
Extending the Compatibility Notion for
Abstract WS-BPEL Processes

Dieter König
IBM Böblingen Laboratory
Schönaicher Straße 220,

71032 Böblingen, Germany
dieterkoenig@de.ibm.com

Niels Lohmann
Universität Rostock,
Institut für Informatik

18051 Rostock, Germany
niels.lohmann@uni-

rostock.de

Simon Moser
IBM Böblingen Laboratory
Schönaicher Straße 220,

71032 Böblingen, Germany
smoser@de.ibm.com

Christian Stahl
Humboldt-Universität zu

Berlin, Institut für Informatik
Unter den Linden 6, 10099

Berlin, Germany
stahl@informatik.hu-

berlin.de

Karsten Wolf
Universität Rostock,
Institut für Informatik

18051 Rostock, Germany
karsten.wolf@uni-

rostock.de

ABSTRACT
WS-BPEL defines a standard for executable processes. Exe-
cutable processes are business processes which can be auto-
mated through an IT infrastructure. The WS-BPEL speci-
fication also introduces the concept of abstract processes: In
contrast to their executable siblings, abstract processes are
not executable and can have parts where business logic is dis-
guised. Nevertheless, the WS-BPEL specification introduces
a notion of compatibility between such an under-specified
abstract process and a fully specified executable one. Ba-
sically, this compatibility notion defines a set of syntactical
rules that can be augmented or restricted by profiles. So far,
there exist two of such profiles: the Abstract Process Profile
for Observable Behavior and the Abstract Process Profile for
Templates. None of these profiles defines a concept of behav-
ioral equivalence. Therefore, both profiles are too strict with
respect to the rules they impose when deciding whether an
executable process is compatible to an abstract one. In this
paper, we propose a novel profile that extends the existing
Abstract Process Profile for Observable Behavior by defin-
ing a behavioral relationship. We also show that our novel
profile allows for more flexibility when deciding whether an
executable and an abstract process are compatible.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based ser-
vices; D.2.4 [Software/Program Verification]: Program-
ming by contract—Formal methods, Correctness; D.3.1
[Formal Definitions and Theory]: Semantics

General Terms
Theory, Verification, Languages

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2008, April 21–25, 2008, Beijing, China.
ACM 978-1-60558-085-2/08/04.

Keywords
WS-BPEL, Petri nets, Abstract Profile, Compliance

1. INTRODUCTION
The Web Services Business Process Execution Language

(WS-BPEL, or BPEL for short) offers a standards-based
approach to build distributed applications for business-to-
business interactions. A BPEL process implements one Web
service by specifying the interactions with other Web ser-
vices. This allows for building flexible business processes by
orchestrating multiple other Web services. Such applications
then follow the architectural pattern of a service-oriented ar-
chitecture (SOA). Business processes implemented in BPEL
are a key element in an SOA infrastructure.
The BPEL specification [3] distinguishes two different

kinds of business processes: executable processes and ab-
stract processes. Whereas executable processes must con-
tain all the details that are necessary to be executed by
a BPEL engine, abstract processes are not executable and
can have parts where things are left unspecified or explicitly
marked as opaque (i. e., hidden). For abstract processes, the
BPEL standard provides two concrete profiles: the Abstract
Process Profile for Observable Behavior (APPOB) and the
Abstract Process Profile for Templates (APPT). This is done
for different reasons: The APPOB handles the bottom-up
way of providing a protocol description generated out of an
executable process, where in contrast the APPT describes a
top-down refinement use case where abstract processes can
be used as an exchange format between different roles within
an enterprise.
The abstract process profiles are used to define permit-

ted completions of abstract BPEL processes to executable
BPEL processes. Figure 1 illustrates the relationship be-
tween abstract and executable processes as well as abstract
process profiles.
Both use cases for abstract processes have in common

that the abstract process definition is regarded as a spec-
ification, where an executable process can then be seen as
one implementation thereof. When one artifact serves as

785

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



common base
(syntax rules)

AP
(set of abstract processes)

EC
(set of compatible

executable processes)

APPOB
(observable 
behavior)

APPT
(templates)

APPGOB
(the novel

profile)

set
ECOB ⊆ EC

set
ECT ⊆ EC

set
ECGOB ⊆ EC

basic
executable
completion

executable
completion

existing profiles

Figure 1: Relationships between abstract processes,
executable completions, and abstract process pro-
files.

a specification and one artifact provides an implementation
of that specification, obviously there must be a way to en-
sure that they are compatible. The BPEL specification calls
an executable process compatible to an abstract one if “the
executable process is one of the executable completions in
the set of permitted completions specified by the abstract
process profile”. The definition of an executable completion
stops at a syntactical level. Additional syntactic rules are
provided by profiles addressing particular use cases. These
rules restrict the set of allowed executable completions. It
can easily be imagined that a compatibility notion can be
created at a behavioral level—a technique that is not pro-
vided by the BPEL specification and thus not applicable to
BPEL processes yet. Furthermore, especially the APPOB
imposes restrictions that are unnecessary and too strict from
a behavioral compatibility point of view. To show this,
we will present a formal model for service contracts and
will then extend the existing APPOB by defining two re-
lations, a conformance and an behavioral equivalence rela-
tion. To this end, we define a novel abstract process profile,
the Abstract Process Profile for Globally Observable Behav-
ior (APPGOB, cf. Fig. 1). This augmented version of the
APPOB will then allow for more flexibility when creating
an executable process that conforms to its abstract process.
For this purpose, we use a theory on contract-based service
composition based on Petri nets. It includes a local confor-
mance criterion, an algorithm to decide conformance, and
transformation rules to derive an implementation that con-
forms to a specification.
The paper is structured as follows: Section 2 introduces

the existing profiles and their restrictions and gives an ex-
ample why these profiles are regarded as too strict. Section 3
presents a formal model for services, based on which an aug-
mented, more liberal profile is presented in Sect. 4. Section 5
shows the augmented profile in action by revisiting the ini-
tial example. Finally Sect. 6 and 7 sketch related work and
conclude the paper.

2. MOTIVATION
As pointed out in the introduction, both existing profiles

are too strict to decide compatibility. In this section, we
will introduce the existing profiles in more detail as well as
showing an example to illustrate this problem.

