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ABSTRACT

With the emergence of Yahoo Pipes and several similar ser-
vices, data mashup tools have started to gain interest of
business users. Making these tools simple and accessible to
users with no or little programming experience has become a
pressing issue. In this paper we introduce MARIO (Mashup
Automation with Runtime Orchestration and Invocation),
a new tool that radically simplifies data mashup composi-
tion. We have developed an intelligent automatic composi-
tion engine in MARIO together with a simple user interface
using an intuitive “wishful search” abstraction. It thus al-
lows users to explore the space of potentially composable
data mashups and preview composition results as they iter-
atively refine their “wishes”, i.e. mashup composition goals.
It also lets users discover and make use of system capabil-
ities without having to understand the capabilities of indi-
vidual components, and instantly reflects changes made to
the components by presenting an aggregate view of changed
capabilities of the entire system. We describe our experi-
ence with using MARIO to compose flows of Yahoo Pipes
components.
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1. INTRODUCTION
Configurable applications for automated processing of syn-

dication feeds (i.e. Atom and RSS) are gaining increasing
interest and attention on the Web. As of writing this pa-
per there are over 30,000 customized feed processing flows
(referred to as “pipes”) published on Yahoo Pipes [15], the
most popular service of this kind. Yahoo Pipes offers hosted
feed processing and provides a rich set of user-configurable
processing modules, which extends beyond the typical syn-
dication tools and includes advanced text analytics such as
language translation and keyword extraction. Yahoo Pipes’
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Figure 1: Example of a Flow of Feeds and Services.

service also comes with a visual editor for flows of services
and feeds. In the example of Figure 1, the feeds are Yahoo
Answers and Yahoo News, which can be parameterized, and
truncation, union and sort are services. There exist simi-
lar frameworks that are provided as a hosted service (e.g.,
DAMIA [5]) or as a downloadable server-side software (e.g.,
/n software’s RSSBus [7], IBM Mashup Starter Kit [5] and
IBM Project Zero [4]).

This new breed of flow composition tools and execution
runtimes helps lower the entry barrier for user-configurable
data processing, also referred to as data mashup. However,
as friendly as the visual programming environment of Ya-
hoo Pipes is, it still requires careful manual assembly of the
processing flows by the end user. As noted by technology re-
viewers, while this new technology makes data mashup more
approachable for non-programmers, it still is not as easy as
drag and drop [8].

With the goal of drastically enhancing the consumabil-
ity of data mashup for the end users, we have developed
MARIO (Mashup Automation with Runtime Orchestration
and Invocation) tool for automatic composition of flows of
services and feeds. This tool can be adapted to compose
and deploy flows in a variety of flow execution runtimes, in-
cluding Yahoo Pipes. As is well known, the easiest way for
new users to start creating new data mashups is by cloning
an existing pipe that roughly matches the needs of the user.
In MARIO we take this practice to another level by build-
ing a tool that not only helps the user to find an existing
flow that matches the processing needs, but also generates
new flows on demand to match the user’s request. It helps
users discover the capabilities of the system by guiding them
through the process of expressing composition requirements
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Figure 2: Interaction of MARIO with other systems.

that can be supported by the system. The tool makes auto-
matic composition approachable by maintaining an abstrac-
tion of taxonomy-extended tag-based search in the space of
existing and generated flows.

Using such a search abstraction, the users express their
composition requirements as tag queries describing the de-
sired flow output. For each request the users are imme-
diately presented with an automatically generated and de-
ployed flow, along with a number of alternative flows that
users can visualize and deploy. The tool helps users dis-
cover and refine flows by providing context-dependent in-
structions.

The main contributions we present in this paper are:

• A new tool for rapid generation of new data mashups
that uses a tag-based search abstraction for automatic
goal-driven composition of flows.

• A simplified metadata model for describing the seman-
tics of services, feeds and flows that enables automatic
composition.

• An efficient planning algorithm that enables the search
abstraction for automatic flow composition and discov-
ery of system capabilities.

The paper is organized in the following way. Section 2
presents an overview of MARIO. Section 3 describes the user
interface of MARIO, with the focus on search goal specifi-
cation and refinement. Section 4 introduces the component
model and component specification. Section 5 illustrates
some application examples of MARIO. Section 6 explains the
automatic composition engine. Section 7 discusses related
work, and finally, Section 8 concludes the presentations.

2. MARIO OVERVIEW
Figure 2 shows a high-level overview of interactions be-

tween systems that can be triggered through the user inter-
face. The end user interacts with MARIO to create a flow.
The flow is deployed to the execution runtime. The run-
time executes the flow by calling services to process feeds
and produce results. In practice, the processing can be acti-
vated by a Web service request sent to the runtime, and the
runtime can respond with results represented as a feed, sim-
ilarly to Yahoo Pipes. The visual editor, if one is available,
can be invoked to edit the composed flow. To open the flow
composed by MARIO, the editor can retrieve flow definition
directly from the runtime, or obtain it from MARIO.

We have connected MARIO to our own testing runtime
that simulates Yahoo Pipes functionality, but does not in-

clude a visual editor. We evaluate the approach by using
MARIO to compose a set of operators that are equivalent
to Yahoo Pipes modules, but implemented as services in our
runtime. This experiment demonstrates that the expressiv-
ity of semantic descriptions in MARIO is sufficient to de-
scribe modules defined within an external system. We also
study the scalability by adding a large number of feeds to
the existing configuration.

To support iterative refinement of queries, MARIO ex-
tends the tag-based search with the use of tag taxonomies.
Searching for a tag denoting a high-level category in a tax-
onomy returns results tagged with any sub-category tags.

