
develop a composite matching technique that considers mul-
tiple user constraints of various types.

Acknowledgments
We would like to thank the ARC (Australian Research Coun-
cil) for the support given towards this work, under the Link-
age Project no. LP0667600 titled “An Integrated Infrastruc-
ture for Dynamic and Large Scale Supply Chain”.

9. REFERENCES
[1] R. Akkiraju, B. Srivastava, A. Ivan, R. Goodwin, and

T. Syeda-Mahmood. SEMAPLAN: Combining
Planning with Semantic Matching to Achieve Web
Service Composition. In Proceedings of the
International Conference on Web Services, pages
37–44, 2006.

[2] I. Elgedawy, Z. Tari, and M. Winikoff. Exact
Functional Context Matching for Web Services. In
Proceedings of the 2nd International Conference on
Service Oriented Computing, pages 143–152, 2004.

[3] E. Freuder. A Sufficient Condition for Backtrack-Free
Search. Journal of ACM, 29(1):24–32, 1982.

[4] N. Gooneratne, Z. Tari, and G. Craske. Composite
Matching Technique for Semantic-based Service
Discovery. In Proceedings of the Australian
Undergraduate Conference, 2004.

[5] N. Gooneratne, Z. Tari, and J. Harland. Matching
Strictly Dependent Global Constraints for Composite
Web Services. In Proceedings of the European
Conference on Web Services, pages 139–148, 2007.

[6] N. Gooneratne, Z. Tari, and J. Harland. Verification of
Web Service Descriptions using Graph-based Traversal
Algorithms. In Proceedings of the ACM Symposium on
Applied Computing, pages 1385–1392, 2007.

[7] B. Medjahed and A. Bouguettaya. A Multilevel
Composability Model for Semantic Web Services.
Transactions Knowledge and Data Engineering,
17(7):954–968, 2005.

[8] M. Paolucci, K. P. Sycara, and T. Kawamura.
Delivering Semantic Web Services. In Proceedings of
the International World Wide Web Conference, 2003.

[9] E. Sirin and B. Parsia. Planning for Semantic Web
Services. In Proceedings of International Semantic
Web Conference, Workshop on Semantic Web
Services, November 2004.

[10] K. P. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks:
Dynamic Matchmaking Among Heterogeneous
Software Agents in Cyberspace. Autonomous Agents
and Multi-Agent Systems, 5(2):173–203, 2002.

[11] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S Web Services Composition
using SHOP2. In Proceedings of the International
Semantic Web Conference, pages 195–210, 2003.

[12] L. Zeng, B. Benatallah, A. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web services Composition. Trans. on
Software Engineering, 30(5):311–327, 2004.

774

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China