2.1 Abstract Processes in BPEL
The BPEL standard introduces the notion of abstract pro-

cesses. Abstract processes are either used to hide language
elements of an executable process, or are not yet fully speci-
fied. As mentioned before, in one use case abstract processes
can serve as a protocol description. While WSDL operations
describe stateless interactions, BPEL processes usually im-
plement stateful Web services which require their exposed
operations to be invoked in a particular order. Therefore, in
order to interact with a partner, a business process provider
must not only provide a description of the stateless WSDL
interface, but he also might want to specify the interaction
protocol. This interaction protocol can be represented by an
abstract process that shows the externally observable behav-
ior of an executable process while hiding other process model
elements. In other words, it describes a service contract ful-
filled by a corresponding executable process and avoids the
disclosure of internal (potentially confidential) business pro-
cess logic. This is achieved by taking an executable process
and making it more coarse grained by omitting everything
that does not belong to the actual observable behavior. A
partner interacting with that process would then have to
adopt to that behavior in order to deduct his own structure.
For the partner interaction aspect of this, there also has been
work [21, 19, 20] on how to (semi-)automatically create such
an abstract partner process out of a given executable one.
In a second use case, an abstract process serves as a tem-

plate for further refinement. To illustrate this, imagine a
business analyst capturing and sketching out a business pro-
cess, recording it as an abstract process by omitting all the
technical details, then handing it off to an IT department
in order to add details required for the process to become
executable which are not relevant for the business. Such an
abstract process may have been generated by business-level
process modeling tools like IBM’s Websphere Business Inte-
gration Modeler or even by transforming UML into abstract
BPEL, for example by using special UML stereotypes [4].
The BPEL standard defines the Common Base (cf. Fig. 1),

describing the syntax of an abstract process and two types of
transformations between abstract and executable processes.
The first transformation is a replacement of explicitly mod-
eled opaque activities of an abstract process by activities
of an executable process. The second transformation con-
sists of inserting entities of an executable process at specific
places in a process model. Reordering of activities, removing
of activities, or changing the control flow is never permitted.
Based on these transformations, the common base defines
two relations between an abstract process and a set of exe-
cutable processes, the Executable Completion and the Basic
Executable Completion. The Executable Completion allows
using both transformations and requires that the resulting
executable process satisfies all WS-BPEL static validation
rules. The Basic Executable Completion is a more restrictive
executable completion, since it limits the allowed transfor-
mations, e.g. it is not allowed to add start activities. Beyond
these general syntactical transformations, the specification
further allows defining additional syntactical restrictions by

786

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



means of profiles. These additional rules syntactically spec-
ify a subset of executable processes. As already mentioned,
the BPEL specification provides two concrete profiles for the
two use cases described above, the APPOB and the APPT
(cf. Fig. 1).
In this paper, we will take a closer look at the first profile.

The set of executable completions of an abstract process is
restricted by this profile such that the externally observable
interactions defined in the abstract process are preserved
in all of its executable completions. In other words, while
creating an executable process, no transformation must be
applied that modifies interactions via partner links already
defined in the abstract process. According to the APPOB,
in abstract processes

• join conditions are not allowed to be hidden,
• the exit activity must not be inserted,
• only attributes referencing variables and message parts
in partner interactions are allowed to be opaque,
• opaque from-specs are allowed,
• endpoint references must not be assigned to/from part-
ner links in a way that the interaction behavior across
existing partner links is affected,
• the nesting structure of composite activities around
any activity in an abstract process remains unchanged
(e. g., it is disallowed to insert a loop activity as a new
parent of an existing activity),
• the ability to introduce new branches, handlers, links
to existing activities, or scoped declarations is substan-
tially restricted, in particular, modifications must be
avoided which affect the branching behavior in a way
that conflicts with the specifications in the abstract
process, and
• the ability to throw new faults is limited to avoid af-
fecting the existing control flow.

Furthermore, new partner links may be added and used
in additional communicating activities.

2.2 Example
As an example, consider the abstract BPEL process of

Fig. 2. It describes the abstract process of a travel agency
that communicates with three parties: a client service, a
hotel service, and an airline service.
After receiving a travel request of the client, the travel

agency prepares two orders for the hotel and the airline
reservation system. As these preparations are highly data-
dependent and do not affect the observable behavior of the
travel agency, these activities are specified opaquely. Then,
the respective orders are forwarded to the hotel and the air-
line partner which return their respective offer. Finally these
offers are merged and sent to the client.
The APPOB specifies a set of derivable executable com-

pletions of this abstract process. Being compatible to the
abstract process (i. e., the public view) of the travel agency,
they have the same observable behavior in common.
The goal of this paper is to introduce a novel abstract pro-

file that extends the APPOB. This profile should extend the
set of compatible executable completions and thus make the
implementation of the abstract process more flexible. Con-
sidering the travel agency service, the following variations
should be allowed:

• The opaque activities describing the preparations of
the orders for the hotel service and the airline service

<process name="travel_agency" ...>

<partnerLinks>
<partnerLink name="client" ... />
<partnerLink name="hotel" ... />
<partnerLink name="airline" ... />

</partnerLinks>

<sequence>
<receive partnerLink="client"

operation="travel_request"
variable="##opaque" />

<opaqueActivity name="prepare hotel order" />
<opaqueActivity name="prepare airline order" />

<invoke partnerLink="hotel"
operation="hotel_request"
inputVariable="##opaque" />

<invoke partnerLink="airline"
operation="flight_request"
inputVariable="##opaque" />

<receive partnerLink="hotel"
operation="hotel_offer"
variable="##opaque" />

<receive partnerLink="airline"
operation="flight_offer"
variable="##opaque" />

<opaqueActivity name="merge offers" />
<invoke partnerLink="client"

operation="travel_offer"
inputVariable="##opaque" />

</sequence>
</process>

Figure 2: Abstract process describing the observable
behavior of a travel agency service.

do not need to be implemented in two distinct activi-
ties. Instead, a single activity (maybe embedded into
a loop) should be allowed in a compatible executable
completion.
• The order in which the reservation requests are sent
to the hotel and the airline should be more relaxed.
The hotel and the airline do not communicate with
each other and therefore cannot realize whether the
hotel reservation request is sent before or after the air-
line reservation request. Thus, any reordering or even
a concurrent execution of the invoke activities send-
ing the requests should be allowed if an asynchronous
message binding is assumed.
• Likewise, a reordering or concurrent execution of the
receive activities should be allowed, again assuming an
asynchronous message binding.