MARIO does not require the taxonomies to be specified
explicitly in a top-down fashion. Instead, taxonomies can
emerge implicitly in a bottom-up process that is typical of
folksonomies. Nevertheless, our search mechanism allows
an explicitly defined taxonomy of tags, or a set of such tax-
onomies, to be added at any time to enhance the search.
The use of tag taxonomies together with context-dependent
query refinement interface in MARIO support an intuitive
iterative goal specification process, where the goals are ex-
pressed as general categories at first, and are subsequently
refined to more specific tags as necessary. On the other
hand, it does not prevent the users from jumping to specific
tags directly, effectively shortcutting the iterations.

Recognizing the difficulties associated with obtaining de-
tailed unambiguous descriptions of service semantics, we
have taken the approach that relies on light-weight semantic
metadata annotations by making use of tags, folksonomies
and simple taxonomies to describe the semantics of services,
feeds and flows. Given these simple annotations, MARIO
uses a small set of rules to compute a set of tags that de-
scribes each potentially composable flow.

The use of tag-based descriptions greatly simplifies this
task compared to heavier ontology-based approaches pro-
posed in prior work. Descriptions of feeds can be obtained,
for example, from social bookmarking web sites like Syn-
dic8.com [1]. The descriptions of services, however, may
require slightly more careful and consistent design. As we
show in the paper, this is not an obstacle in practice, es-
pecially in applications where the set of services is small
compared to the set of feeds.

One of the main benefits of automatic composition is in-
stant adaptation to changes. The interface dynamically adapts
to the changing set of feeds and services, providing instant
feedback to the user. Just like the information presented in
the goal specification interface, the feedback about the new
or changed capabilities is provided in user-understandable
terms, explaining the effect of the change in terms of the
results that can be produced by new data mashups. With a
sufficiently evolved taxonomy that includes a good set of
abstract concepts, the end users of MARIO are shielded
from having to understand the low-level details of specific
feeds or services. The use of automatic composition to-
gether with abstractly specified goals also enables instant
automatic adaptation of composed flows to changes in the
environment without user’s involvement.

3. USER INTERFACE
This section describes the user interface for composing

flows by specifying processing goals, which is the operation
that is most often performed by the end users of MARIO.
There is another group of users that must interact with our
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Figure 3: MARIO interface for an empty goal.

system for another purpose, namely to input the tag-based
descriptions of feeds and services. We have not developed
any graphical tools for that group of users, and in our im-
plementation the required descriptions are provided simply
via dynamically loaded configuration files. This will be de-
scribed in Section 4.

The user interface described in this section is not specific
to automatic composition per se in many respects. It was our
intent to develop an interface that can simplify navigation
and search in a large set of tagged and ranked objects. Those
objects do not have to be feeds that are generated on the fly
– they could also be taken from an external catalog.

It is the efficient planning algorithm that enables the use
of this user interface for flow composition. It shields the
user from the associated complexity, and makes dynamic
composition appear as search over a static catalog. The
details of the algorithm will be explained in Section 6.

3.1 Initial Goal Specification
The end user interacts with MARIO via a web browser.

The first screen presented to the user contains a single tag
cloud (see Figure 3). This tag cloud contains tags that are
relevant to the application domain. The user can select one
or more tags from the tag cloud to describe the desired re-
sults. Tags shown using large font sizes generally correspond
to high-level categories. For example, the tag Newspaper ap-
pears in a larger font than WashingtonTimes. The larger font
size indicates that the selection will constitute a broad goal
that will likely need to be refined by adding other tags.

Clicking on a tag in the tag cloud adds that tag to the
current goal, which is initially empty. The tag cloud shows
only those tags that can be added to the goal such that
the new goal can be planned, i.e., at least one flow can be
composed to satisfy the goal. In further sections we will
discuss how this is achieved. Practically it means that the
tag cloud reflects the current capabilities of the system.

Due to screen space constraints the tags that would oth-
erwise appear in the smallest font may be completely re-
moved from the screen. To accommodate advanced users
who want to enter these tags directly, MARIO interface in-
cludes a search string where tags can be typed in. The search
string also lets users add more than one tag to the goal.

3.2 Goal Refinement Interface
Goal refinement is the main mode of interaction between

MARIO and its users. When one or more tags are specified

as the goal, new control elements appear in the user inter-
face, as shown on Figure 4. New elements display the flow
that matches the goal and a preview of the output produced
by that flow. The interface also includes a number of other
elements that help user understand current system capabil-
ities and refine the goal. All user interface elements shown
on Figure 4 appear simultaneously on one screen, and user
input committed to any element changes the contents of all
elements.

3.2.1 Current Goal

The “Current Goal” element displays the set of tags that
constitute the goal. These tags, shown in black font, are
referred to in what follows as the current goal. On Figure 4,
the current goal is the set {Sorted, Yahoo Answers, Yahoo

News}. The user can click on each of these tags to remove
that tag from the goal.

Each time the user changes the current goal, the composer
generates and ranks possible alternative flows for that goal,
computing sets of tags describing these flows. It also chooses
one flow with the best rank among the alternatives and sub-
mits it to the execution environment. We will refer to this
flow as the selected flow.

The description of each of the alternatives must include
all tags of the current goal, but may also contain other tags.
These additional tags for the selected flow are shown in gray
font in the “Current Goal” element. This gives user an in-
dication of how MARIO interpreted the goal. Being able
to see this set of guessed tags is especially helpful when the
goal is ambiguous, for example is based on a general concept.
On Figure 4, Sorted was specified as part of the goal, and
MARIO selected the flow described by ByTitleAsc (among
other tags) to satisfy the goal.

3.2.2 Parameters

The selected flow can have one or more parameters. The
selected flow on Figure 4 has one parameter, “Destination”.
The parameters are automatically initialized with default
values, but the users can change parameter values using the
edit controls inside the“Parameters”element. Depending on
the runtime environment, it can be possible to change the
values of the parameters without redeploying the flow. In
Yahoo Pipes, for example, the parameters can be specified
in the URL corresponding to the deployed flow.

3.2.3 Composed Flow

The “Composed Flow” element shows a graphical repre-
sentation of the selected flow and its configuration param-
eters. This is especially useful for the advanced users who
have a good understanding of individual service modules,
and use MARIO to quickly create a flow for their needs.
The users who are less familiar with the individual services
may be able to get better understanding of the selected flow
functionality from the guessed tags in the “Current Goal”
and the contents of “Flow Output”.

3.2.4 Flow Output

The “Flow Output” element shows the results produced
by the selected flow. In our implementation it shows the
feed produced by the selected flow. Note that this is the
only user interface element cannot be populated until the
selected flow is deployed and produces results. Depending
on the runtime, in some cases it may take longer than the
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Figure 4: MARIO interface for goal {Sorted, YahooAnswers, YahooNews}.

user is willing to wait. In those cases the element can display
a preview of the results obtained by other means.

3.2.5 Add to Goal and Modify Goal

The “Add To Goal” element shows a tag cloud similar to
the one shown in Figure 3, but computed in the context of
the current goal. In other words, the tag cloud in Figure 4
only shows the tags that can be combined with the current
goal, such that there will exist at least one flow satisfying
the new goal. Both the set of tags in the tag cloud and the
size of the fonts used to display the tags in “Add To Goal”
element may change depending on the current goal.

Clicking on a tag in the tag cloud adds the tag to the
current goal, which results in composition and deployment
of a new selected flow and changes the contents of all user
interface elements.

The “Modify Goal” element allows specifying a new goal
using a search string. This can be especially useful for expe-
rienced users who may find it tedious to click tags in “Add
To Goal” or “Current Goal” elements to add or remove tags
one by one. When the set of tags is large, the tag cloud may
not show all of those tags, and several steps of goal refine-
ment may be necessary to add a tag that is initially hidden.
On the other hand, it can be the only way for the end user
to discover that the tag exists and is supported by the sys-
tem. The users who already know about the tag can type it
directly into“Modify Goal”without intermediate refinement
steps. After clicking on “Go” button, the set of tags entered
in the search string becomes the new goal.

3.2.6 Alternatives

The list of alternative flows, their rankings and tag anno-
tations are provided as reference to power users. Selecting
and clicking one flow in the list of alternatives replaces the
selected flow with the selected flow without changing the

current goal. Some of the alternative flows can be subopti-
mal, i.e. there may exist better ranking flows with exactly
the same description. Hence, the preferred way of selecting
another flow is to modify the goal using other user interface
elements, which guarantees that the selected flow is optimal
for the selected goal.

3.2.7 Commands

The user interface provides access to a set of commands
that operate on the selected flow (the commands are located
above the flow graph in Figure 4). The set of commands
depends on the functionality supported by the runtime. For
example, “Edit” command can be used to open the Visual
Editor, and “Publish” command can be used to make the
flow public, i.e. accessible by others.

4. COMPOSITIONAL SEMANTICS
This section deals with the formal definition of the com-

positional semantics of a flow. We address this issue by
defining a model for deriving the semantic description of a
flow based on the descriptions of its individual components.
A key characteristic of our model is that it captures not
only the semantics of inputs and outputs, but also the func-
tional dependency between the outputs and the inputs. This
model can also be expressed using SPPL formalism (Stream
Processing Planning Language, [10]) for describing planning
tasks, which allows us to use an efficient planning algorithm
for flows composition.

4.1 Composition Elements

4.1.1 Objects, Tags and Taxonomies

A taxonomy T = {t} is a set of tags (i.e. keywords) t. An
object o is described by a set of tags d(o) ⊆ T selected from
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the taxonomy T . An object can be, for example, a resource
bookmark, as in del.icio.us [12], or a feed, as in Syndic8 [1].

In the simplest case, for example if T is formed as a
folksonomy, by people specifying one or more tags to de-
scribe certain objects, the tags in T are unrelated and T is
completely unstructured. Introducing a taxonomy structure
in T , however, enhances query expressivity, as we explain
below, and also helps keep tag-based descriptions succinct.

The structure of the taxonomy is described by specifying
sub-tag relationship between tags. The following definition
is the standard definition of a taxonomy sub-tag relation
applied to tagging.

Definition 1. A tag t1 ∈ T is a sub-tag of t2 ∈ T , denoted
t1 :: t2, if all objects described by t1 can also be described
by t2. The sub-tag relation is transitive, i.e. if t1 :: t2 and
t2 :: t3 implies t1 :: t3 for ∀t1, t2, t3 ∈ T.

For example, NewYorkTimes :: Newspaper. For notational
convenience we will further assume that each tag is a sub-tag
of itself, i.e.

∀t ∈ T, t :: t.

If two tags t1, t2 ∈ T are such that t1 :: t2 and t2 :: t1,
these tags are synonyms, since by definition they describe
the same set of objects. We will denote this as t1 ≡ t2.

4.1.2 Queries

Queries are used to describe the desired results produced
by a composition (i.e., composition goals), or to specify the
input conditions of an operator.

Definition 2. A tag query q ⊆ T selects a subset Qq(O) of
an object set O = {o} such that each object in the selected
subset is described by all tags in q, taking into account sub-
tag relationships between tags. Formally,

Qq(O) = {o ∈ O|∀t ∈ q ∃t
′ ∈ d(o) such that t

′ :: t}.

Note that this definition of a query remains equally effec-
tive in taxonomies with explicitly stated sub-tag relation-
ships, as well as in configurations with implicit taxonomies,
where the sub-tag relationships are not explicitly stated, but
can be inferred from joint appearance of tags.

For example, consider a set of objects O1 and a taxonomy
T1 where NewYorkTimes :: Newspaper, and some objects in
O1 are annotated with NewYorkTimes. Assume that O2 is
created from O1 by annotating every object in the set {o ∈
O1|{NewYorkTimes} ⊆ d(o)} with Newspaper tag, and tax-
onomy T2 is the same as T1 but with the sub-tag relationship
between Newspaper and NewYorkTimes removed (thus defin-
ing an implicit taxonomy). As a result, for q ={Newspaper}
the selected subset will be the same in both sets of objects.