For this and other variations, we will present transforma-
tion rules that ensure equivalence of the observable behavior.
In Sect. 5, we present their application to the travel agency
service.

3. FORMALIZING SERVICE
CONFORMANCE

In [2], we proposed an approach for a contract-based com-
position of services which is based on formal models of ser-
vices. A formal service model can be generated from a
real (BPEL) specification using, for instance, the feature-
complete Petri net semantics [17] for BPEL which is avail-
able as an implemented translation from BPEL to Petri nets
using the tool BPEL2oWFN [19].
On the level of service models, a strategy of a given finite

state service S is another finite state service S′ with compat-
ible interface such that the composition of S with S′ forms

787

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



a deadlock free finite state system. In [20], we show that we
can compute a finite representation for the set Strat(S) of all
strategies of a given service S. We call this representation
an operating guideline for S as it describes all correct inter-
action scenarios with S. The computation of an operating
guideline is implemented in our tool Fiona [19].1

In the approach of [2], a contract is a set of service models
(one for each party involved in the contract) such that their
composition is deadlock free. Each of these services is called
a public view of one party’s contribution to the overall pro-
cess. The verification of deadlock freedom is indeed feasible
as all public views are available to each participating party.
In contrast to a public view, a private view is the actual

implementation of a party’s contribution to the overall sys-
tem. That is, the composition of the private views forms the
implementation of the contract. In order to ensure deadlock
freedom of the implementation, we proposed a criterion that
relates public and private views of a single party. A private
view Pr conforms to a public view Pu (of the same party)
if and only if Strat(Pu) ⊆ Strat(Pr). Intuitively, this means
that every strategy of the public view must be a strategy of
the private view. If all private views conform to their re-
spective public views, we can show that the implementation
of a contract inherits deadlock freedom from the contract it-
self. The actual value of this approach is that conformance
between public and private view can be checked locally by
each party (using the concept of operating guidelines men-
tioned above), thus being able not to disclose trade secrets
which might be present in a private view.
In our formal model, we assume asynchronous commu-

nication (i. e., messages can overtake each other) between
the involved parties. Some preliminary considerations on
synchronous communication, however, suggest that similar
results can be obtained for synchronous, or even a mixture
of synchronous and asynchronous communication as well.
In [1], we extended this approach with a set of (syntactic)

rules for transforming services such that the conformance
relation is established between the input of a transformation
and the resulting service. This way, a conforming private
view can be systematically derived from a public view.

4. A NOVEL ABSTRACT PROFILE FOR
BPEL

Using the formal model introduced above, we are able to
formally reason about the behavior of a process. In par-
ticular, we are able to define rules that restrict the set of
permitted executable completions that are motivated by the
semantics of a process instead of its syntax. These rules are
less restrictive than the rules of the APPOB and thereby are
suitable to extend BPEL’s compatibility relation.

4.1 Equivalence Notion for BPEL Processes
The APPOB in BPEL allows adding new partner links

and communicating activities using these new partner links.
We introduce a variation of the APPOB that preserves the
externally observable behavior globally; that is, the set of
all partner links and interactions across these partner links
remain invariant.
In order to do so, we take the existing APPOB and intro-

duce a new profile, the Abstract Process Profile for Globally
1BPEL2oWFN and Fiona are available under
http://www.informatik.hu-berlin.de/top/tools4bpel.

Observable Behavior (APPGOB). The only difference to the
existing profile is that we do not allow adding new partner
links as part of the executable completion. Therefore, in a
sense, we thereby restrict the set of executable completions.
Furthermore, in the BPEL specification, the common base
is too restrictive in only allowing replacements of opaque en-
tities and insertions of additional executable entities. There
exist a number of cases where the reordering of activities
as well as the deletion of activities can be tolerated if these
transformations do not affect the main intention of the pro-
file. The APPOB (as well as the more restrictive APPGOB)
concentrate on interactions across partner links. Other ac-
tivities like simple assignments do not need to be handled in
such a restrictive fashion. For example, several assignment
operations may be independent in the sense that reorder-
ing them has no effect on the externally observable behavior
of the process. Therefore, we introduce a new relation we
call “behavioral equivalence”. The purpose of this relation is
to extend the set of executable completions to a set of ex-
ecutable processes exposing the same observable behavior.
We define our behavioral equivalence relation as follows:

Definition 1. Let ep1 and ep2 be executable processes.
Then ep1 is behavioral equivalent to ep2 if and only if ep1

can be created out of ep2 by applying zero or more of the
following eight transformation rules:

1. Looping Existing Activity
2. Activity Removal from Sequence
3. Activity Removal from Flow
4. Activity Reordering
5. Invoke-Flow Serialization
6. Receive-Flow Serialization
7. Invoke and Receive
8. Communicating If-branches y

In the following, we introduce the above mentioned rules.
We distinguish between the first four rules on the one hand
as they consider only non-communicating activities and the
remaining rules for communicating activities on the other
hand. For each rule we present a textual description and an
illustrating example by help of a code snippet. On the left
hand side of each example the part of the existing BPEL
process is shown while on the right hand side the respective
part after applying the transformation is illustrated.

4.1.1 Rules for Non-Communicating Activities
We have identified the following four rules for non-com-

municating activities:

Rule 1: Looping Existing Activity. Given a sequence
of activities, we can embed a present non-communicating
activity into a finite (while/repeatUntil/forEach) loop.
Example for Rule 1:

<sequence>
<activity1 />
<activity2 />
<activity3 />

</sequence>

<sequence>
<activity1 />
<while>
<condition … />
<activity2 />

</while>
<activity3 />

</sequence>

Although the common base already allows for inserting ac-
tivities, it does not consider that a present non-communica-
ting activity can be embedded into a loop.