This is a very important property of the proposed ap-
proach. It allows mixing implicit taxonomies, typical of
folksonomy-like bottom-up modeling approaches, with much
more structured and elaborate top-down modeling, which is
typical of taxonomies and ontologies. By effectively enabling
an easy gradual transition from implicitly formed to explic-
itly stated sub-tag relationships between tags, as the model
evolves, it greatly reduces the effort required for creating a
first working set of descriptions compared to the top-down
ontology-based modeling approaches, where the significant
cost of defining taxonomies must be paid upfront.

4.1.3 Operators

An operator is a basic unit in the composition. Generally,
it creates one or more new objects from a subset of exist-
ing objects. An operator can require no inputs. When one
or more inputs are required, an input condition is specified
for each input. The input condition is specified as a tag
query, which must be satisfied by the corresponding object
provided as input. The outputs are described by specifying
tags that are added to and removed from the description
of the new objects produced by the output. For example,
consider a service that truncates an RSS feed to specified
number of items. This service can be modeled by an opera-
tor that includes FullFeed in its input condition, and removes
it from the output object description, adding ShortFeed.

The descriptions of the new objects functionally depend
on descriptions of input objects. There are two methods
of propagating information from the input to the output.
The first, explicit, method involves using a typed tag vari-
able that can be bound to one of the tags describing the
input object, and then using this variable to describe one or
more of the outputs. The type of the variable is a tag, and
the variable can be bound to any single sub-tag of its type.
In certain cases, however, operators must propagate sets of
tags unrelated to the operator. For example, the trunca-
tion operator needs to propagate any tags describing feed
origin, such as Newspaper. To enable the second method of
propagation, a special “sticky” tag Ω is defined to serve as a
label for automatically propagating tags. If any sub-tag of
Ω appears in at least one input object description, it will be
automatically added to the description of all output objects.

The following definition captures all of the properties of
an operator explained above.

Let

• p(f) ≥ 0 be the number of operator variables for op-
erator f ;

• ~t(f) = {tk(f)|tk(f) ∈ T}p(f)
k=1 be an array of tags repre-

senting the types of operator variables ~v for operator f ;
• n(f) ≥ 0 be the number of inputs of operator f ;

• ~q(f,~v) = {qi(f,~v)|qi(f,~v) ⊆ T}n(f)
i=1 be an array of tag

queries that define input conditions of operator f ;
• m(f) ≥ 1 be the number of outputs of operator f ;

• ~a(f,~v) = {aj(f,~v)|aj(f,~v) ⊆ T}
m(f)
j=1 be an array of

sets of added tags for outputs of operator f ;

• ~r(f,~v) = {rj(f,~v)|rj(f,~v) ⊆ T}
m(f)
j=1 be an array of

sets of removed tags for outputs of operator f .

Given the above parameters of an operator, and

• an object set O;

• an array of tags ~v = {vk}
p(f)
k=1 assigned to operator

variables, such that vk ∈ T and vk :: tk(f);
• an array of input objects ~o ⊆ O satisfying the input

conditions parameterized with ~v, i.e., such that ~o =

{oi}
n(f)
i=1 and oi ∈ Qqi(f,~v)(O)

we define the operator as follows.

Definition 3. Operator f = 〈p,~t, n, ~q, m,~a, ~r〉 is a function
on the object set, defined as f(O,~v, ~o) = O ∪ O′, where

O′ = {o′j |o 6∈ O}m(f)
j=1 is the set of new objects produced by

the operator, and where

d(o′j) =





n(f)
⋃

i=1

{t′ ∈ d(oi)|t
′ :: Ω}



 ∪ aj(f,~v) \ rj(f,~v).
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The definition above provides a formula for computing de-
scriptions of new objects produced by the operator: the de-
scription of each object is the union of automatically propa-
gated tags derived from Ω and operator-output-specific added
tags, minus the set of operator-output-specific removed tags.

4.2 Composition

4.2.1 Composition Semantics

A composition of operators is defined simply as the re-
sult of applying one operator to the object set produced by
another operator.

Definition 4. The composition of l operator instances formed
by operators f1, f2, . . . fl applied to object subsets ~o1, ~o2, . . . , ~ol

and parameterized with tags ~v1, ~v2, . . . , ~vl correspondingly is
the composite operator f = ◦fj , j = 1..l defined as

f(O) = fl(. . . (f2(f1(O, ~v1, ~o1), ~v2, ~o2)), ~vl, ~ol).

Notice that f(O) = O ∪ O′

1 ∪ O′

2 . . . ∪ O′

l, where O′

i is the
set of new objects produced by operator fi. Also note that
input objects for each subsequent operator can be selected
from the object set produced by the preceding operator, i.e.

~o1 ⊆ O0 ≡ O

~o2 ⊆ O1 ≡ O ∪ O
′

1

...

~ol ⊆ Ol−1 ≡ O ∪ O
′

1 ∪ O
′

2 ∪ . . . ∪ O
′

l−1

Definition 5. The composition is valid when the input
conditions of each operator instance fj are satisfied by the
object array ~oj , i.e. ∀i, j oji

∈ Qqji
(fj , ~vj)(Oj−1).

Subsequent instances of operators may use objects pro-
duced by preceding operators as inputs, i.e. there could ex-
ist i and j, i < j such that ~oj ∩O′

i 6= ∅. In other words, there
is a data dependency between ~oj and ~oi. Data dependencies
between operator instances within a composition can be rep-
resented using a data dependency graph where arcs connect
operator outputs to inputs of other operators, similarly to
the flow graph in Figure 1. Note that under this model the
directed data dependence graphs will always be acyclic.

4.2.2 Goal-Driven Composition

The problem of goal-driven composition can now be sim-
ply defined as the problem of finding a composition of opera-
tors that produces an object satisfying a given query. As an
additional simplifying assumption, we assume that the com-
position is applied to an empty object set. This assumption
is not significantly constraining, since the initial objects can
always be produced by operators that do not require any
input objects. On the other hand, the assumption allows
uniform modeling of both feeds and services as operators.

Given a composition problem P(T,F , g), where:

• T is a tag taxonomy,
• F = {f} is a set of operators,
• g is a composition goal specified as a tag query, g ⊆ T ,

the solution set is defined as follows.

Definition 6. The set of solutions S(T,F , g) to the goal-
driven composition problem P(T,F , g) is the set of all valid
compositions F of operators in F such that

• Qg(F (∅)) 6= ∅;
• for all operator instances in F , at least one object pro-

duced by this instance serves as input to another op-
erator instance, or satisfies the goal query.

The second condition in the definition above helps eliminate
from consideration inefficient compositions that have dead-
end operator instances producing unused objects.

4.2.3 Composition Ranking

Before the set of compositions S(T,F , g) can be presented
to the user, the compositions must be ranked, with those
most likely to satisfy user’s intent appearing first in the list.
The ranking is based on a heuristic metric reflecting compo-
sition quality. Each operator f ∈ F is assigned a fixed cost
c(f). Cost of an operator instance in a composition is equal
to the cost of the corresponding operator.

Definition 7. Rank rank(f̂) of the composition

f̂(O) = fn(. . . (f2(f1(O)) . . .)

is the sum of the costs of operator instances, i.e.

rank(f̂) =
n

∑

i=1

c(fi).

By default for all operators c(f) = 1. Hence, the best
compositions are the shortest ones. During configuration of
the system, the c(f) can be changed for some operators to
reflect feed or service quality.

4.2.4 Goal Refinement Tag Cloud

The refinement tag cloud, as shown in “Add to Goal”
area of user interface in Figure 4, provides valuable help
to the user in refining the goal. The tag cloud is simply
a popularity-weighted set of tags computed over the de-
scriptions of outputs of all compositions in a solution set
S(T,F , g). In theory, if the goal g is empty, the tag cloud is
computed over all valid compositions. Although the set of
all compositions may indeed be very large, the set of com-
positions with differently described outputs is much smaller.
The planner that we describe later in this paper can compute
the tag cloud without constructing all compositions.

Note that the queries in our model behave as though the
super-tags from the taxonomy are always included in object
description with the corresponding sub-tags. The same ap-
proach should be used during tag cloud computation. Even
if the super-tags are not included in object description ex-
plicitly, they are added to the description automatically for
the purposes of computing the weights in the tag cloud. This
ensures that even if certain tags do not accumulate enough
weight to appear in the visible portion of the tag cloud, they
add weight to their super-tags, and will still be accessible
through those super-tags.

5. APPLICATION EXAMPLE
In this section we describe how the concepts introduced

at an abstract level in the previous section can be applied in
practice, using the set of Yahoo Pipes modules as an example
of a set of feed processing services.

5.1 Execution Runtime
The Yahoo Pipes modules for processing feeds are only

available through the visual editor. Therefore, MARIO can
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<flow>
<flowInput name="SearchQuery"/>
<call name="yAnswers" class="com.example.URLBuilder">
<input name="prefix"
value="http://answers.yahoo.com/rss/searchq"/>
<input name="suffix" link="SearchQuery"/> </call>

<call name="yNews" class="com.example.URLBuilder">
<input name="prefix"
value="http://news.search.yahoo.com/news/rss"/>
<input name="suffix" link="SearchQuery"/> </call>

<call name="fetchNews" class="com.example.FetchFeed">
<input name="url" link="yNews"/> </call>

<call name="fetchAnswers" class="com.example.FetchFeed">
<input name="url" link="yAnswers"/> </call>

<call name="truncNews" class="com.example.Truncate">
<input name="feed" link="fetchNews"/> </call>

<call name="truncAnswers" class="com.example.Truncate">
<input name="feed" link="fetchAnswers"/> </call>

<call name="union" class="com.example.Union">
<input name="feed1" link="truncAnswers"/>
<input name="feed2" link="truncNews"/> </call>

<call name="sort" class="com.example.Sort">
<input name="feed" link="union"/> </call>

<flowOutput link="sort"/>
</flow>

Figure 5: Example flow description.

compose a flow of Yahoo Pipes modules, but cannot deploy
it as a pipe. Deploying a flow is necessary, however, to show
the preview of flow output in MARIO interface (Figure 4).

To overcome this difficulty, as part of our implementation
we have built a simple Java-based runtime that plays the
same role. Each service in this runtime implements interface
Service with a single public method named process that
receives and returns a hashmap containing input and output
object values:

interface Service {
Map<String,Object> process(Map<String,Object> inputs);

}

The set of hashmap keys used to identify input and out-
put objects in the input and output hashmaps is specific to
each service. A separate description is provided to specify
the hashmap keys recognized by the service, as well as tag-
based annotations on inputs and outputs. This description
is then used to construct a description of an operator. Ser-
vice implementation can invoke web services for advanced
processing, such as language translation, when necessary.

A simple XML format is used to define a flow and deploy
it in the runtime. Once deployed, the flow can be called with
user-defined values of parameters, and will produce results.
Figure 5 presents a sample description corresponding to the
flow shown on Figure 1.

Flow definition consists of flow inputs (i.e., external pa-
rameters), calls (i.e., operator instances) and a flow output.
The call elements instruct runtime about the Java classes
to be used to process data, and the input objects to be in-
cluded in the input map. The objects can be specified as
string values by specifying value attribute, or linked to out-
puts of other calls by specifying a link. In the example
above, each output map contains just one element, so spec-
ifying the name of the call is sufficient to describe a link.
Otherwise, for operators that produce more than one ob-
ject, “callName.elementName” notation is used.