788

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



Rule 2: Activity Removal from Sequence. A non-
communicating basic or structured activity can be deleted
from a sequence of activities.
Example for Rule 2:

The common base allows for inserting an activity. That
means, we can apply the transformation illustrated in the
above example in the other direction as well. However, also
removing an activity from a sequence does not change the
observable behavior.
Rule 3: Activity Removal from Flow. A non-
communicating basic or structured activity can be deleted
from a flow.
Example for Rule 3:

<flow>
  <activity1 />
  <activity2 />
  <activity3 />
</flow>

<flow>
  <activity1 />
  <activity3 />
</flow>

Like for the last rule, the common base only considers
activity insertion but not the removal of an non-communi-
cating activity from a flow.

Rule 4: Activity Reordering. A sequence of solely
non-communicating basic or structured activities can be
arbitrarily reordered.
Example for Rule 4:

<sequence>
<activity1 />
<activity2 />

</sequence>

<sequence>
<activity2 />
<activity1 />

</sequence>

Since we are allowed to remove and to insert non-commu-
nicating activities, we can consequently also reorder non-
communicating activities that are sequentially ordered. It
is important to mention that applying these rules must not
violate data-dependencies between activities.

4.1.2 Rules for Communicating Activities
Next we introduce four additional rules that change the

order of communicating activities.

Rule 5: Invoke-Flow Serialization. A flow of one-way
invoke activities can be transformed into a sequence.
Example for Rule 5:

<sequence>
  <invoke operation="a" />
  <invoke operation="b" />
</sequence>

<flow>
  <invoke operation="a" />
  <invoke operation="b" />
</flow>

<sequence>
  <invoke operation="b" />
  <invoke operation="a" />
</sequence>

<flow>
  <invoke operation="a" />
  <invoke operation="b" />
</flow>

<sequence>
  <invoke operation="b" />
  <invoke operation="a" />
</sequence>

If n one-way invoke activities are concurrently executed in
a flow, then these activities can be executed in any sequen-
tial order without changing the observable behavior. Rule 5
reflects the fact that every permutation of the one-way in-
voke activities is a possible execution sequence due to the
concurrency in the flow activity. Informally spoken, apply-
ing Rule 5 fixes one of these sequences and hence restricts
the behavior of the process.

Rule 6: Receive-Flow Serialization. A flow of receive
activities can be transformed into a sequence.
Example for Rule 6:

<sequence>
  <receive operation="a" />
  <receive operation="b" />
</sequence>

<flow>
  <receive operation="a" />
  <receive operation="b" />
</flow>

<sequence>
  <receive operation="b" />
  <receive operation="a" />
</sequence>

<flow>
  <receive operation="a" />
  <receive operation="b" />
</flow>

<sequence>
  <receive operation="b" />
  <receive operation="a" />
</sequence>

Rule 6 is the analogous of Rule 5; that is, n receive activ-
ities being concurrently executed in a flow can be executed
in any sequential order without changing the observable be-
havior.
Rule 7: Invoke and Receive. A sequence of first a
one way invoke activity and then a receive activity can be
transformed into a flow.
Example for Rule 7:

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

<flow>
<invoke operation="a" />
<receive operation="b" />

</flow>

<flow>
<invoke operation="a" />
<receive operation="b" />

</flow>

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

Applying Rule 7 allows to increase the amount of concur-
rency in the BPEL process without affecting the observable
behavior. In case of synchronous binding, a partner has to
be the mirrored process, meaning it consists of a sequence
of first a receive activity and then a one-way invoke activity.
Thus, it will not be affected by the transformation. Oth-
erwise, in case of asynchronous binding, a partner can also
consist of a flow embedding a receive activity and a one-way
invoke activity which is also not affected by the rule.

Rule 8: Communicating If-branches If there is a
BPEL process P with an if activity, where each branch
starts with an invoke activity and P ’s partner process has
a pick activity in which each branch corresponds to one of
the invoke activities in the if activity, then a branch can
be removed from the if activity.
Example for Rule 8 (the rule is illustrated on top, below
the expected partner is shown):

<if>
<condition … />
<sequence>
<invoke operation="a" />
...

</sequence>
<elseif>
<condition … />
<sequence>
<invoke operation="b" />
...

</sequence>
</elseif>

<else>
<sequence>
<invoke operation="c" />
...

</sequence>
</else>

</if>

<if>
<condition … />
<sequence>
<invoke operation="a" />
...

</sequence>
<else>
<sequence>
<invoke operation="c" />
...

</sequence>
</else>

</if>

789

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



Rule 8 is a little bit more restricted, since it can only be
applied if knowledge about the structure of the partner is
available. The idea is that since a partner has to be able
to receive all sending messages of the corresponding if ac-
tivity in P , it is still a partner if the number of branches
(and therefore the number of invoke activities) in P will be
restricted by removing a branch.

4.1.3 A Conformance Notion for WS-BPEL
Considering executable processes that are behavioral

equivalent to an executable process belonging to the set of
all executable completions for a given abstract process, we
can construct the transitive relationship between all equiv-
alent executable processes and the abstract process.

Definition 2. Let ap be an abstract process and let ep1

be an executable process, let further ECGOB denote the set
of executable completions of ap allowed by the APPGOB.
Then ep1 conforms to ap if and only if there exists an ex-
ecutable process ep2 ∈ ECGOB such that ep1 and ep2 are
behavioral equivalent. y

Each executable process in the set ECGOB of executable
completions (cf. Fig. 1) that conforms to an abstract process
exposes the same externally observable behavior. Figure 3
illustrates the relationship between an abstract process ap,
an executable process ep1 that conforms to ap and an exe-
cutable process ep2 that is behavioral equivalent to ep1 as
it is defined in Def. 2. Therefore, our proposed conformance
notion extends the notion of compatibility presented in the
BPEL specification, because it allows to relate executable
processes ep1 with an abstract process ap if ep1 and ep2

are behavioral equivalent. That way much more executable
processes can be related to an abstract process which can
be derived by applying the rules we have presented.

abstract
process

ap

executable 
process

ep2

executable 
process

ep1

compatible

behavior
equivalentconformant

semantic relation
syntactic relation

Figure 3: The relationships between compatibility,
behavioral equivalence, and conformance.

4.2 Relaxed Equivalence Relation for
Asynchronous Bindings

The BPEL specification makes no assumptions about pro-
tocols, bindings, and quality of service attributes of interac-
tions. So far, all presented transformation rules are valid for
both synchronous and asynchronous binding. However, if we
would assume asynchronous bindings, we can relax the be-
havioral equivalence relationship even further by introducing
three additional transformation rules. We therefore general-
ize the relation of behavior-equivalence to relaxed behavioral
equivalence.

Definition 3. Let ep1 and ep2 be executable processes.
Then ep1 is relaxed behavioral equivalent to ep2 if and only
if ep1 is behavioral equivalent to ep2, or ep1 can be created
out of ep2 by applying zero or more of the following three
additional transformation rules:

9. Invoke-Sequence Reordering
10. Receive-Sequence Reordering
11. Invoke and Receive y

Rule 9: Invoke-Sequence Reordering. A sequence of
one-way invoke activities can be arbitrarily reordered or
it can be transformed into a flow.
Example for Rule 9:

<sequence>
<invoke operation="a" />
<invoke operation="b" />

</sequence>

<sequence>
<invoke operation="b" />
<invoke operation="a" />

</sequence>

In case of asynchronous binding it is possible that if a
process sends first a message a and then a message b, then
its partner process may receive b before a. This is caused by
the fact that messages can overtake each other on a message
channel. Since a sequence of n send messages can reach the
partner in any order, we can arbitrarily reorder a sequence
of one-way invoke activities or even embed these activities
into a flow.
Rule 10: Receive-Sequence Reordering. A sequence
of receive activities can be arbitrarily reordered or it can
be transformed into a flow.
Example for Rule 10:

<sequence>
<receive operation="a" />
<receive operation="b" />

</sequence>

<sequence>
<receive operation="b" />
<receive operation="a" />

</sequence>

For the same arguments as presented for Rule 9, we can
arbitrarily reorder a sequence of receive activities or even
embed these activities into a flow by applying Rule 10.

Rule 11: Invoke and Receive. A flow that contains
a one-way invoke activity and a receive activity can be
transformed into a sequence of firstly the invoke and then
the receive activity.
Example for Rule 11:

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

<flow>
<invoke operation="a" />
<receive operation="b" />

</flow>

<flow>
<invoke operation="a" />
<receive operation="b" />

</flow>

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

Rule 11 describes in fact the opposite direction of Rule 7.
It is only applicable in case of asynchronous bindings: As-
sume a process similar to the left hand side of the exam-
ple. Further assume a mirrored version of this process as a
partner. Applying Rule 11 to the process in case of an syn-
chronous binding could lead to a deadlocking situation in
the case where the message on b sent by the partner arrives
before the process has sent the message on a to the partner.

4.3 Disallowed Transformation Rules
Based on the results presented above, the notion of equiv-

alent behavior can be significantly extended beyond BPEL’s
APPOB. However, even for our extended conformance no-
tion, there exist limitations, as shown by the following three
transformation rules which are explicitly disallowed.

790

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



Anti-rule 1. A sequence of first a one-way invoke and
then a receive activity MUST NOT be reordered, or vice
versa.
Example for Anti-rule 1:

<sequence>
<invoke operation="a" />
<receive operation="b" />

</sequence>

<sequence>
<receive operation="b" />
<invoke operation="a" />

</sequence>

<sequence>
<receive operation="a" />
<invoke operation="b" />

</sequence>

<pick>
<onAlarm>
<sequence>
<invoke operation="b" />
<receive operation="a" />

</sequence>
</onAlarm>
<onMessage operation="a" />
<invoke operation="c" />

</onMessage> 
</pick>

<sequence>
<receive operation="b" />
<invoke operation="a" />

</sequence>

Beside reordering, also a concurrent execution is disal-
lowed:
Anti-rule 2. A sequence of first a receive activity and
then a one way invoke activity MUST NOT be trans-
formed into a flow, or vice versa.
Example for Anti-rule 2:

<sequence>
<receive operation="a" />
<invoke operation="b" />

</sequence>

<flow>
<receive operation="a" />
<invoke operation="b" />

</flow>

Finally, the addition and usage of new partner links is not
permitted. This anti-rule differs from the original APPOB
where this addition is explicitly allowed.

Anti-rule 3. New partner links or communicating activ-
ities MUST NOT be added.
We discuss the motivation and the validity of the Anti-

rules in the next subsection.

4.4 Discussion
So far, we just listed a set of rules and left the task of ver-

ification of their correctness to the reader’s intuition. Cor-
rectness can, however, as well be formally verified. To this
end, it is possible to map the given rules into the formalism
of Petri nets using, for instance, the semantics of [17]. It
turns out that the resulting Petri net transformation rules
correspond to those that have been proven formally correct
in [1].
To justify the Anti-rules we show that applying these rules

to a process P would exclude a partner of P in the resulting
transformed process P ′. Consider again Anti-rule 1. The
process depicted in Fig. 4(a) is a partner for the left pattern
in the example of Anti-rule 1, but not for the right pattern.
Furthermore, Fig. 4(b) depicts a partner for the right pat-
tern which is no valid partner for the left pattern. Similar
for Anti-rule 2, Fig. 4(c) is a partner of the left hand side of
the example in Anti-rule 2 but not for the right hand side.
In contrast, Fig. 4(d) depicts a valid partner for the right
hand side but not for the left hand side of Anti-rule 2.
Anti-rule 3 excludes the addition of new partner links and

new communicating activities. While this is permitted in the
original APPOB and does not affect the observable behavior
from one partner’s point of view, it would change the global
observable behavior by introducing “unintended” behavior.
As an example, consider the process depicted in Fig. 5.
The original APPOB would allow the addition of a partner

link and the two receive activities (the bold lines of Fig. 5).
Though this addition would not affect the partner commu-
nicating via partner link a, the addition would introduce
unintended behavior: A partner communicating via part-
ner link b would have to guess how the condition of the if
activity was evaluated to decide whether to send a message

(a)
<sequence>

<invoke operation="a" />
<receive operation="b" />

</sequence>

<sequence>
<receive operation="b" />
<invoke operation="a" />

</sequence>

<sequence>
<receive operation="a" />
<invoke operation="b" />

</sequence>

<pick>
<onAlarm>
<sequence>
<invoke operation="b" />
<receive operation="a" />

</sequence>
</onAlarm>
<onMessage operation="a" />
<invoke operation="c" />

</onMessage> 
</pick>

<sequence>
<receive operation="b" />
<invoke operation="a" />

</sequence>

<sequence>
<invoke operation="b" />
<receive operation="a"/>

</sequence>

(b)