5.2 Descriptions
MARIO requires descriptions of services, feeds, parame-

ters, and taxonomies. These descriptions are translated into

tag {_URL - _Format}
tag {_Feed - _Format}
tag {_Source - _StickyTag}
tag {FrontPage - _Source}
tag {Opinion - _Source}
tag {Travel - _Source}
tag {News - _Source}
tag {Newspaper - News}
tag {Blog - _Source}
tag {NewYorkTimes - Newspaper}
tag {NYTFrontPage - NewYorkTimes FrontPage}
tag {Yahoo - _Source}
tag {TruncatedFeed - _FeedLength}
tag {FullFeed - _FeedLength}
tag {InForeignLanguage -_Language}
tag {InEnglish - _Language}
tag {InFrench - InForeignLanguage}
tag {Sorted - _SortOrder}
tag {_NotSorted - _SortOrder}
tag {NaturalOrder - _NotSorted}
tag {Unsorted - _NotSorted}

Figure 6: Fragment of a tag taxonomy.

operators and other elements of the model described in Sec-
tion 4, which is then used by the planner to generate flows.
All descriptions can be specified in one file or broken into
multiple files, which are then automatically combined into
one logical file before processing.

5.2.1 Tag Taxonomies

Taxonomies are described by specifying sub-tag relation-
ships between tags. A tag does not need to be explicitly de-
clared before it is used, but a tag{} statement is necessary to
declare parents of a tag, which follow after ’-’, for example:
tag {NYTFrontPage - NewYorkTimes FrontPage}.

Tag names beginning with underscore “ ” are hidden tags
that are never displayed in user interface, but otherwise be-
have as normal tags. Hidden tags can be used to express
composition constraints that are internal to the system, for
example, type constraints. The special tag Ω is represented
as _StickyTag. Figure 6 shows a fragment of tag taxonomy
used in our experiments.

5.2.2 Feed Descriptions

In the example of feed description below the output anno-
tation uses tags to describe the content of the feed, as well
as its language.

feed NYTFrontPage {
output{ NYTFrontPage InEnglish _URL }
url {http://www.nytimes.com/services/
xml/rss/nyt/HomePage.xml} }

Such descriptions can be generated automatically, for ex-
ample using Syndic8 tags and default values for language.
The description is translated into an operator that has no
inputs, and produces a single output object tagged with all
tags used in output annotation. If this operator is included
in a flow composed by the planner, during flow execution
the runtime will bind the corresponding operator instance
to a built-in service that returns the URL string as a single
entry in the hashmap of output objects.

5.2.3 Service Descriptions
Each service can have a number of inputs and outputs.

Service description is directly translated into an operator
that requires and produces the corresponding number of ob-
jects. For example, the following describes a FetchFeed ser-
vice.
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service FetchFeed {
java {com.example.FetchFeed}
var {?lang - _Language}
input[url]{ ?lang _URL }
output{?lang FullFeed NaturalOrder _Feed Text} }

This description uses a variable ?lang of type _Language,
and declares an input and an output. The output list enu-
merates tags added by the operator. Tags that are preceded
with ~ are interpreted as removed tags.

Note that sub-tags of _Language are not sticky (i.e. are
not derived from the special tag Ω represented as _StickyTag),
and therefore must be propagated explicitly from input to
output using a variable. However, if FetchFeed operator is
applied to the output of the feed operator in the example
above, NYTFrontPage tag will be propagated to the output
of FetchFeed as well, since that tag is sticky according to
the taxonomy in Figure 6.

Each input and output in the description can have a port
name specified in square brackets. In this example only the
input has a port name “url”. The port name is the name
of the entry in the hashmap that is used to carry the cor-
responding input or output object. Since there is only one
output port, the runtime does not need to know the name of
the output object. Finally, java description element speci-
fies the name of the Java class that implements the service.

5.2.4 Flow Parameters and Constants
Flows that take external parameters can also be com-

posed using the same framework. When two or more services
within a flow are parametric, the planner can decide whether
to expose the service parameters as one input parameter of
the flow, or as several separate parameters. This is achieved
by using tags to describe service input parameters (as inputs
to services), and representing parameter values similarly to
feeds, i.e. as operators that produce a single object described
by tags. The following is an example of service description
that has an external parameter.
param Destination {
default{London}
output{_SearchQuery Travel} }

service YNewsSearchURL {
java {com.example.URLBuilder}
input[prefix]{"http://news.search.yahoo.com/news/rss"}
input[suffix]{_SearchQuery}
output{_URL YahooNews InEnglish} }

Service YNewsSearchURL has two inputs, but the corre-
sponding operator will have only one input. The constant
string in quotes is used to initialize the prefix parameter
to a constant. In the plan suffix parameter will be con-
nected to the object produced by the operator correspond-
ing to Destination service. Note that including constants
into the description makes it possible to specify different se-
mantic descriptions for different configurations of the same
service.

5.2.5 More Service Description Examples

The following examples from the sample application fur-
ther illustrate different services that can be described in this
model.

service Truncate10 {
java {com.example.Truncate}
var {?lang - _Language}
var {?sort - _SortOrder}
input[feed]{_Feed ?lang FullFeed ?sort}
input[length]{"10"}
output{_Feed ?lang ShortFeed ?sort} }

service TranslateEnFr {
java {com.example.Translate}
var {?len - _FeedLength}
input[feed]{_Feed InEnglish ?len NaturalOrder}
input[fromLanguage]{"en"}
input[toLanguage]{"fr"}
output{_Feed InFrench ?len NaturalOrder} }

service Union2 {
java {com.example.UnionOfTwoFeeds}
var {?lang - _Language}
var {?len - _FeedLength}
input[feed1]{_Feed ?lang NaturalOrder ?len}
input[feed2]{_Feed ?lang NaturalOrder ?len}
output{_Feed ?lang ?len Unsorted} }

These descriptions were used in the application shown
in Figure 4. In addition to the goal shown in that figure,
the application supports a set of interesting goals, such as
NewYorkTimes InFrench, Technology News ByDate, NewYork-

Times Flickr Image, etc. We will continue using this applica-
tion for illustration in the next section, where it is used as
a benchmark to evaluate planner performance.