<sequence>
  <invoke operation="a" />
  <receive operation="b" />
</sequence>

<sequence>
  <receive operation="b" />
  <invoke operation="a" />
</sequence>

<sequence>
  <receive operation="a" />
  <invoke operation="b" />
</sequence>

<pick>
  <onAlarm>
    <sequence>
      <invoke operation="b" />
      <receive operation="a" />
    </sequence>
  </onAlarm>
  <onMessage operation="a" />
    <invoke operation="c" />
  </onMessage> 
</pick>

<sequence>
  <receive operation="b" />
  <invoke operation="a" />
</sequence>

(c) (d)

Figure 4: Counterexamples justifying the correct-
ness of Anti-rules 1 and 2.

<process name="example" ...>
  <partnerLinks>
    <partnerLink name="a" ... />
    <partnerLink name="b" ... />
  </partnerLinks>
  <sequence>
    <receive partnerLink="a" operation="a1" ... />
    <if>
      <condition> ... </condition>
      <sequence>
        <empty />
        <receive partnerLink="b" operation="b1" ... />
      </sequence>
      <else>
        <sequence>
          <empty />
          <receive partnerLink="b" operation="b2" ... />
        </sequence>
      </else>
    </if>
  </sequence>
</process>

Figure 5: Counterexample justifying the correctness
of Anti-rule 3.

using operation b1 or b2. Therefore, the process could either
deadlock (in case the wrong operation was used) or would
complete with a redundant pending message (in case both
operations were used). Both cases are certainly not desir-
able, though not excluded by the APPOB.
Summing up, the presented (syntactic) rules are correct,

meaning, their application preserves conformance. Correct-
ness has been proven on the level of our formal service
model. The presented rules are, however, not complete. In
other words, there exist conforming processes that cannot
be derived by applying the presented transformation rules.
Developing a complete set of conformance-preserving trans-
formation rules seems to be rather laborious, whereas the
practical relevance of such a complete set of rules is ques-
tionable. There are additional rules not presented in this
paper which are rather complicate in the sense that many
assumptions have to hold and whose practical applicability
is not given. Furthermore, as an alternative to the pre-
sented transformation rules, we can check (relaxed) behav-
ioral equivalence between two BPEL processes a-posteriori
with our tools BPEL2oWFN/Fiona. Finally, all presented
rules are conceptually independent; that is, none of these
rules can be derived from other rules.

791

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



5. EXAMPLE REVISITED
The novel abstract profile, APPGOB, now allows the mod-

ifications motivated in Sect. 2.2. In particular, the reorder-
ing of the communicating activities can now be achieved by
applying transformation rules that guarantee observable be-
havioral equivalence. Figure 6 illustrates the applied trans-
formation rules and their effects. We assume an asynchro-
nous binding for the travel agency service.
Firstly, the opaque activities that organize the message

sent from or to the agency are replaced by assign activities.
Then, those activities that prepare the orders for the hotel
and airline reservation system are removed (Rule 2). In-
stead, a new opaque activity is added and embedded into a
while loop (Rule 1). This loop allows more flexibility and an
easy integration of additional parties such as, for example,
a car rental agency. Then, the invoke activities sending the
requests to the hotel and the airline are embedded into a
flow activity (Rule 9). Similarly, the responses of the hotel
and the airline services are received concurrently (Rule 10).
By Definition 3, the derived executable service (cf.

Fig. 6(b)) is relaxed behavioral equivalent to the executable
process in which only the opaque activities are replaced by
assign activities. Furthermore, the executable process de-
rived by applying the transformation rules conforms to the
abstract process of the travel agency in Fig. 6(a). Still, this
process would not be considered compatible by the original
APPOB.

6. RELATED WORK
There are many other papers dealing with conformance

notions. Basten and van der Aalst present in [5] the no-
tion of projection inheritance for Petri nets. Two Petri
nets are related under projection inheritance if they have
the same observable behavior. In [1] we have proven that
our notion of conformance is a generalization of projection
inheritance, meaning projection inheritance implies confor-
mance. Rules 1–4 for non-communicating activities pre-
sented in Sect. 4.1.1 preserve projection inheritance. All
other rules influence the communicating behavior and there-
fore do not preserve projection inheritance.
Several authors propose conformance notions using pro-

cess calculi.
Castagna et al. [14] formalize the absence of deadlocks and

livelocks in finite-state systems. This notion is called strong
compliance. In contrast to our conformance notion, strong
compliance demands the termination of the environment,
but not the termination of the service itself.
Bravetti and Zavattaro [10] propose a conformance notion

that guarantees the absence of deadlocks, livelocks, and infi-
nite runs in cyclic systems. In [11], their correctness criterion
is enhanced by ensuring whenever a message can be sent, the
other service is ready to receive this message. Systems that
behave this way are called strong compliant. Strong compli-
ance as in [11] seems to be an adequate correctness criterion
for BPEL choreographies in case synchronous bindings are
used.
As a main difference to our conformance notion, [10]

and [14] define their notions for synchronous communication
and they do not explicitly show how asynchronous message
passing can be translated into their calculi although it seems
to be possible in general. A more expressive calculi which
also supports name passing is used by Carbone at al. [13].

Fournet et al. [16] present stuck-free conformance, a re-
finement relation between two CCS processes of asynchro-
nous message passing software components. Stuck-freedom
formalizes like our notion of deadlock freedom the absence
of deadlocks in the system. It can be shown that our confor-
mance notion is more general than stuck-free conformance,
because Fournet et al. compare the behavior of two pro-
cesses N and N ′ whereas we compare the set of strategies
for N and N ′.
Busi et al. [12] propose branching bisimulation as a notion

of conformance between a choreography language based on
WS-CDL and an orchestration language based on abstract
BPEL. Conformance can be used to check if the imple-
mentation (i. e., the orchestrated system) behaves accord-
ingly the conversation rules of the choreography. Bonchi
et al. [8] model the behavior of services using a special kind
of Petri nets, Consume-Produce-Read Nets. For their model
they present saturated bisimulation as conformance relation.
Both branching bisimulation and saturated bisimulation are
too restrictive to allow reordering of messages.
The concept of contract conformance is also related to de-

ciding when a service can be substituted by another service.
Most of this work, however, is restricted to synchronous
communication [9, 7, 6] whereas our service model considers
asynchronous message passing. Benatallah et al. [6] present
four notions of substitutability. In this paper, we cover
two of them: equivalence and subsumption. Equivalence
in our notion means that both services have the same set of
strategies and subsumption means the inclusion of the set
of strategies (conformance).
Lohmann et al. translate in [18] choreographies specified

in the choreography language BPEL4Chor [15] into a Petri
net model. This model is then checked for deadlocks using
the model checker LoLA [22].
To summarize, most of the work uses a synchronous com-

munication model whereas our model is based on asynchro-
nous message passing thus allowing to identify rules as shown
in Sect. 4.3. Furthermore, except the work on projection
inheritance [5] there are to the best of our knowledge no pa-
pers about rules to derive from a service S a service S′ that
conforms to S.

7. CONCLUSION
In this paper, we have presented a more liberal approach

to decide compatibility between an abstract and an exe-
cutable BPEL process. Therefore, we defined a novel profile
for BPEL. This profile is not a WS-BPEL language exten-
sion. It should be taken as a new profile – something that is
already allowed by the standard today. This novel profile en-
hances the existing Abstract Process Profile for Observable
Behavior (APPOB) by introducing a notion for behavioral
equivalence on the one hand, and restricting it by defining
explicit anti-rules on the other hand. We have shown that
with our novel profile more executable processes can be con-
sidered conformant to an abstract process without the loss
of general applicability.
Based on our notion of behavioral equivalence we have

identified and proven a set of transformation rules. Given
an abstract process ap and an executable process ep that is
compatible to ap with respect to the APPOB, these rules
can be applied to derive an executable process ep′ that con-
forms to ap from ep. The set of presented rules is twofold.
We have presented transformation rules being applicable

792

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



<process name="travel_agency" ...>

  <partnerLinks>
    <partnerLink name="client" ... />
    <partnerLink name="hotel" ... />
    <partnerLink name="airline" ... />
  </partnerLinks>

  <variables> ... </variables>

  <sequence>
    <receive partnerLink="client"
             operation="travel_request"
             variable="client_request" createInstance="yes" />

    <while> <condition>...</condition>
      <assign name="prepare next order"> ... </assign>
    </while>

    <flow>
      <invoke partnerLink="hotel"
              operation="hotel_request"
              inputVariable="hotel_request" />
      <invoke partnerLink="airline"
              operation="flight_request"
              inputVariable="airline_request" />
    </flow>

    <flow>
      <receive partnerLink="hotel"
               operation="hotel_offer"
               variable="hotel_offer" />
      <receive partnerLink="airline"
               operation="flight_offer"
               variable="airline_offer" />
    </flow>

    <assign name="merge offers"> ... </assign>
    <invoke partnerLink="client"
            operation="travel_offer"
            inputVariable="client_offer" />
  </sequence>
</process>

<process name="travel_agency" ...>

  <partnerLinks>
    <partnerLink name="client" ... />
    <partnerLink name="hotel" ... />
    <partnerLink name="airline" ... />
  </partnerLinks>

  <sequence>
    <receive partnerLink="client"
             operation="travel_request"
             variable="##opaque" />

    <opaqueActivity name="prepare hotel order" />
    <opaqueActivity name="prepare airline order" />

    <invoke partnerLink="hotel"
            operation="hotel_request"
            inputVariable="##opaque" />
    <invoke partnerLink="airline"
            operation="flight_request"
            inputVariable="##opaque" />

    <receive partnerLink="hotel"
             operation="hotel_offer"
             variable="##opaque" />
    <receive partnerLink="airline"
             operation="flight_offer"
             variable="##opaque" />

    <opaqueActivity name="merge offers" />
    <invoke partnerLink="client"
            operation="travel_offer"
            inputVariable="##opaque" />
  </sequence>
</process>

Rule 10

Rule 9

Rule 1
Rule 2

(a) abstract process (b) conforming executable process

Figure 6: Application of transformation rules to the abstract travel agency process.

both for synchronous and asynchronous bindings and in ad-
dition, we have introduced additional (more relaxed) trans-
formation rules in case that an asynchronous binding is used.
Checking compliance between an abstract and an exe-

cutable process is not a particular strength of the BPM
Tools currently available in the marketplace. However, in
cases where such a functionality is offered, our approach
has beneficial practical implications: The proposed profile
makes it much easier to find a compliant executable process
for a given abstract one as the set of compliant processes is
substantially larger than the set of executable completions
in BPEL. Thus, this may potentially save development time
when creating BPM solutions.

Acknowledgments
Niels Lohmann is funded by the DFG project “Operating
Guidelines for Services” (WO 1466/8-1). Christian Stahl
is funded by the DFG project “Substitutability of Services”
(RE 834/16-1).

8. REFERENCES
[1] W. M. P. v. d. Aalst, N. Lohmann, P. Massuthe,

C. Stahl, and K. Wolf. From public views to private
views – correctness-by-design for services. In
M. Dumas and R. Heckel, editors, Web Services and
Formal Methods, Forth International Workshop,

WS-FM 2007 Brisbane, Australia, September 28-29,
2007, Proceedings, volume 4937 of Lecture Notes in
Computer Science, pages 139–153. Springer-Verlag,
2008.

[2] W. M. P. v. d. Aalst, P. Massuthe, C. Stahl, and
K. Wolf. Multiparty contracts: Agreeing and
implementing interorganizational processes.
Informatik-Berichte 213, Humboldt-Universität zu
Berlin, Berlin, Germany, June 2007.

[3] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guízar,
N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin,
V. Mehta, S. Thatte, D. v. d. Rijn, P. Yendluri, and
A. Yiu. Web Services Business Process Execution
Language Version 2.0. OASIS Standard, 11 April
2007, OASIS, Apr. 2007.