6. PLANNING ALGORITHM
To compose flows according to the semantic model de-

scribed in Section 4, we have developed an improved version
of SPPL planner [11] by proceeding with both plannability
exploration and analysis of related goals. We also added
functionality necessary for generating tag clouds. The se-
mantic model naturally maps to SPPL formalism, which de-
scribes the planning domain as a set of actions that can be
composed by the planner. The set of actions is created based
on the set of operators. Action preconditions, described by
predicates, are created based on operator input conditions.
Tags are represented as types in SPPL, and preconditions
are specified using a variable of the corresponding type. Ac-
tion effects also are mapped to operator outputs. SPPL
predicate propagation mechanism is used for propagation of
sticky and regular tags.

6.1 Presolve Optimizations
During the presolve phase the planner performs action

grounding and obtains results of preliminary problem struc-
ture analysis that are later used for optimizing the search.

Intelligent Grounding. Grounding of actions during
presolve may lead to a combinatorial explosion in the num-
ber of actions. To avoid the explosion, the planner performs
grounding intelligently. First, it analyzes the set of ground
actions in the first tier, i.e. those actions that can be applied
directly in the initial state. Next, it creates the set of possi-
ble groundings for actions that can be applied to the results
of the actions in the first tier. This procedure is repeated,
until a steady state is reached, and no new ground actions
are created.

Source Grouping. Source actions are actions that do
not have inputs. Such actions correspond to operators with-
out inputs, and most often correspond to feeds. In certain
cases it is possible to combine multiple sources into one ac-
tion to reduce the total number of actions considered by the
planner. In particular this is possible when the output de-
scription of two sources cannot be distinguished using any
of the input conditions of other actions, i.e. all input con-
ditions are either satisfied or not satisfied by both sources.
Source grouping procedure is carried out after grounding,
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and results in significant performance improvements in con-
figurations with large number of sources.

Construction of an Action Graph. The planner an-
alyzes compatibility of inputs and outputs of ground ac-
tions by comparing the effect and precondition predicates.
This procedure helps the planner to eliminate connections
between incompatible actions during search. The result of
this domain preprocessing is an action graph where directed
edges represent potential connections between an effect of
one ground action and precondition of another ground ac-
tion. Action graphs can contain cycles. An important prop-
erty of the action graph is that for any connection between
action instances in any valid plan there is a directed edge be-
tween the corresponding ground actions of the action graph.

In addition to speeding up the search, an action graph can
be used for reachability analysis. If the planning task has a
solution there must be a path from all goals in G to at least
one of the initial state object. During presolve, the planner
builds shortest path trees from the goals to all nodes of the
action graph. Actions that are not on any of the paths from
goal to initial state are labeled as disconnected and are not
considered during plan search. The shortest distances to the
goal in action graph are used to direct plan search.

6.2 Plan Search
The planner searches for plans using a forward search

strategy. It creates new objects by applying actions that
have satisfied preconditions. At the initialization of the al-
gorithm the current set of objects S is empty. A set of
actions L̄ is also created, containing the ground actions for
which all preconditions can be satisfied by objects contained
in S. The planner applies actions from L̄ one by one. The
ground action to be applied next is an action from L̄ that has
the least distance to the goal based on reachability analysis.
The action is skipped if the cost of the associated subplan is
higher than the cost bound ~B. When applied, a new action
instance produces a set of new objects, one object for each
effect. The predicates on the new objects are computed us-
ing predicate propagation rules, and the objects are added
to S. New candidate action instances are determined using
the action graph and added to L̄.

Algorithm SPPL Planner(Π)
Presolve

1. Action set Ā← Intelligent Grounding(Π).
2. Ā← Source Grouping(Ā);
3. G(Ā)← Action Graph(Ā);

Forward Search
4. S ← I; L̄←

{

ā ∈ Ā |prec(ā) ⊆ S
}

;
5. for each ā ∈ L̄

6. for each â ∈ instances(ā, S, G(Ā))

7. if ~cost(subplan(â)) ≤ ~B and
[

∃o ∈ effect(â) : o 6∈ S or
6 ∃p ∈ subplans producingS(effect(â)) such that
[

p ⊆ subplan(â) and ~cost(subplan(â)) ≥ ~cost(p)
]]

8. S ← S ∪ {effect(â)} ;

9. L̄← L̄ ∪
{

ā′ ∈ Ā|prec(ā′) ⊆G(Ā) effect(â)
}

;

10. if ∃ḡ ∈ G : effect(â) ⊆G(Ā) ḡ and G ⊆ S

11. add plan candidate((subplan(â)));
12. L̄← L̄ \ {ā} ;

The same object can be produced by many different sub-
plans, and each time the same object is produced, a sub-
plan (i.e. a set of action instances and their connections)
for producing the object is registered. The subplan has an

associated cost vector. Once a subplan is registered, the ac-
tion graph is used to create a list of candidate new actions
that can be applied next. The search algorithm terminates
when no actions can be applied and no new objects can be
produced.

An important optimization technique used during plan
search is a verification step (line 7) that prevents registra-
tion of a new subplan, if the same object can be produced
by a subset of that subplan with lower or equal cost. For
many actions the predicates of the output satisfy the input
preconditions, and without this verification step the search
would cycle producing new identical instances of the same
object. Hence, the number of action instances created by
the planner is significantly reduced in those cases. The orig-
inal backward search based SPPL planner [10] does not per-
form the comparison step, which is difficult to implement in
backward search, and our forward search planner is therefore
significantly more efficient on this type of planning tasks.