[4] T. Ambühler. UML 2.0 profile for WS-BPEL with
mapping to WS-BPEL. Master’s thesis, Universität
Stuttgart, Institut für Architektur von
Anwendungssystemen, Stuttgart, Germany, Oct. 2005.

[5] T. Basten and W. M. P. v. d. Aalst. Inheritance of
behavior. J. Log. Algebr. Program., 47(2):47–145,
2001.

[6] B. Benatallah, F. Casati, and F. Toumani.
Representing, analysing and managing Web service
protocols. Data Knowl. Eng., 58(3):327–357, 2006.

793

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China



[7] D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web
service interfaces. In A. Ellis and T. Hagino, editors,
Proceedings of the 14th international conference on
World Wide Web, WWW 2005, Chiba, Japan, May
10-14, 2005, pages 148–159. ACM, 2005.

[8] F. Bonchi, A. Brogi, S. Corfini, and F. Gadducci. A
behavioural congruence for web services. In F. Arbab
and M. Sirjani, editors, International Symposium on
Fundamentals of Software Engineering, International
Symposium, FSEN 2007, Tehran, Iran, April 17-19,
2007, Proceedings, volume 4767 of Lecture Notes in
Computer Science, pages 240–256. Springer, 2007.

[9] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella.
When are two Web services compatible? In M.-C.
Shan, U. Dayal, and M. Hsu, editors, Technologies for
E-Services, 5th International Workshop, TES 2004,
Toronto, Canada, August 29-30, 2004, Revised
Selected Papers, volume 3324 of Lecture Notes in
Computer Science, pages 15–28. Springer, 2004.

[10] M. Bravetti and G. Zavattaro. Contract based
multi-party service composition. In F. Arbab and
M. Sirjani, editors, International Symposium on
Fundamentals of Software Engineering, International
Symposium, FSEN 2007, Tehran, Iran, April 17-19,
2007, Proceedings, volume 4767 of Lecture Notes in
Computer Science, pages 207–222. Springer, 2007.

[11] M. Bravetti and G. Zavattaro. A theory for strong
service compliance. In A. L. Murphy and J. Vitek,
editors, Coordination Models and Languages, 9th
International Conference, COORDINATION 2007,
Paphos, Cyprus, June 6-8, 2007, Proceedings, volume
4467 of Lecture Notes in Computer Science, pages
96–112. Springer, 2007.

[12] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and
G. Zavattaro. Choreography and orchestration: A
synergic approach for system design. In B. Benatallah,
F. Casati, and P. Traverso, editors, Service-Oriented
Computing - ICSOC 2005, Third International
Conference, Amsterdam, The Netherlands, December
12-15, 2005, Proceedings, volume 3826 of Lecture
Notes in Computer Science, pages 228–240. Springer,
2005.

[13] M. Carbone, K. Honda, and N. Yoshida. A calculus of
global interaction based on session types. Electr. Notes
Theor. Comput. Sci., 171(3):127–151, 2007.

[14] G. Castagna, N. Gesbert, and L. Padovani. A theory
of contracts for web services. In G. C. Necula and
P. Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008, pages 261–272.
ACM, 2008.

[15] G. Decker, O. Kopp, F. Leymann, and M. Weske.
BPEL4Chor: Extending BPEL for modeling
choreographies. In 2007 IEEE International
Conference on Web Services (ICWS 2007), July 9-13,
2007, Salt Lake City, Utah, USA, pages 296–303.
IEEE Computer Society, 2007.

[16] C. Fournet, C. A. R. Hoare, S. K. Rajamani, and
J. Rehof. Stuck-free conformance. In R. Alur and
D. Peled, editors, Computer Aided Verification, 16th
International Conference, CAV 2004, Boston, MA,

USA, July 13-17, 2004, Proceedings, volume 3114 of
Lecture Notes in Computer Science, pages 242–254.
Springer, 2004.

[17] N. Lohmann. A feature-complete Petri net semantics
for WS-BPEL 2.0. In M. Dumas and R. Heckel,
editors, Web Services and Formal Methods, Forth
International Workshop, WS-FM 2007 Brisbane,
Australia, September 28-29, 2007, Proceedings, volume
4937 of Lecture Notes in Computer Science, pages
77–91. Springer-Verlag, 2008.

[18] N. Lohmann, O. Kopp, F. Leymann, and W. Reisig.
Analyzing BPEL4Chor: Verification and participant
synthesis. In M. Dumas and R. Heckel, editors, Web
Services and Formal Methods, Forth International
Workshop, WS-FM 2007 Brisbane, Australia,
September 28-29, 2007, Proceedings, volume 4937 of
Lecture Notes in Computer Science, pages 46–60.
Springer-Verlag, 2008.

[19] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg.
Analyzing interacting BPEL processes. In Business
Process Management, 4th International Conference,
BPM 2006, Vienna, Austria, September 5-7, 2006,
Proceedings, volume 4102 of Lecture Notes in
Computer Science, pages 17–32. Springer-Verlag, Sept.
2006.

[20] N. Lohmann, P. Massuthe, and K. Wolf. Operating
guidelines for finite-state services. In J. Kleijn and
A. Yakovlev, editors, 28th International Conference on
Applications and Theory of Petri Nets and Other
Models of Concurrency, ICATPN 2007, Siedlce,
Poland, June 25-29, 2007, Proceedings, volume 4546
of Lecture Notes in Computer Science, pages 321–341.
Springer-Verlag, 2007.

[21] S. Moser, A. Martens, M. Häbich, and J. Müller. A
hybrid approach for generating compatible WS-BPEL
partner processes. In S. Dustdar, J. L. Fiadeiro, and
A. P. Sheth, editors, Business Process Management,
4th International Conference, BPM 2006, Vienna,
Austria, September 5-7, 2006, Proceedings, volume
4102 of Lecture Notes in Computer Science, pages
458–464. Springer, 2006.

[22] K. Schmidt. LoLA: A Low Level Analyser. In
M. Nielsen and D. Simpson, editors, Application and
Theory of Petri Nets, 21st International Conference
(ICATPN 2000), number 1825 in Lecture Notes in
Computer Science, pages 465–474. Springer-Verlag,
June 2000.

794

WWW 2008 / Refereed Track: Web Engineering - Web Service Composition Beijing, China