The result of the search is a set of candidate plans that
satisfy the goals. The candidate plans are then sorted by
cost, and only the best plans are returned. Note that the
search can be terminated early, producing only a subset of
possible candidate plans. Hence, it is possible to obtain a
number of suboptimal plans before the search finishes, which
can be important if planning time is limited.

The same algorithm can be enhanced to generate tag clouds
while searching for plans. The tag weight computation for
the tag cloud uses tag membership statistics that are col-
lected from descriptions of outputs of candidate plans.

6.3 Complexity Challenges
As is shown in [10], SPPL planner performs much bet-

ter in typical flow composition problems than AI planners.
Problems that are easily solved by SPPL planner can at the
same time be very difficult for the best general AI planners.
By making objects a part of the domain model, SPPL plan-
ner avoids unnecessary grounding and symmetries, and the
search space is reduced by an exponential factor as a result.

However, the problem of finding optimal plans remains
a difficult one. In general, there do not exist optimal or
constant-factor-approximation SPPL planners that can guar-
antee termination in polynomial time on all tasks unless
P=NP . In particular, Bylander has shown that STRIPS
planning, which is a special case of general SPPL planning,
is PSPACE-complete [3]. Nevertheless, we have shown em-
pirically that our planner can find plans for large tasks in
very short time [11].

6.4 Performance Evaluation
We have measured the response time of the flow composer

by measuring the time it takes to generate a flow and a tag
cloud for a given goal. In MARIO user interface this is a
measure of the delay between user changing the current goal
using one of the controls, and rendering of the next screen.
Since the performance of the runtime can be variable, we did
not include the time to deploy the flow, run it and render
results. The measurements were taken on a PC with a dual-
core Intel CPU at 1.86GHz and 1GB RAM.

As a first experiment we have created descriptions of sev-
eral feeds and Yahoo services modules (including translation,
sorting, truncation, union and keyword extraction) together
with descriptions of external input parameters resulting in
73 SPPL actions, 24 of which corresponded to feeds. With

783

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



this set of descriptions, planning any goal reachable through
the user interface took 5 seconds or less.

To experiment with larger sets of descriptions, we have
imported additional descriptions of feeds from Syndic8.com.
Planning times (in seconds) for several sample goals in this
setting are presented in the table below. The columns cor-
respond to the number of described feeds.

100 150 200
first tag cloud (“any feed” goal) 0.41 0.51 0.61
{Sorted, Travel, YAnswers, YNews} 0.09 0.10 0.11
{NewYorkTimes, InFrench} 0.72 0.91 1.03
{NewYorkTimes, Image} 0.73 0.92 1.05

As these results show, MARIO can provide instantaneous
response to user requests while analyzing large sets of feeds
and creating complex flows and tag clouds, and quickly gen-
erate user interface screens, such as Figure 4.

7. RELATED WORK
Work has been done on automatic goal-driven composition

in the past, especially within the AI planning and semantic
web communities. Some of this work uses ontologies and as-
sociated standards such as OWL-S to describe components
used in composition [13]. Other work uses process models
or transition systems [9]. In this work we developed a rad-
ically simplified tag-based component description approach
to reduce the knowledge engineering work required upfront
in order to start using an automatic composer.

Other differences of our approach are the innovative“wish-
ful search”abstraction and the underlying formalism of plan-
ning using tag taxonomies and actions that create new ob-
jects. In prior work, earlier versions of this formalism called
SPPL were used for stream processing and ontology-based
semantic web service composition [10, 11, 6]. In the cur-
rent work we have significantly extended the SPPL planner
to add support for tag taxonomies, tag-based operator de-
scriptions, added tag cloud computation functionality, and
developed an innovative user interface based on tag clouds.

A formalism that is similar in expressivity to SPPL, and
in certain aspects exceeds it, has been proposed in Seman-
tic Streams system [14], which allows users to pose queries
based on the semantics of sensor data. We believe that SPPL
planners are a better choice MARIO, since they can be ex-
tended to compute tag clouds and have been shown to be
highly scalable with the number of operators [10, 11].

Interesting results have also been published on intelli-
gent and incremental interaction with users, that are in the
same spirit as the interactive goal refinement in MARIO.
ACE [2] helps users incrementally formalize text statements
by making formalization suggestions based on ontologies.
RIA [16] can interpret multimodal inputs, including typed-
in text, and dynamically finds information that is tailored
to user’s interaction context, including interaction history.
However, we are not aware of any prior work that pro-
posed taxonomy-supported iterative refinement of compo-
sition goals and making use of planner output generated for
partial goals.

8. CONCLUSIONS
We have developed MARIO, a tool for automatic data

mashup composition that implements a new“wishful search”
pattern of interaction with the user. In a wishful-search-
enabled catalog of feeds and services, users state their wishes

by selecting tags that describe a feed that they would like to
subscribe to. The composer then matches their request to
an existing feed, as in regular search, or, if such a feed does
not yet exist, it “grants the wish” by producing a new feed
using an automatically composed flow. It also helps users
understand what they can wish for, by providing context-
dependent controls for refining the requests. In this paper
we show that all of this can be done very efficiently and in
real time, which opens many application possibilities.

We believe that wishful search is a general user interac-
tion pattern that can be implemented in a wide variety of
systems. To become useful within a system, it only requires
the system to have documents and components that process
documents. One important application is Web Service com-
position. In that scenario, the pattern also helps addresses
the problem of dynamic web service discovery, by reflect-
ing changes to service descriptions in the results of wishful
search. Other potential application areas include Stream
Processing and Grid, or any other component-based system
where the end users will benefit from interactive goal-driven
composition provided by wishful search.
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